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In this paper, we study the complete convergence for the means 1
n

∑n
i=1 Xi and

1
nα

∑n
k=1 Xnk via. exponential bounds, where α > 0 and {Xn, n ≥ 1} is a sequence

of negatively dependent random variables and {Xnk, 1 ≤ k ≤ n, n ≥ 1} is an array of
rowwise pairwise negatively dependent random variables.
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1 Introduction

Let {Xn, n ≥ 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5]
proved that if E(X) = 0 and E(X2) < ∞, then the sequence 1

n

∑n
i=1 Xi converges to 0

completely. (i.e., the series
∑∞

n=1 P [|Sn| > nε] < ∞, converges for every ε > 0). Now let
{Xn, n ≥ 1} be a sequence of negatively dependent real random variables. In this pa-
per, we proved the complete convergence of the sequence 1

n

∑n
i=1 Xi, via. exponential

bounds. In addition if {Xnk, 1 ≤ k ≤ n, n ≥ 1} is an array of rowwise pairwise neg-
atively dependent random variables, we proved complete convergence of the sequence
{ 1

nα

∑n
k=1 Xnk, n ≥ 1} where α > 0. To prove these theorems we need to the following

definitions and lemmas.

Definition 1: The random variables X1, · · · , Xn are pairwise negatively dependent
if

P (Xi ≤ xi, Xj ≤ xj) ≤ P (Xi ≤ xi)P (Xj ≤ xj), (1.1)
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for all xi, xj ∈IR, i 6= j. It can be shown that (1.1) is equivalent to

P (Xi > xi, Xj > xj) ≤ P (Xi > xi)P (Xj > xj), (1.2)

for all xj , xi ∈IR , i 6= j.
Definition 2: The random variables X1, · · · , Xn are said to be negatively depen-

dent (ND) if we have

P (∩n
j=1(Xj ≤ xj)) ≤

n∏

j=1

P (Xj ≤ xj), (1.3)

and

P (∩n
j=1(Xj > xj)) ≤

n∏

j=1

P (Xj > xj), (1.4)

for all x1, · · · , xn ∈IR. An infinite sequence {Xn, n ≥ 1} is said to be ND if every
finite subset {X1, · · · , Xn} is ND.

Conditions (1.3) and (1.4) are equivalent for n = 2. However Ebrahimi and Ghosh
[4] show that these definitions do not agree for n ≥ 3.

Definition 3: The sequence {Xn, n ≥ 1} of random variables converges to zero
completely (denoted limn→∞Xn = 0 completely), if for every ε > 0

∞∑

n=1

P [|Xn| > ε] < ∞. (1.5)

Lemma 1: (Petrov [8]) Let X be a random variable with E(X) = 0, E(X2) < ∞,
and suppose there exists a positive constant H such that for all m ≥ 2

|E(Xm)| ≤ 1
2
m!σ2Hm−2, (1.6)

then for every |t| ≤ 1
2H

EetX ≤ et2σ2
.

Lemma 2: (Serfeling [9]) Let X be a r.v. with E(X) = µ. If P [a ≤ X ≤ b] =
1. Then for every real number h > 0,

Eeh(X−µ) ≤ e
h2(b−a)2

8 ,

and
Eeh|X−µ| ≤ 2e

h2(b−a)2

8 .

The next three lemmas will be needed in the proofs of the strong law of large numbers
in the next section [3].

Lemma 3: Let X1, · · · , Xn be ND random variables and f1, · · · , fn be a sequence
of Borel functions which all are monotone increasing (or all are monotone decreasing),
then f1(X1), · · · , fn(Xn) are ND random variables.

Lemma 4: Let X1, · · · , Xn be pairwise ND random variables, then

E(XiXj) ≤ E(Xi)E(Xj), ∀ i 6= j.
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Lemma 5: Let X1, · · · , Xn be ND nonnegative random variables, then

E[
n∏

j=1

Xj ] ≤
n∏

j=1

E[Xj ].

2 Exponential Bounds and Complete Convergence

In this section, we obtained some exponential bounds for probability P [|Sn| > x] for
every x > 0 using Lemmas 1 and 2, and then we proved the complete convergence
of the sequence { 1

n

∑n
i=1 Xi}. We shall consider a sequence of ND random variables

{Xn, n ≥ 1}, with zero means and finite variances . We put

Sn =
n∑

k=1

Xk, Bn =
n∑

k=1

σ2
k.

Theorem 1: Let {Xn, n ≥ 1} be a sequence of ND r.v.’s and suppose there exists
a positive constant H such that for all m ≥ 2 and 1 ≤ k ≤ n,

|E(Xm
k )| ≤ 1

2
m!σ2

kHm−2, (2.7)

if
∑∞

n=1 exp[−n2ε2

4Bn
] < ∞, for every ε > 0, then

1
n

n∑

k=1

Xk −→ 0, completely.

Proof: By Lemmas 1, 3, 5 and Markov’s inequality for every |t| ≤ 1
2H we have

P [|Sn| ≥ x] ≤ P [Sn ≥ x] + P [−Sn ≥ x] ≤ e−txEetSn + e−txEe−tSn

≤ e−tx(
n∏

k=1

EetXk +
n∏

k=1

Ee−tXk) ≤ 2 exp[−tx + t2Bn].

Hence
P [|Sn| ≥ x] ≤ 2 exp[−tx + t2Bn]. (2.8)

With h(t) = t2Bn − tx and 0 ≤ x ≤ Bn

H , the equation h′(t) = 0 has the unique
solution t = x

2Bn
which minimize h(t). Hence

P [|Sn| ≥ x] ≤ 2 exp[− x2

4Bn
] if 0 ≤ x ≤ Bn

H
.

Let a = Bn?

H , where n? is the first subscript so that Bn > 0. Then for every 0 < ε ≤ a,
and by the assumption

∞∑

n=1

P [
|Sn|
n

≥ ε] ≤
∞∑

n=1

2 exp[−n2ε2

4Bn
] < ∞,
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and for each ε′ > a ≥ ε > 0, we have

[
∞∑

n=1

P [
|Sn|
n

≥ ε′] ≤
∞∑

n=1

P [
|Sn|
n

≥ ε] < ∞.

These complete the proof.
Remark 1: In particular if Bn = O(nα), 0 < α < 2, then series

∑∞
n=1 exp[−n2ε2

4Bn
]

converges.

Remark 2: If the random variables X1, X2, · · · , Xn are ND r.v.’s with zero means
and uniformly bounded, that is if there exists a positive constant c such that

P [|Xk| ≤ c] = 1, k ≥ 1

then for all integers m ≥ 2 we have

|E(Xm
k )| ≤ cm−2σ2

k.

Thus Condition (1.6) in Lemma 1 is satisfied with H = c. Hence if
∑∞

n=1 exp[−n2ε2

4Bn
] <

∞, for every ε > 0, then

1
n

n∑

k=1

Xk −→ 0, completely.

Theorem 2: Let {Xn, n ≥ 1} be a sequence of ND random variables and
cn = max{ess sup |Xk|√

Bn
, 1 ≤ k ≤ n}. If

∑∞
n=1 exp[− 2nε2

c2
nBn

] < ∞, then for each ε > 0,

1
n

n∑

k=1

Xk −→ 0, completely.

Proof: By Lemmas 2, 3, 5 and Markov’s inequality for every t > 0, we have

P [|Sn| > ε] ≤ P [Sn > ε] + P [−Sn > ε] ≤ e
− tε√

Bn Ee
tSn√

Bn + e
− tε√

Bn Ee
−tSn√

Bn

≤ e
− tε√

Bn {
n∏

k=1

(Ee
tXk√

Bn + Ee
−tXk√

Bn )} ≤ 2 exp[− tε√
Bn

+
nt2c2

n

2
].

Thus, for t = ε
nc2

n

√
Bn

we have

P [|Sn| > ε] ≤ 2 exp[− ε2

2nc2
nBn

],

and by the assumption we have

∞∑

n=1

P [
|Sn|
n

> ε] ≤ 2
∞∑

n=1

exp[− nε2

2c2
nBn

] < ∞

which completes the proof.
Remark 3: In particular if c2

nBn = O(nα), 0 < α < 1, then series
∑∞

n=1 exp[− nε2

2cnBn
]

converges.
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3 Strong Limit Theorem for arrays

Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise pairwise ND random variables
with

E[Xnk] = 0, σ2
nk = E[X2

nk], 1 ≤ k ≤ n, n ≥ 1.

We consider the means ξn = 1
nα

∑n
k=1 Xnk, n ≥ 1 where α is a fixed positive real

number. Since Xnk, 1 ≤ k ≤ n are pairwise ND random variables, by Lemma 4 we can
write

E[ξ2
n] ≤ 1

n2α

n∑

k=1

σ2
nk, (3.9)

because

E[ξ2
n] = E[

1
nα

n∑

k=1

Xnk]2 =
1

n2α

n∑

k=1

n∑

j=1

E[XnkXnj ]

=
1

n2α
[

n∑

k=1

E[X2
nk] +

∑∑

k 6=j

E[XnkXnj ]] ≤
1

n2α

n∑

k=1

σ2
nk.

Theorem 3: Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise pairwise ND
random variables with E[Xnk] = 0. If for some α > 0

∞∑

n=1

1
n2α

n∑

k=1

σ2
nk < ∞,

then
1

nα

n∑

k=1

Xnk −→ 0 completely.

Proof: By Chebyshev’s inequality and (3.9), we have

P [|ξn| > ε] ≤ 1
ε2

E[ξ2
n] ≤ 1

ε2n2α

n∑

k=1

σ2
nk.

Since for some α > 0

∞∑

n=1

P [|ξn| > ε] ≤
∞∑

n=1

1
ε2n2α

n∑

k=1

σ2
nk < ∞,

by Definition 3
1

nα

n∑

k=1

Xnk −→ 0 completely.

Corollary 1: Under assumptions of Theorem 3, let σnk ≤ σkk, k ≥ 1, n ≥
(k + 1). If

∑∞
k=1

σ2
kk

k2α−1 < ∞ for some α > 1
2 then

1
nα

n∑

k=1

Xnk −→ 0 completely.
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Proof: We have
∞∑

n=1

E[ξ2
n] ≤

∞∑

n=1

1
n2α

n∑

k=1

σ2
nk ≤

∞∑

n=1

1
n2α

n∑

k=1

σ2
kk

=
∞∑

k=1

σ2
kk

∞∑

n=k

1
n2α

= O(1)
∞∑

k=1

σ2
kk

k2α−1
,

then
∞∑

n=1

P [|ξn| > ε] ≤ O(1)
∞∑

k=1

σ2
kk

k2α−1
< ∞,

which completes the proof.
Remark 4: The weaker condition

∑∞
k=1

σ2
kk

k2α < ∞, for every α > 0, implies only the
complete convergence of subsequence {ξ2p , p = 0, 1, 2, ....}, since

∞∑

p=0

E[ξ2
2p ] ≤

∞∑

p=0

1
22αp

2p∑

k=1

σ2
kk

=
∞∑

k=1

σ2
kk

∑

p:2p≥k

1
22αp

= O(1)
∞∑

k=1

σ2
kk

k2α
.
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