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We develop a generalized quasilinearization method for nonlinear initial value problems
involving functional differential equations and obtain a sequence of approximate solutions
converging monotonically and quadratically to the solution of the problem. In addition,
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1 Introduction

The method of quasilinearization pioneered by Bellman and Kalaba [1] provides a de-
scent approach for obtaining approximate solutions to a nonlinear differential equation
provided the nonlinearity involved is convex. Recently, this method has been general-
ized by relaxing the convexity assumption. This development was so significant that
it received much attention and the generalized quasilinearization method was applied
to a variety of problems [2, 3, 4, 5, 6, 7, 9, 10, 11, 12]. For a complete survey of the
generalized quasilinearization technique, see [8].
The future state of a physical system depends not only on the present state but also

on its past history. Functional differential equations provide a mathematical model for
such physical systems in which the rate of change of the system may not depend on the
influence of its hereditary effects. The impetus has mainly been due to developments
in control theory, mathematical biology, mathematical economics, and the theory of
systems which communicate through less channels. The simplest type of such a system
is a differential-difference equation of the form x′(t) = f(t, x(t), x(t− τ )), where τ > 0

33



34 B. AHMAD, R. ALI KHAN, and S. SIVASUNDARAM

is a positive constant. More general systems may be described by x′(t) = f(t, xt) where
f is a suitable functional.
The aim of this paper is to consider a nonlinear initial value problem (IVP)involving

functional differential equation and develop a method of quasilinearization for this prob-
lem without requiring the function involved to be convex/concave. A monotone sequence
of approximate solutions converging monotonically to a solution of the problem, with
convergence higher than quadratic (k ≥ 2) is obtained.

2 Preliminaries

Given any τ > 0, let Γ = C[[−τ, 0], R] and for any φ ∈ Γ, define the norm

� φ �o= max
−τ≤s≤0

| φ | .

For any t ≥ 0, let xt denotes a translation of the restriction of x ∈ C[[−τ, T ], R] to the
interval [−τ, 0] and it is defined by

xt(s) = x(s+ t), − τ ≤ s ≤ 0, t ∈ J = [−τ, T ].

Now, consider the IVP for the functional differential equation

x′ = f(t, xt), xo = φo ∈ �, t ∈ [0, T ] = J, (2.1)

where f ∈ C[J × Γ, R], and let J̄ = [−τ, T ]. A function α ∈ C[[−τ, T ], R] is a lower
solution of (2.1) if

D+α(t) ≤ f(t, αt), t ∈ [0, T ], α0 ≤ φo,

and β ∈ C[[−τ, T ], R] is an upper solution of (2.1) if

D+β(t) ≥ f(t, βt), t ∈ [0, T ], β0 ≥ φo.

Now, we state the following results, which play an important role in the sequel (for the
proof, see p: 34-35, [4]).

Theorem 2.1: Let

(1) f ∈ C[J×Γ, R] and f(t, x, φ) be quasinondecreasing in φ for each t ∈ J and satisfy
the condition

f(t, φ)− f(t, ψ) ≤ L(φ− ψ), t ∈ J,
where φ, ψ ∈ Γ, such that φ(s) ≤ ψ(s), −τ ≤ s ≤ 0, and 0 < L < 1.

(2) α, β ∈ C[[−τ, T ], R] be such that

D+α(t) ≤ f(t, αt)
D+β(t) ≥ f(t, βt) for t ∈ [0, T ],

and αo(s) ≤ βo(s), −τ ≤ s ≤ 0.
Then,

α(t) ≤ β(t), for t ∈ J̄ .
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Theorem 2.2: Let α(t), β(t) be lower and upper solutions of (2.1). Let f ∈ C[J ×
Γ, R] and f(t, φ) be quasinondecreasing in φ for each t ∈ J. Suppose that x = x(0, φo)
is any solution of (2.1) defined on [0, T ]. Then,

α(t) ≤ x(0, φo)(t) ≤ β(t).

Theorem 2.3: Let f ∈ C[J×R×Γ, R] and f(t, x, φ) be nondecreasing in φ for each
(t, x). Let x, y ∈ C[[−τ, T ], R] and xo ≤ yo. Assume further that x′(t) ≤ f(t, x(t), xt),
y′(t) ≥ f(t, y(t), yt). Then x(t) ≤ y(t), for t ∈ J = [−τ, T ].

Theorem 2.4: Let y(u), z(u) be lower and upper solutions of (2.1) and f(t, x, φ) ∈
C[J ×R×Γ, R] be nondecreasing in φ for each (t, x). Suppose that x = x(0, φo) is any
solution of (2.1) defined on [0, T ] , such that

yo ≤ φo ≤ zo.

Then,
y(t) ≤ x(0, φo)(t) ≤ z(t).

3 Main Result

Theorem 3.1: Assume that

(A1) f ∈ C[J × Γ, R] and f(t, φ) is quasinondecreasing in φ for each t ∈ J.

(A2) α, β ∈ C[−J,R] ∩ C1[J,R] are lower and upper solutions of (1) satisfying

α(t) ≤ β(t), t ∈J .

(A3) The derivatives fφ(t, φ) and fφφ(t, φ) exist and are continuous and satisfying,
fφφ(t, φ) ≥ −2m , 0 ≤ fφ(t, φ) ≤ L, for some m > 0, 1 > L > 0, t ∈ J.

Then there exists a monotone sequence {un(t)}, which converges uniformly to the unique
solution of (2.1) on J and that the convergence is quadratic.

Proof: In view of the assumption (A3), we can write

f(t, φ) ≥ f(t, ψ) + (fφ(t, ψ) + 2mψ)(φ− ψ)−m(φ2 − ψ2), (3.2)

where,
αt ≤ ψ ≤ φ ≤ βt for t ∈ J, and φ, ψ ∈ Γ.

Define the functional F (t, φ, ψ) as

F (t, φ, ψ) = f(t, ψ) + (fφ(t, ψ) + 2mψ)(φ− ψ)−m(φ2 − ψ2). (3.3)

We observe that

F (t, φ, ψ) ≤ f(t, φ) and F (t, φ, φ) = f(t, φ). (3.4)
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Setting α = uo, and consider the IVP for functional differential equation:

u′ = F (t, ut, uo,t), uo = φo ∈ Γ, t ∈ J. (3.5)

Observe that

∂

∂φ
F (t, ut, φ) =

∂

∂φ
[f(t, φ) + (fφ(t, φ) + 2mφ)(ut − φ)−m(u2

t − φ2)]

= (fφφ(t, φ) + 2m)(ut − φ) ≥ 0,
and

uo,t ≤ φ ≤ ut ≤ βt for t ∈ J, and φ, ut ∈ Γ,
which implies that F (t, ut, φ) is nondecreasing in φ for each (t, ut). Furthermore, in view
of (3.3) and (3.4), we have

F (t, φ1, uo,t)− F (t, φ2, uo,t) = (fφ(t, uo,t) + 2muo,t)(φ1 − φ2)−m(φ2
1 − φ2

2)
= (fφ(t, uo,t) + 2muo,t −m(φ1 + φ2)(φ1 − φ2)
= (fφ(t, uo,t)−m[(φ1 − uo,t) + (φ2 − uo,t)])(φ1 − φ2)
≤ fφ(t, uo,t)(φ1 − φ2)
≤ L(φ1 − φ2), for some 1 > L > 0,

where uo,t ≤ φ2 ≤ φ1 ≤ βt for t ∈ J, and φ1, φ2 ∈ Γ. This implies that F (t, φ, ψ) satisfies
one-sided Lipschitz condition. Since F (t, ut, uo,t) is quasimonotone nondecreasing and
satisfies one-sided Lipschitz condition, it follows that (3.5) has a unique solution u1(t),
with u1,0 = φo on J. Now, in view of (A2) and (3.4), we have

D+uo(t) ≤ f(t, uo,t) = F (t, uo,t, uo,t), uo,0 ≤ φo

and
D+β(t) ≥ f(t, βt) ≥ F (t, βt, uo,t), β0 ≥ φo.

It follows that uo(t), β(t) are lower and upper solutions of (3.5). Also,

uo,0 ≤ u1,0 ≤ β0.

Thus, by Theorem 2.2, we conclude that

uo,t ≤ u1,t ≤ βt for t ∈ J. (3.6)

Now, consider the IVP for the functional differential equation

u′ = F (t, ut, u1,t), u0 = φo = u1,0 , t ∈ J. (3.7)

Repeating the procedure used earlier, (3.7) has a unique solution u2(t), with

u2,0 = φo. (3.8)

In view of (3.4), the quasinondecreasing nature of F (t, φ, ψ), and the fact that u1(t) is
a solution of (3.5), we obtain

D+u1(t) = F (t, u1,t, uo,t) ≤ F (t, u1,t, u1,t), u1,0 = φo,
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and,
D+β(t) ≥ f(t, βt) ≥ F (t, βt, u1,t), β0 ≥ φo.

It follows that u1(t), β(t) are lower and upper solutions of (3.7), and since

u1,0 ≤ u2,0 ≤ β0,

by Theorem 2.2, we have that

u1,t ≤ u2,t ≤ βt for t ∈ J. (3.9)

Continuing in the same way, we obtain a monotone sequence{un,t} satisfying
uo,t ≤ u1,t ≤ u2,t ≤ ... ≤ un,t ≤ βt for t ∈ J,

where the element un,t of the sequence is a solution of the IVP

u′(t) = F (t, ut, un−1,t), u0 = φo = un,0 , t ∈ J. (3.10)

Since the sequence {un,t} is monotone, it follows that it has a pointwise limit xt. To
show that xt is in fact a solution of (2.1) we notice that un,t is a solution of the following
linear IVP for functional differential equation:

u′(t) = F (t, un,t, un−1,t), un,0 = φo, t ∈ J
= σn,t. (3.11)

where,σn,t = F (t, un,t, un−1,t), t ∈ J. Since F is continuous on [0, T ], it follows that
{σn,t} is bounded on [0, T ]. Also,

Limitn→∞σn,t = F (t, xt, xt) = f(t, xt), t ∈ J. (3.12)

Thus, from (3.11), we have

un,t =
∫ t

0

σn,sds

Taking limit n→ ∞,we obtain

xt =
∫ t

0

f(s, xt)ds, (3.13)

which is a solution of (2.1). Finally, we have to show that the convergence is quadratic.
For that, we define

en(t) = x(t)− un(t), t ∈ J̄ . (3.14)

Observe that en(t) ≥ 0 and en(s) = x(s)− un(s) = x0 − un,0 = φo − φo = 0. Now,

e′n(t) = x′(t)− u′n(t)
= f(t, xt)− F (t, un,t, un−1,t)
= f(t, xt)− [f(t, un−1,t) + (fφ(t, un−1,t) + 2mun−1,t)(un,t − un−1,t)

−m(u2
n,t − u2

n−1,t)]
= f(t, xt)− f(t, un−1,t)− (fφ(t, un−1,t) + 2mun−1,t)(un,t − un−1,t)

+m(u2
n,t − u2

n−1,t)]. (3.15)
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Define
G(t, xt) = f(t, xt) +mx2

t . (3.16)

Notice that Gφφ(t, xt) = fφφ(t, xt)− 2m > 0, so that we can find C > 0 such that
0 ≤ Gφφ(t, φ) ≤ C. (3.17)

Using (3.16) in (3.15) yields

e′n(t) = G(t, xt)−G(t, un−1,t)−Gφ(t, un−1,t)(un,t − un−1,t)−m(x2
t − u2

n,t)

=
∫ 1

0

Gφ(t, sxt + (1− s)un−1,t)en−1,tds−Gφ(t, un−1,t)[(xt − un−1,t)

−(xt − un,t)]−m(x2
t − u2

n,t)

=
∫ 1

0

Gφ(t, sxt + (1− s)un−1,t)en−1,tds−Gφ(t, un−1,t)en−1,t +

[Gφ(t, un−1,t)−m(xt + un,t)]en,t.

≤
∫ 1

0

Gφ(t, sxt + (1− s)un−1,t)en−1,tds−Gφ(t, un−1,t)en−1,t

+[Gφ(t, un−1,t)− 2mun−1,t)]en,t

=
∫ 1

0

Gφ(t, sxt + (1− s)un−1,t)en−1,tds−Gφ(t, un−1,t)en−1,t + fφ(t, un−1,t)en,t

=
∫ 1

0

[Gφ(t, sxt + (1− s)un−1,t)−Gφ(t, un−1,t)]en−1,tds+ fφ(t, un−1,t)en,t.

Using (A3) and (A4), the last result becomes

e′n(t) ≤
∫ 1

0

[Gφ(t, sxt + (1− s)un−1,t)−Gφ(t, un−1,t)]en−1,tds+ L
∫ 0

−τ

en,t(s)ds

≤
∫ 1

0

L2 | sxt + (1− s)un−1,t − un−1,t | en−1,tds+ L
∫ 0

−τ

en,t(s)ds

≤ L2e
2
n−1,t + L

∫ 0

−τ

en,t(s)ds = w′(t) (say).

Clearly, w′(t) ≥ 0. Since en(t) ≤ w(t) and w(t) is nondecreasing in t, we get

w(t) ≤ L2

∫ t

0

e2n−1,sds+ Lτ
∫ t

0

w(s)ds. (3.18)

Note that w(0) = 0. By Gronwall’s inequality [8], (3.18) can be written as

en(t) ≤ w(t) ≤ L2

∫ t

0

eLτ(T−S)e2n−1,sds

≤ L2
eLτT

Lτ
maxe2n−1,t where t ∈ J.

Consequently,

en(t) ≤ L2
eLτT

Lτ
max e2n−1,t where t ∈ J.

This completes the proof.
Theorem 3.2: Assume that
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(A1) f ∈ C[J × Γ, R] and f(t, φ) is quasinondecreasing in φ for each t ∈ J.
(A2) uo, vo ∈ C[J,R] ∩ C1[J,R] are lower and upper solutions of (1) satisfying

uo(s) ≤ vo(s), −τ ≤ s ≤ 0.

(A3) The derivatives ∂i

∂φi f(t, φ) (i = 1, 2, 3, ..., k−1) exist and are continuous functions
of t on [0, T ] , and ∂k

∂φk f(t, φ) > −k!mk, mk > 0, t ∈ J. Furthermore, fφ(t, φ) ≤
L

∫ 0

−τ
ψ(s)ds, where φ, ψ ∈ Γ are such that

uo,t ≤ φ, ψ ≤ vo,t for t ∈ J.

Then there exists a monotone sequence {un(t)} , which converges uniformly to the unique
solution of (2.1) on J and that the convergence is of order k ≥ 2.

Proof: In view of assumption (A3) and generalized mean value theorem, we have

f(t, φ) ≥
k−1∑
i=0

∂i

∂φi
f(t, ψ)

(φ− ψ)i
i!

−mk(φ− ψ)k, (3.19)

where
uo,t ≤ ψ ≤ φ ≤ vo,t for t ∈ J, and φ, ψ ∈ Γ.

Define the functional F (t, φ, ψ) as

F (t, φ, ψ) =
k−1∑
i=0

∂i

∂φi
f(t, ψ)

(φ− ψ)i
i!

−mk(φ− ψ)k. (3.20)

Observe that
F (t, φ, ψ) ≤ f(t, φ) and F (t, φ, φ) = f(t, φ), (3.21)

and F (t, φ, ψ) is nondecreasing in ψ for each (t, φ). Furthermore,

F (t, φ1, ψ)− F (t, φ2, ψ)

=
k−1∑
i=0

∂i

∂φi
f(t, ψ)

(φ1 − ψ)i
i!

−mk(φ1 − ψ)k

−
k−1∑
i=0

∂i

∂φi
f(t, ψ)

(φ2 − ψ)i
i!

+mk(φ2 − ψ)k

=


k−1∑

i=1

∂i

∂φi
f(t, ψ)

1
i!

i−1∑
j=0

(φ1 − ψ)i−1−j(φ2 − ψ)j

 (φ1 − φ2)

−mk

k−1∑
j=0

(φ1 − ψ)k−1−j(φ2 − ψ)j(φ1 − φ).

=


k−1∑

i=1

∂i

∂φi
f(t, ψ)

1
i!

i−1∑
j=0

(φ1 − ψ)i−1−j(φ2 − ψ)j
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−mk

k−1∑
j=0

(φ1 − ψ)k−1−j(φ2 − ψ)j

 (φ1 − φ2).

≤
k−1∑
i=1

∂i

∂φi
f(t, ψ)

1
i!

i−1∑
j=0

(φ1 − ψ)i−1−j(φ2 − ψ)j(φ1 − φ2) ≤M(φ1 − φ2).(3.22)

where

0 <
k−1∑
i=1

∂i

∂φi
f(t, ψ)

1
i!

i−1∑
j=0

(φ1 − ψ)i−1−j(φ2 − ψ)j ≤M.

Clearly, F (t, φ, ψ) satisfies one-sided Lipschitz condition with respect to φ for each (t, ψ).
Now, consider the IVP for the functional differential equation

u′(t) = F (t, u(t), u0,t), u0 = φo, t ∈ J. (3.23)

Since F (t, u(t), u0,t) is quasimonotone nondecreasing and satisfies one-sided Lipschitz
condition, it follows that (19) has a unique solution u1(t), with u1,0 = φo. Now,

u′0(t) ≤ f(t, u0,t) = F (t, u0,t, u0,t), u0,0 ≤ φo,

and
v′0(t) ≥ f(t, v0,t) ≥ F (t, v0,t, u0,t), v0,0 ≥ φo,

imply that u0(t) and v0(t) are lower and upper solutions of (3.21), respectively. Also,

u0,0 ≤ u1,0 ≤ v0,0.

Thus, it follows from Theorem 2.4 that

u0,t ≤ u1,t ≤ v0,t for every t ∈ J. (3.24)

Now, consider the following IVP for functional differential equation:

u′(t) = F (t, u(t), u1,t), u0 = φo = u1,0, t ∈ J. (3.25)

Employing the earlier arguments, we find that (3.25) has a unique solution u2(t), with

u2,0 = φo.

In view of the nondecreasing nature of F (t, φ, ψ), it follows that

u′1(t) = F (t, u1,t, uo,t) ≤ F (t, u1,t, u1,t), u1,0 = φo,

which implies that u1(t) is a lower solution of (3.25). Similarly, it can be shown that
v0(t) is an upper solution of (3.25), and

u1,0 ≤ u2,0 ≤ v0,0.

Hence, by Theorem 2.4, there exists a solution u2,t such that

u1,t ≤ u2,t ≤ v0,t for every t ∈ J.
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Continuing in this way, we obtain a monotone sequence{un,t} satisfying
u0,t ≤ u1,t ≤ u2,t ≤ ... ≤ un,t ≤ v0,t for t ∈ J,

where the element un,t of the sequence is a solution of the IVP

u′(t) = F (t, u(t), un−1,t), u0 = φo = un,0 , t ∈ J.
Since the sequence {un,t} is monotone, it follows that it has a pointwise limit xt. To
show that xt is in fact a solution of (2.1), we notice that un,t is a solution of the following
linear IVP for functional differential equation:

u′(t) = F (t, un,t, un−1,t), un,0 = φo, t ∈ J
= σn,t. (3.26)

Since F is a continuous function of t on [0, T ], it follows that {σn,t} is bounded on [0, T ].
Also,

Limn→∞σn,t = F (t, xt, xt) = f(t, xt), t ∈ J. (3.27)

Thus, from (3.26), we have

un,t = φo +
∫ t

0

σn,sds.

This proves that {un,t} is uniformly bounded on J. Passing on to the limit n→ ∞, we
obtain

xt =
∫ t

0

f(s, xt)ds+ φo, (3.28)

which is a solution of (2.1).
Now, we show that the convergence is of order k ≥ 2. For that, we define

en(t) = x(t)− un(t), an(t) = un+1(t)− un(t), t ∈J,
so that, en(t) ≥ 0, an(t) ≥ 0 and en(s) = x(s) − un(s) = x0 − un,0 = φo − φo = 0,
an(s) = 0, s ∈ [−τ, 0].
In view of assumption (A3) and the generalized mean value theorem, we have

e′n+1(t) = x′(t)− u′n+1(t)
= f(t, xt)− F (t, un+1,t, un,t)

=
k−1∑
i=0

∂i

∂φi
f(t, un,t)

(xt − un,t)i

i!
+
∂k

∂φk
f(t, ξt)

(xt − un,t)k

k!

−
k−1∑
i=0

∂i

∂φi
f(t, un,t)

(un+1,t − un,t)i

i!
+mk(un+1,t − un,t)k

≤
k−1∑
i=1

∂i

∂φi
f(t, un,t)

1
i!
(ein,t − ai

n,t) +
M

k!
ekn,t +mka

k
n,t

≤
k−1∑
i=1

∂i

∂φi
f(t, un,t)

1
i!

i−1∑
j=0

ei−1−j
n,t aj

n,t(en,t − an,t) + Cekn,t

=
k−1∑
i=1

∂i

∂φi
f(t, un,t)

1
i!

i−1∑
j=0

ei−1−j
n,t aj

n,ten+1,t + Cekn,t, (3.29)
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where

C =
M +mkk!

k!
, en+1,t = en,t − an,t,

∂k

∂φk
f(t, ξt) ≤M, en,t ≥ an,t.

Taking

Qn,t =
k−1∑
i=1

∂i

∂φi
f(t, un,t)

1
i!

i−1∑
j=0

ei−1−j
n,t aj

n,t,

the expression (3.29) becomes

e′n+1(t) ≤ Qn,ten+1,t + Cekn,t.

Notice that
limn→∞Qn,t = fφ(t, xt).

This implies that {Qn,t} is bounded .It follows that there exists some L > 0, such that
Qn,t ≤ L. Thus, we have

e′n+1(t) ≤ Len+1,t + Cekn,t , en+1,0 = 0 ≤ φo , t ∈ J.
= w′(t) (say).

Clearly, w′(t) ≥ 0. Since en(t) ≤ w(t) and w(t) is nondecreasing in t, we get

w(t) ≤ L2

∫ t

0

ekn−1,sds+ Lτ
∫ t

0

w(s)ds. (3.30)

Noting that w(0) = 0 and using Gronwall’s inequality [8], (3.30) can be written as

en(t) ≤ w(t) ≤ L2

∫ t

0

eLτ(t−S)ekn−1,sds

≤ L2
eLτT

Lτ
maxekn−1,t where t ∈ J.

Consequently,
‖en(t)‖ ≤ C ‖en−1,t‖k

where C = L2
eLτT

Lτ . This completes the proof.
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