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In this paper, we study the complete convergence for the means %Z;;l X; and
n% > h—1Xnk via. exponential bounds, where o > 0 and {X,, n > 1} is a sequence
of negatively dependent random variables and {X,x, 1 < k < n,n > 1} is an array of
rowwise pairwise negatively dependent random variables.
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1 Introduction

Let {X,,, n > 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5]
proved that if £(X) =0 and E(X?) < oo, then the sequence 2 3" | X; converges to 0
completely. (i.e., the series Y7 | P[|S,| > ne] < oo, converges for every ¢ > 0). Now let
{X,, n > 1} be a sequence of negatively dependent real random variables. In this pa-
per, we proved the complete convergence of the sequence % >, X;, via. exponential
bounds. In addition if {X,x, 1 < k < n,n > 1} is an array of rowwise pairwise neg-
atively dependent random variables, we proved complete convergence of the sequence

L1 Xak, n > 1} where a > 0. To prove these theorems we need to the following

definitions and lemmas.
Definition 1: The random variables X1, -, X,, are pairwise negatively dependent
if
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for all z;,x; €IR, i # j. It can be shown that (1.1) is equivalent to
P(Xi>l‘i,Xj >J)j) SP(X1>J)Z)P(X] >$j), (1.2)

for all x;,z; €IR , i #j.
Definition 2: The random variables Xi,---,X,, are said to be negatively depen-
dent (ND) if we have

PN (X < ay)) < HP(Xj < ), (1.3)
and .
P(M_i(X; > ))) < [[ P(X; > ), (1.4)

for all q,---,x, €IR. An infinite sequence {X,, n > 1} is said to be ND if every
finite subset {Xy,---,X,} is ND.

Conditions (1.3) and (1.4) are equivalent for n = 2. However Ebrahimi and Ghosh
[4] show that these definitions do not agree for n > 3.

Definition 3: The sequence {X,,, n > 1} of random variables converges to zero
completely (denoted lim, oo X, =0 completely), if for every € > 0

i P[|X,| > €] < co. (1.5)

Lemma 1: (Petrov [8]) Let X be a random variable with E(X) =0, E(X?) < oo,
and suppose there exists a positive constant H such that for all m > 2

1
|[E(X™)] < 5m!a%rarm”, (1.6)

then for every |t| < 5
FEetX < ot?o”
Lemma 2: (Serfeling [9]) Let X be a rv. with E(X) = p. If Pla < X < b =
1. Then for every real number h > 0,

h2(b—a)?
—=s
b

Eeh(X—u) <e

and ) )
EeMX—nl < 26%
The next three lemmas will be needed in the proofs of the strong law of large numbers
in the next section [3].
Lemma 3: Let Xy, -+, X, be ND random variables and f1,---, fn, be a sequence
of Borel functions which all are monotone increasing (or all are monotone decreasing),
then f1(X1),- -, fu(X,) are ND random variables.

Lemma 4: Let Xq,---, X, be pairwise ND random variables, then

E(X;X,;) < E(X))E(X;), V i#].
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Lemma 5: Let Xq,---,X,, be ND nonnegative random variables, then

B[] %] < [ BIX,)

Jj=1 Jj=1

2 Exponential Bounds and Complete Convergence

In this section, we obtained some exponential bounds for probability P[|S,| > z| for
every x > (0 using Lemmas 1 and 2, and then we proved the complete convergence
of the sequence {% i, Xi}. We shall consider a sequence of ND random variables
{X,, n > 1}, with zero means and finite variances . We put

n n
Sn:ZXk, anza,‘j‘..
k=1 k=1

Theorem 1: Let {X,, n>1} be a sequence of ND r.v.’s and suppose there exists
a positive constant H such that for all m > 2 and 1 <k <mn,

1
B < gmlotH™, (2.7)
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if Yoo, exp|— ZBn] < 00, for every e > 0, then

1 n
— E X — 0, completely.
n

k=1

Proof: By Lemmas 1, 3, 5 and Markov’s inequality for every |[t| < % we have

P[|S,| > x] < P[S,, > x| + P[-S, > z] < e B! 4 e Ee~t5n

n

< efm(H Ee!Xr 4 H Fe 1) < 2exp|[—tz + t2B,].
k=1

k=1
Hence
P[|S,| > 2] < 2exp[—tz + t*B,]. (2.8)
With h(t) = t?B, —tz and 0 <z < £z the equation h/(t) =0 has the unique
solution ¢ = 5z which minimize h(t). Hence

2
P|Sy| > ] §2exp[—%] if 0<z<

n

2|

Let a = Bli}* , where n* is the first subscript so that B,, > 0. Then for every 0 < ¢ < a,

and by the assumption

0o |Sn| 0o 71262
Prl S )« _
E P[ . >e| < E 2exp| 4Bn]<oo,

n=1 n=1
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and for each ¢’ > a > ¢ > 0, we have

i STZ i STZ ] < 0.

These complete the proof.

Remark 1: In particular if B,, = O(n®), 0 < o < 2, then series ), exp[— QBEQ]
converges.

Remark 2: If the random variables X, Xo,---,X,, are ND r.v.’s with zero means
and uniformly bounded, that is if there exists a positive constant ¢ such that

P[| X < =1, k>1
then for all integers m > 2 we have

|B(X{")| < " 2o

Thus Condition (1.6) in Lemma 1 is satisfied with H = c. Hence if ) exp[—

2_2
i, <
00, for every € > 0, then

1 n
— Z X — 0, completely.
n

Theorem 2: Let {X,, n > 1} be a sequence of ND random variables and

¢n, = max{esssup lj{BL" 1<k<n}. If > exp[— C22n§2 ] < oo, then for each € >0,

1
— Z X, — 0, completely.
n

Proof: By Lemmas 2, 3, 5 and Markov’s inequality for every ¢ > 0, we have

—tSp

P[|Sa| > €] < P[S, > €] + P[=5, > €] < ¢ Vo7 BEeVEr + ¢ Vi Eevir

_ - —tXg te nt?c?
ez ¥V TE < 2e + —"n].
(I )} < 2expl-— + T
Thus, for t = ncif/BTL we have
2
P[|S,| > €] < 26Xp[_72nc%Bn]’
and by the assumption we have
> 2> g <0y el-gir <
e 00
n il 2¢2 By,
n=1 n=1

which completes the proof.

Remark 3: In particular if 2B, = O(n®), 0 < a < 1, then series ) - | exp[— %]
converges. o
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3 Strong Limit Theorem for arrays

Let {X,k, 1 <k <mn, n> 1} be an array of rowwise pairwise ND random variables
with

E[X.k] =0, o2, =FE[X2], 1<k<n, n>1.
We consider the means &, = n“‘ Zk 1 Xnk, n > 1 where « is a fixed positive real

number. Since Xk, 1 < k <n are pairwise ND random variables, by Lemma 4 we can
write

1 n
Bl < —= Z Toges (3.9)
k=1
because
1 n 1 n n
FOEEES SPR o SEI
k=1 k=1j=1
1 n n
=D B+ D BXuXull < =2 ony
=1 k#j k=1

Theorem 3: Let {X,1, 1 <k <mn, n>1} be an array of rowwise pairwise ND
random variables with E[X,;] = 0. If for some a >0

e

||M8

then

3

1
— Xnr — 0 completely.
na

k=1

Proof: By Chebyshev’s inequality and (3.9), we have

1 1 <
Pllén| > €] < ;QE[f?J < WZ“Z}«
k=1

Since for some « >0

o0 o0 1 n
D PGl >l <) ag D om < oe
n=1 n=1 k=1

by Definition 3
1 n
— Xnr — 0 completely.
na
k=1

Corollary 1: Under assumptions of Theorem 3, let onpr < okk, K > 1, n >
(k+1). If Zzolkm—l<oo for some a > % then

n

1
— Xnr — 0 completely.
n

k=1
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Proof: We have

n=1 n=1 k=1 n=1 k=1
[eS) [e%S) 1 ) o
_ 2 _ kk
= 0t Y e =0 )
k=1 n=k k=1

then

which completes the proof.

2
Remark 4: The weaker condition 2120:1 Z%’; < 00, for every a > 0, implies only the
complete convergence of subsequence {&2»,p =0,1,2,....}, since

[eS) 0o 1 2P
ZEK%P] < Z 22ap Z l%k:
p=0 p=0 k=1
0o oo 9o
= ok Y g =0
k=1 p:2P>k k=1
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