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We investigate a class of abstract functional integro-differential stochastic evolution equa-
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1 Introduction

The purpose of this paper is to study the global existence and convergence properties of
mild solutions to a class of abstract semi-linear functional stochastic integro-differential
equations of the general form

x′(t) = Ax(t) + F (x)(t) +
∫ t

0

G(x)(s)dW (s), 0 ≤ t ≤ T, (1.1)

x(0) = h(x) + x0,

in a real separable Hilbert space H. Here, A : D(A) ⊂ H → H is a linear (possibly
unbounded) operator, G : C([0, T ]; H) → C([0, T ]; L2(Ω; BL(K; H))) (where K is a

1This work was begun during the author’s visit to Ohio University in June 2002, a trip which was
supported by a summer research grant awarded by the Goucher College Alumnae and Alumni Junior
Faculty Fund.
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real separable Hilbert space), F : C([0, T ]; H) → Lp(0, T ; L2(Ω; H)) (1 ≤ p < ∞), W
is a K-valued Wiener process with incremental covariance described by the nuclear
operator Q, x0 is an F0-measurable H-valued random variable independent of W , and
h : C([0, T ]; H) → L2

0(Ω; H).
The present work may be regarded as a direct attempt to extend recent results

developed in [7, 10, 16, 18, 20] to a broader class of functional stochastic equations.
The equations considered in the aforementioned papers can be viewed as special cases
of (1.1) by making the appropriate identifications of F , G, and h. Moreover, we further
extend these results by incorporating more general initial conditions. In particular, mild
periodic solutions are obtained. To the authors’ knowledge the results in this paper are
new even in the case of a classical initial condition (i.e., when h = 0).

The deterministic version of (1.1) (and related equations) coupled with a classical
initial condition has been studied extensively both when A is linear and when A is
nonlinear. We refer the reader to [8, 30] and the references therein. Byszewski [13]
introduced nonlocal initial conditions into such abstract initial-value problems and ar-
gued that the corresponding models more accurately describe the phenomena since more
information was taken into account at the onset of the experiment, thereby reducing
the ill effects incurred by a single (possibly erroneous) initial measurement. Since then,
many authors have continued this work in several directions and established existence
theories for first-order nonlinear evolution equations [2, 4, 29], second-order equations
[7], delay equations [7, 28], Volterra integral and integro-differential equations [5, 25],
and differential inclusions [1]. Concrete nonlocal parabolic and elliptic partial (integro-)
differential equations arising in the mathematical modeling of various physical, biolog-
ical, and ecological phenomena, as well as a discussion of the advantages of replacing
the classical initial condition with a more general functional, can be found in [13, 21]
and the references contained therein.

Stochastic differential equations (SDEs) in both finite and infinite dimensions have
also received considerable attention. We refer the reader to [10, 32] for a thorough
discussion in the finite dimensional setting, and [14, 19] for the infinite dimensional
setting. A semi-group-theoretic development of a theory for the stochastic analogues
of deterministic evolution equations is both powerful and beneficial since it enables
one to investigate a broad class of stochastic partial differential equations within a
unified context. SDEs are important from the viewpoint of applications since they
incorporate (natural) randomness into the mathematical description of the phenomena,
and, therefore, provide a more accurate description of it. Moreover, coupling such
equations with a nonlocal initial condition strengthens the model even further.

The basic tools used in this paper include fixed-point techniques, the theory of (com-
pact) linear semi-groups, results for probability measures, and methods and results for
infinite dimensional SDEs. The results are important from the viewpoint of applica-
tions since they cover nonlocal generalizations of integro-differential SDEs arising in
fields such as electromagnetic theory, population dynamics, and heat conduction in
materials with memory [10, 17, 19, 32].

The outline of the paper is as follows. We review some basic facts about linear
semi-groups, the theory of SDEs, and probability measures in Section 2. Then, Sections
3 and 4 are devoted to the development of our main existence results, while a discussion
of various convergence results immediately follows in Section 5. Finally, the paper
concludes with a discussion of a concrete nonlocal integro-partial SDE in Section 6.
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2 Preliminaries

For further background of this section, we refer the reader to [9, 11, 12, 14, 15, 19, 23,
30, 32]. Throughout this manuscript, H and K denote real separable Hilbert spaces
equipped with norms ‖ · ‖H and ‖ · ‖K , respectively, and the space of bounded linear
operators from K to H is denoted by BL(K; H) (or simply BL(H) if K = H). Also,
for Banach spaces X and Y , the space of continuous functions from X into Y (equipped
with the usual sup-norm) shall be denoted by C(X; Y ), while Lp(0, T ; X) shall represent
the space of X-valued functions that are p-integrable on [0, T ].

Let (Ω,F , P ) be a complete probability space equipped with a normal filtration
{Ft : 0 ≤ t ≤ T} (i.e., a right-continuous, increasing family of sub σ-algebras of F).
An H-valued random variable is an F-measurable function X : Ω → H and a collection
of random variables S = {X(t; ω) : Ω → H|0 ≤ t ≤ T} is called a stochastic process.
Henceforth, we shall suppress the dependence on ω ∈ Ω and write X(t) instead of
X(t; ω) and X : [0, T ] → H in place of S.

The collection of all strongly-measurable, square-integrable H-valued random vari-
ables, denoted by L2(Ω; H), is a Banach space equipped with norm ‖X(·)‖L2(Ω;H) =
(E‖X(·; ω)‖2

H)1/2, where the expectation, E, is defined by E(g) =
∫
Ω

g(ω)dP . An im-
portant subspace is given by L2

0(Ω; H) = {f ∈ L2(Ω; H) : f is F0-measurable}. Next,
we define the space C([0, T ]; H) to be the set {v ∈ C([0, T ]; L2(Ω; H)) : v is Ft-adapted}.
One can prove that this is a Banach space when equipped with the norm

‖v‖C = sup
0≤t≤T

(E‖v(t)‖2
H)1/2. (2.1)

Definition 2.1: A stochastic process {W (t) : t ≥ 0} in a real separable Hilbert
space H is a Wiener process if for each t ≥ 0,

(i) W (t) has continuous sample paths and independent increments,

(ii) W (t) ∈ L2(Ω; H) and E(W (t)) = 0,

(iii) Cov(W (t) − W (s)) = (t − s)Q, where Q ∈ BL(K; H) is a nonnegative nuclear
operator.

Consider the initial-value problem

x′(t) = Ax(t) + f(t) + g(t)W ′(t), 0 ≤ t ≤ T, (2.2)

x(0) = x0,

where A : H → H generates a C0-semi-group {S(t) : t ≥ 0} on H, f ∈ L1(0, T ; H),
g ∈ BL(K; H), W is a K-valued Wiener process with respect to {Ft : 0 ≤ t ≤ T}, and
x0 ∈ L2

0(Ω; H).
Definition 2.2: An Ft-adapted stochastic process x : [0, T ] → H is called a mild

solution of (2.2) if x(t) is measurable, for all t ∈ [0, T ],
∫ T

0
‖x(s)‖2

Hds < ∞ a.s. [P ], and

x(t) = S(t)x0 +
∫ t

0

S(t − s)f(s)ds +
∫ t

0

S(t − s)g(s)dW (s), a.s. [P ], (2.3)

for all 0 ≤ t ≤ T .



144 D.N. KECK and M.A. MCKIBBEN

(The second integral in (2.3) is taken in the sense of Itó. A complete discussion of
the construction of the Itó integral can be found in [14].) It is well-known that (2.2)
has a unique mild solution x ∈ C([0, T ]; H), and if stronger regularity restrictions are
imposed on the data, this solution is a strong solution (see [19, 20]).

The following alternative of the Leray-Schauder principle [24] plays a key role in
Section 4.

Theorem 2.3: (Schaefer’s Fixed Point Theorem [31]) Let X be a Banach space and
Φ : X → X a continuous, compact map. Then, either the set ξ(Φ) = {x ∈ X : λx = Φx,
for some λ ≥ 1} is unbounded, or Φ has a fixed point.

We conclude this section with some comments regarding probability measures. We
refer the reader to [9, 11] for a more detailed discussion.

Let X be an H-valued random variable and let P(H) denote the set of all probability
measures on H. The probability measure P induced by X, denoted PX , is defined by
PoX−1 : B(H) → [0, 1], where B(H) is the Borel class on H. A sequence {Pn} ⊂ P(H)
is said to be weakly convergent to P if

∫
Ω

fdPn →
∫
Ω

fdP , for every bounded, continuous
function f : H → IR; in such case, we write Pn

w→ P . Next, a family {Pn} is tight if
for each ε > 0, there exists a compact set Kε such that Pn(Kε) ≥ 1 − ε, for all n.
Prokhorov [11] established the equivalence of tightness and relative compactness of a
family of probability measures. Consequently, the Arzelá-Ascoli Theorem can be used
to establish tightness.

Definition 2.4: Let P ∈ P(H) and 0 ≤ t1 < t2 < . . . < tk ≤ T . Define πt1,...,tk
:

C([0, T ]; H) → Hk by πt1,...,tk
(X) = (X(t1), . . . , X(tk)). The probability measures

induced by πt1,...,tk
are the finite dimensional joint distributions of P .

Proposition 2.5: ([23], pg. 37) If a sequence {Xn} of H-valued random variables
converges weakly to an H-valued random variable X in L2(Ω; H), then the sequence of
finite dimensional joint distributions corresponding to {PXn

} converges weakly to the
finite dimensional joint distribution of PX .

Finally, the next theorem, in conjunction with Proposition 2.5, is the main tool in
establishing a convergence result in Section 5.

Theorem 2.6: Let {Pn} ⊂ P(H). If the sequence of finite dimensional joint distrib-
utions corresponding to {Pn} converges weakly to the finite dimensional joint distribution
of P and {Pn}is relatively compact, then Pn

w→ P .

3 Existence Results - Lipschitz Case

Consider the initial-value problem (1.1) in a real separable Hilbert space H under the
following assumptions:

(H1) The linear operator A : D(A) ⊂ H → H generates a C0-semi-group {S(t) : t ≥ 0}
on H,

(H2) F : C([0, T ]; H) → Lp(0, T ; L2(Ω; H)) is such that there exists MF > 0 for which

‖F (x) − F (y)‖Lp ≤ MF ‖x − y||C , for all x, y ∈ C([0, T ]; H),

(H3) G : C([0, T ]; H) → C([0, T ]; L2(Ω; BL(K; H))) (= CBL) is such that there exists
MG > 0 for which

‖G(x) − G(y)‖CBL
≤ MG‖x − y‖C , for all x, y ∈ C([0, T ]; H),



Functional Integro-Differential Equations 145

(H4) h : C([0, T ]; H) → L2
0(Ω; H) is such that there exists Mh > 0 for which

‖h(x) − h(y)‖L2
0
≤ Mh‖x − y‖C , for all x, y ∈ C([0, T ]; H),

(H5) x0 ∈ L2
0(Ω; H).

Definition 3.1: A function x ∈ C([0, T ]; H) is a mild solution of (1.1) on [0, T ] if x
satisfies Definition 2.2 with (2.3) replaced by

x(t) = S(t)(h(x)+x0)+
∫ t

0

S(t−s)F (x)(s)ds+
∫ t

0

∫ s

0

S(s−τ)G(x)(τ)dW (τ)ds, a.s. [P ],

(3.1)
for all 0 ≤ t ≤ T . (The Uniform Boundedness Principle and the strong continuity of S(t)
together guarantee the existence of a positive constant MS such that ‖S(t)‖BL ≤ MS

for all 0 ≤ t ≤ T .) Our first result is:
Theorem 3.2: Assume that (H1) - (H5) hold. Then, (1.1) has a unique mild

solution on [0, T ], if
MS [Mh + MGTCG + MF T 1/q] < 1, (3.2)

where 1 ≤ p, q ≤ ∞ are conjugate indices.
Proof: Define the solution map J : C([0, T ]; H) → C([0, T ]; H) by

(J x)(t) = S(t)(h(x) + x0) +
∫ t

0

S(t − s)F (x)(s)ds (3.3)

+
∫ t

0

∫ s

0

S(s − τ)G(x)(τ)dW (τ)ds, 0 ≤ t ≤ T.

The continuity of J is easily verified. Successive applications of Hölder’s inequality
yields

[
E‖
∫ t

0

S(t − s)F (x)(s)ds‖2
H

] 1
2

≤ T
1
2 MS

[∫ T

0

‖F (x)(s)‖2
L2(Ω;H)ds

] 1
2

(3.4)

≤ T (p−1)/pMS‖F (x)‖Lp .

Subsequently, an application of (H2), together with Minkowski’s inequality, enables us
to continue the string of inequalities in (3.4) to conclude that

[
E‖
∫ t

0

S(t − s)F (x)(s)ds‖2
H

] 1
2

≤ T
1
q MS [MF ‖x‖C + ‖F (0)‖Lp ]. (3.5)

Taking the supremum over [0, T ] in (3.5) then implies that
∫ t

0
S(t − s)F (x)(s)ds ∈

C([0, T ]; H), for any x ∈ C([0, T ]; H). Further, for such x, G(x)(s) ∈ BL(K; H) and
h(x) + x0 ∈ L2

0(Ω; H) (by (H4) and (H5)). Consequently, one can argue as in [20] to
conclude that J is a well-defined.

Next, we show that J is a strict contraction. Observe that for x, y ∈ C([0, T ]; H),
we infer from (3.3) that

(J x)(t) − (J y)(t) = S(t)(h(x)− h(y)) +
∫ t

0

S(t − s)[F (x)(s)− F (y)(s)]ds
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+
∫ t

0

∫ t

0

S(s − τ)[G(x)(τ)− G(y)(τ)]dW (τ)ds, 0 ≤ t ≤ T. (3.6)

For convenience, let I1, I2, and I3 represent the first, second, and third terms, respec-
tively, on the right-side of (3.6). Squaring both sides and taking the expectation in (3.6)
yields, with the help of Young’s inequality,

E‖(J x)(t) − (J y)(t)‖2
H ≤ 4[E‖I1‖2

H + E‖I2‖2
H + E‖I3‖2

H ]

and subsequently,

‖(J x)(t) − (J y)(t)‖C ≤ 4[‖I1‖C + ‖I2‖C + ‖I3‖C ]. (3.7)

Using reasoning similar to that which led to (3.4), one can show that

‖I1‖C + ‖I2‖C ≤ MS [Mh + MF T
1
q ]‖x − y‖C . (3.8)

Also, one can modify the argument of Proposition 1.9 in [20] to conclude that there
exists a constant CG (depending only on p, Tr(Q), and T ) such that

‖I3‖C ≤ MSMGCGT‖x − y‖C . (3.9)

Using (3.8) and (3.9) in (3.7) enables us to conclude that J is a strict contraction,
provided that (3.2) is satisfied and thus, has a unique fixed point which coincides with
a mild solution of (1.1). This completes the proof.

Next, we consider the following initial-value problem studied in [16].

x′(t) = Ax(t) +
∫ t

0

C(t, s)g(s, x(s))dW (s) +
∫ t

0

B(t, s)f1(s, x(s))ds (3.10)

+f2(t, x(t)), 0 ≤ t ≤ T,

x(0) = x0,

where {B(t, s) : 0 ≤ t ≤ s ≤ T}
⋃
{C(t, s) : 0 ≤ t ≤ s ≤ T} ⊂ BL(H), g : [0, T ] × H

→ BL(K; H), and fi : [0, T ] × H → H(i = 1, 2) are given mappings satisfying the
following conditions:

(H6) fi : [0, T ] × H → H(i = 1, 2) is such that there exists Mfi
> 0 for which

‖fi(t, x) − fi(t, y)‖H ≤ Mfi
‖x − y‖H , for all t ∈ [0, T ] and x, y ∈ H,

(H7) g : [0, T ] × H → BL(K; H) is such that there exists Mg > 0 for which

‖g(t, x) − g(t, y)‖BL ≤ Mg‖x − y‖H , for all t ∈ [0, T ] and x, y ∈ H.

We recover Theorem 2.1 in [16] as the following corollary of Theorem 3.2.
Corollary 3.3: If (H1), (H4) - (H7), and (3.2) hold, then (3.10) has a unique mild

solution on [0, T ].
Proof: Define F : C([0, T ]; H) → L1(0, T ; L2(Ω; H)) and G : C([0, T ]; H) → CBL,

respectively, by

F (x)(t) =
∫ t

0

B(t, s)f1(s, x(s))ds + f2(t, x(t)), 0 ≤ t ≤ T,
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G(x)(t) = C(t, s)g(t, x(t)), 0 ≤ t ≤ s ≤ T. (3.11)

The Uniform Boundedness Principle guarantees the existence of positive constants MB

and MC such that ‖B(t, s)‖BL ≤ MB and ‖C(t, s)‖BL ≤ MC , for all 0 ≤ t ≤ s ≤
T . Standard computations involving properties of expectation and Hölder’s inequality
imply, with the help of (H6), that for all x, y ∈ C([0, T ]; H),

‖F (x) − F (y)‖L1

≤ 2
∫ T

0

[
TM2

B

∫ t

0

E‖f1(τ, x(τ))− f1(τ, y(τ))‖2
Hdτ + E‖f2(s, x(s))− f2(s, y(s))‖2

H

] 1
2

≤ 2T [TMBMf1 + Mf2 ]‖x − y‖C . (3.12)

Similarly, (H7) enables us to infer that for all x, y ∈ C([0, T ]; H),

‖G(x) − G(y)‖CBL
≤ MCMg‖x − y‖C . (3.13)

Thus, if we let MF = 2T [TMBMf1 + Mf2 ] in (H2) and MG = MCMg in (H3), and take
h = 0, we can conclude from Theorem 3.2 that (3.10) has a unique mild solution on
[0, T ].

Remark 3.4:

(i) We also recover Theorem 3.3 in [22] as a corollary to Theorem 3.2 if we replace F
and G in (3.11), respectively, by F (x)(t) = f(t) and G(x)(t) = C(t − s)x(t), for
all 0 ≤ t ≤ s ≤ T , where C is a convolution-type kernel satisfying Assumptions
3.2 on page 361 in [22]. The result then follows from Corollary 3.3.

(ii) A result analogous to Corollary 3.3 regarding a delay version of (3.10) (obtained by
replacing g(s, x(s)) by g(s, x(s), x(σ(s))), where σ : [0, T ] → [0, T ] is a continuous,
nondecreasing function) can be established by making slight modifications to the
above argument. A related delay equation is discussed in [7] using compactness
methods.

We conclude this section with a comment on a special case of (3.10), namely where
x0 = 0 and h is given by

h(x) = x(T ), for all x ∈ C([0, T ]; H). (3.14)

Clearly, h, as given by (3.14), satisfies (H7) with Mg = 1. Since MS ≥ 1, condition
(3.2) does not hold for such h. To incorporate (3.14) into our theory, we consider that
the functions fi and g are defined instead on C((0,∞); H) and satisfy (H6) and (H7),
respectively, with [0, T ] replaced by [0,∞). Also, we take B and C to be convolution
kernels in L1(0,∞) of the type described in Remark 3.4(i). And finally, we assume that
A generates a semi-group {S(t) : t ≥ 0} on H such that

(H8) There exist MS ≥ 1 and ω > 0 such that ‖S(t)‖BL ≤ MSe−ωt, for all t ≥ 0.

For conditions that ensure that (H8) holds, see [30], pg. 116. Using an approach
similar to the one employed in [25], we can now prove that the following initial-value
problem has a unique mild solution, provided T is sufficiently large.

x′(t) = Ax(t) +
∫ t

0

C(t − s)g(s, x(s))dW (s) +
∫ t

0

B(t − s)f1(s, x(s))ds (3.15)



148 D.N. KECK and M.A. MCKIBBEN

+f2(t, x(t)), 0 ≤ t ≤ T,

x(0) = x(T ).

Theorem 3.5: Suppose (H1) and (H8) hold, and that fi, g, B, and C are as
described above. If also

(H9) MS exp [−ωT +MS(Mf1‖B‖L1(0,∞) +Mf2 +Mg‖C‖L1(0,∞))] < 1, then (3.15) has
a unique mild solution on [0, T ].

Proof: Arguing as in [22], it follows that for each fixed T > 0 and each y ∈ L2
0(Ω; H),

the initial-value problem (3.15) (with y in place of x(T )) has a unique mild solution xy

on [0, T ] given by

xy(t) = S(t)y+
∫ t

0

∫ s

0

S(s−τ)B(s−u)f1(τ, x(τ))dτds+
∫ t

0

S(t−s)f2(s, x(s))ds (3.16)

+
∫ t

0

∫ s

0

S(s − τ)C(s− τ)g(τ, x(τ))dW (τ)ds, 0 ≤ t ≤ T.

On account of (H8), and the assumptions imposed on fi, g, B, and C, (3.16) yields

‖xy(t) − xz(t)‖H ≤ MSe−ωt‖y − z‖H + MS(Mf1‖B‖L1(0,∞) + Mf2 + Mg‖C‖L1(0,∞))
(3.17)

·
∫ t

0

e−ω(t−s)‖xy(s) − xz(s)‖Hds, 0 ≤ t ≤ T.

Now, using a Gronwall-type inequality in (3.17) (cf. [25], Lemma 4.2), we arrive at

‖xy(T )−xz(T )‖H ≤ MSexp[−ωT+MS(Mf1‖B‖L1(0,∞)+Mf2+Mg‖C‖L1(0,∞))]·‖y−z‖H ,

for all y, z ∈ L2
0(Ω; H), and subsequently,

‖xy(T )− xz(T )‖L2(Ω;H) ≤ MSexp[−ωT + MS(Mf1‖B‖L1(0,∞) + Mf2 + Mg‖C‖L1(0,∞))]
(3.18)

·‖y − z‖L2
0
.

Define QT : L2(Ω; H) → L2(Ω; H) by QT (y) = uy(T ). Observe that (3.18) and (H9)
imply that QT is a strict contraction on L2(Ω; H), for sufficiently large T . Thus, for T
chosen such that (H9) is satisfied, QT has a unique fixed point y0. The corresponding
function u = uy0 is the desired mild solution of (3.15).

4 Existence Results - Compactness Case

We now develop existence results for (1.1) in which the Lipschitz conditions on F , G,
and h are replaced by sublinear growth conditions. This is done at the expense of a
compactness restriction on the semi-group. Precisely, we use the following assumptions
instead:

(H10) A generates a compact C0-semi-group {S(t) : t ≥ 0} on H,

(H11) F : C([0, T ]; H) → Lp(0, T ; L2(Ω; H)) is a continuous map for which there ex-
ists positive constants c1 and c2 such that ‖F (x)‖Lp ≤ c1‖x‖C + c2, for all
x ∈ C([0, T ]; H),
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(H12) G : C([0, T ]; H) → CBL is a continuous map for which there exists d1 > 0 and
d2 ∈ L2(0, T ; IR+) such that ‖G(x)‖CBL

≤ d1‖x‖C +d2(·), for all x ∈ C([0, T ]; H),

(H13) h : C([0, T ]; H) → L2
0(Ω; H) is a continuous, compact map for which there ex-

ists positive constants e1 and e2 such that ‖h(x)‖L2
0
≤ e1‖x‖C +e2, for all x ∈

C([0, T ]; H).

We begin by establishing certain compactness properties of the mappings Φ1 :
Lp(0, T ; L2(Ω, H)) → C([0, T ]; H) and Φ2 : CBL → C([0, T ]; H) defined, respectively,
by

Φ1(v)(t) =
∫ t

0

S(t − s)v(s)ds, 0 ≤ t ≤ T, (4.1)

Φ2(v)(t) =
∫ t

0

∫ s

0

S(s − τ)v(τ)dW (τ)ds, 0 ≤ s ≤ t ≤ T. (4.2)

The well-definedness of these two mappings follows from an application of Lebesgue’s
Dominated Convergence Theorem.

Lemma 4.1: Assume that {S(t) : 0 ≤ t ≤ T} is a compact semi-group on H. Then,

(i) Φ1 maps uniformly integrable sets in L1(0, T ; L2(Ω, H)) into precompact sub-
sets of C([0, T ]; H). Further, Φ1 is a compact map from Lp(0, T ; L2(Ω; H)) into
C([0, T ]; H), for p > 1,

(ii) Φ2 is a compact map from CBL into C([0, T ]; H).

Proof: Part (i) is essentially a stochastic analog of Lemma 3.1 in [3] (where S(t)
plays the role of the resolvent operator) and its proof follows similarly by making the
natural modifications. We shall only sketch the proof of (ii).

Let Kr = {v ∈ CBL : ‖v‖CBL
≤ r}. We shall show that Φ2(Kr) is equicontinuous

at each t ∈ [0, T ] and Φ2(Kr)(t) is precompact in L2(Ω; H), for each t ∈ [0, T ]. To this
end, observe that for 0 < t1 ≤ t2 ≤ T and v ∈ Kr, we have

‖Φ2(v)(t2) − Φ2(v)(t1)‖L2(Ω;H) ≤
[
TE

∫ t2

t1

∫ s

0

‖S(s − τ)v(τ)‖2
BLdτds

] 1
2

≤ MST 1/2

[∫ t2

t1

∫ s

0

‖v||2CBL
dτds

] 1
2

(4.3)

≤ MST‖v‖CBL
(t2 − t1)1/2.

Observe that the right-side of (4.3) tends to zero as t2 → t1, uniformly for v ∈ Kr. A
similar argument works for t = 0, thereby verifying the equicontinuity.

Next, note that the precompactness of Φ2(Kr)(0) = {0} is trivial. Let 0 < t ≤ T ,
0 < ε < t, and define by Φε

2 : CBL → C([0, T ]; H) by

Φε
2(v)(t) =

∫ t−ε

0

∫ s

0

S(s − τ)v(τ)dW (τ)ds, 0 ≤ t ≤ s ≤ T.

We claim that K2(ε; t) = {Φε
2(v)(t) : v ∈ Kr} is precompact in L2(Ω; H). Indeed,

observe that
‖Φ2(v)(t) − Φε

2(v)(t)‖L2(Ω;H) (4.4)
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≤ MST 1/2

[∫ t

t−ε

∫ s

0

‖v‖2
CBL

dτds

] 1
2

≤ MSTrε1/2, 0 < ε < t.

Since the right-side of (4.4) can be made arbitrarily small, uniformly for v ∈ Kr, we
conclude that Φ2(Kr)(t) is totally bounded. This, combined with the work above, yields
the precompactness, and the proof is complete.

Theorem 4.2: Assume that (H5) and (H10) - (H13) are satisfied. Then, (1.1) has
at least one mild solution on [0, T ] provided that

(H14) 2MS [e1 +
√

2T 3/2d1 + T 1/qc1] < 1.

Proof: We use Schaefer’s theorem to prove that J (as defined in (3.3)) has a fixed
point.

The well-definedness of J under (H10) - (H13) can be established using reasoning
similar to that employed in the proof of Theorem 3.2. To verify the continuity of J ,
let {vn}∞n=1 be a sequence in C([0, T ]; H) such that vn → v as n → ∞. Standard
computations yield

‖J (vn) − J (v)‖C ≤ 2MS

[
‖h(vn) − h(v)‖L2

0

+


E

(∫ T

0

‖F (vn)(s) − F (v)(s)‖Hds

)2



1/2

+


E

(∫ T

0

∫ T

0

‖G(vn)(τ) − G(v)(τ)‖BLdW (τ)ds

)2



1/2

 (4.5)

≤ 2MS [‖h(vn) − h(v)‖L2
0
+ T 1/q‖F (vn) − F (v)‖Lp + T 3/2‖G(vn) − G(v)‖CBL

].

The continuity of F , G, and h ensure that the right-side of (4.5) goes to zero as n → ∞,
thereby verifying the continuity of J .

Next, we show that the set ξ(J ), as defined in Theorem 2.3 with C([0, T ]; H) in place
of X, is bounded. Let v ∈ ξ(J ) and observe that the Hölder and Young inequalities
(with (H12)) yield

T 1/2

(
E

∫ T

0

∫ T

0

‖G(v)(τ)‖2
BLdτ ds

)1/2

≤
√

2T 3/2d1‖v‖C +
√

2T 1/2‖d2‖L2(0,T ). (4.6)

Also, arguing as in (3.4), we obtain (with the help of (H14))

T 1/2

(
E

∫ T

0

‖F (v)(s)‖2
Hds

)1/2

≤ T 1/q(c1‖v‖C + c2). (4.7)

Hence, (4.6) and (4.7), in conjunction with (H13), enable us to conclude that for all
v ∈ ξ(J ) and 0 ≤ t ≤ T , we have

λ‖v‖C ≤ 2MS

[
e1‖v‖C + e2 + ‖x0‖L2

0
+

√
2T 3/2d1‖v‖C +

√
2T 1/2‖d2‖L2(0,T ) (4.8)
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+T 1/q(c1‖v‖C + c2)
]
.

Taking into account that λ ≥ 1 and (H14), we conclude from (4.7) that ‖v‖C ≤ η, where
η is a constant independent of v and λ. So, ξ(J ) is bounded.

To apply Schaefer’s theorem, we must finally show that J is compact. To this end,
let r > 0 and define Kr = {v ∈ C([0, T ]; H) : ‖v‖C ≤ r}. Using the notation of (4.1)
and (4.2), we can express (3.3) as

J (v) = S(·)(h(v) + x0) + Φ1(F (v)(·)) + Φ2(G(v)(·)), v ∈ C([0, T ]; H). (4.9)

We shall prove that J (Kr) is precompact in C([0, T ]; H). First, the facts that {F (v) :
v ∈ Kr} and {G(v) : v ∈ Kr} are bounded subsets of Lp(0, T ; L2(Ω; H)) and CBL,
respectively (cf. (H11) and (H12)), it follows from Lemma 4.1 that the set {Φ1(F (v))+
Φ2(G(v)) : v ∈ Kr} is precompact in C([0, T ]; H). It remains to establish the precom-
pactness of {S(·)(h(v) + x0) : v ∈ Kr}. Since {S(·)(x0) : v ∈ Kr} = {S(·)(x0)} is
trivially precompact, we need only focus on {S(·)(h(v)) : v ∈ Kr}. By (H13), the set
L = {h(v) : v ∈ Kr} is precompact in L2

0(Ω; H). Let L̃ = S(·)L(⊂ C([0, T ]; H)) and ε >
0. The precompactness of L in L2

0(Ω; H) guarantees the existence of {x1, . . . , xn} ⊂ L
such that L ⊂

⋃n
i=1 B(xi, ε/MS), where B(xi, ε/MS) is the ball in L2

0(Ω; H) with radius
ε/MS and center xi. Then, L̃ ⊂

⋃n
i=1 S(·)B(xi, ε/MS). Let x̃i = S(·)xi ∈ C([0, T ]; H)

and B̃i = {y ∈ C([0, T ]; H) : ‖y − x̃i‖C < ε}. For z ∈ L̃, there exists Ψ ∈ L such that
z ∈ S(·)Ψ. Since Ψ ∈ L, there is an i ∈ {1, . . . , n} such that ‖Ψ − xi‖L2

0
< ε/MS .

Observe that ‖z − x̃i‖C = ‖S(·)Ψ − S(·)xi‖C ≤ MS‖ξ − xi‖L2
0

< ε. It then follows that
L̃ ⊂

⋃n
i=1 B̃i and hence, L̃ is totally bounded. Thus, L̃ is precompact in C([0, T ]; H).

Hence, Schaefer’s theorem implies that J has at least one fixed point x ∈ C([0, T ]; H)
which is a mild solution to (1.1).

Next, we state a corollary regarding (3.10) under the following assumptions on fi

and g:

(H15) fi : [0, T ] × H → H(i = 1, 2) satisfies

(i) fi(t, ·) : H → H is continuous, for almost all t ∈ [0, T ],

(ii) fi(·, x) : [0, T ] → H is strongly Ft-measurable, for all x ∈ H,

(iii) there exist positive constants ai,1 and ai,2 such that ‖fi(t, x)‖H ≤ ai,1‖x‖H +
ai,2 for almost all t ∈ [0, T ] and for all x ∈ H,

(H16) g : [0, T ] × H → BL(K; H) satisfies

(i) g(t, ·) : H → BL(K; H) is continuous, for almost all t ∈ [0, T ],

(ii) g(·, x) : [0, T ] → BL(K; H) is strongly Ft-measurable, for all x ∈ H,

(iii) there exist positive constants b1 and b2 such that ‖g(t, x)‖BL ≤ b1‖x‖H + b2

for almost all t ∈ [0, T ] and for all x ∈ H.

Corollary 4.3: If (H5), (H10), and (H13)–(H16) are satisfied, then (3.10) has at
least one mild solution on [0, T ].

Proof: An argument similar to the one used in [34], (Chapter 26, pg. 561) can be
used to show that (H15) and (H16) guarantee that the mappings F : C([0, T ]; H) →
L1(0, T ; L2(Ω; H)) and G : C([0, T ]; H) → CBL defined in (3.11) are well-defined and
continuous. Further, routine calculations show that F and G satisfy (H11) and (H12),
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respectively, with c1 = 2T (a1,1MBT 3/2 + a2,1), c2 = 2T (a1,2MBT 3/2 + a2,2), d1 =
2MCb1T , and d2 = 2MCb2T . Consequently, (3.10) has at least one mild solution by
Theorem 4.2.

We can formulate a stronger version of Corollary 4.3 by replacing assumption (H15)
and (H16), respectively, by

(H17) fi : [0, T ] × H → H(i = 1, 2) satisfies (H15) (i) and (ii), as well as

(i) For each k ∈ IN , there exists gi,k ∈ L1(0, T ; IR+) such that for almost all
t ∈ (0, T ), sup‖x‖H≤k E‖fi(t, x)‖2

H ≤ gi,k(t),

(ii) limk→∞k−2
∫ T

0
gi,k(s)ds = αi < ∞,

(H18) g : [0, T ] × H → BL(K; H) satisfies (H16) (i) and (ii), as well as

(i) For each k ∈ IN there exists jk ∈ L1(0, T ; IR+) such that for almost all
t ∈ (0, T ), sup‖x‖H≤k E‖g(t, x)‖2

BL ≤ jk(t),

(ii) limk→∞k−2
∫ T

0
jk(s)ds = β < ∞.

Comparable conditions appear in [7, 33].
Proposition 4.4: Assume that (H5), (H10), (H13), (H17), and (H18) are satis-

fied. If, in addition,

(H19) 4MS [e1 + T 1/2(α1/2
2 + MBT 3α

1/2
1 + MCT 2β1/2)] < 1, then (3.10) has at least one

mild solution on [0, T ].

Proof: We use Schauder’s fixed-point theorem [24] to argue that J (as defined in
(3.3) with F and G given by (3.11) has a fixed point. The continuity and compactness
follow by making slight changes to the proof of Theorem 4.1. For n ∈ IN , let Bn =
{x ∈ C([0, T ]; H) : ‖x‖C ≤ n}. It remains to show that there exists an n ∈ IN such that
J (Bn) ⊂ Bn.

Suppose, by way of contradiction, that for each k ∈ IN , there exists uk ∈ Bk such
that J (uk) /∈ Bk. Then,

1 ≤ limk→∞k−1‖J (uk)‖C. (4.10)

Observe that
‖J (uk)‖C

≤ 4MS


‖h(uk)‖L2

0
+ ‖x0‖L2

0
+ T 1/2


T 1/2MB

(∫ T

0

∫ T

0

E‖f1(τ, uk(τ))‖2
Hdτ ds

)1/2

(4.11)

+

(∫ T

0

E‖f2(s, uk(s))‖2
Hds

)1/2

+ T 1/2MC

(∫ T

0

∫ T

0

E‖g(τ, uk(τ))‖2
BLdτ ds

)1/2



 .

Note that for each k ∈ IN , uk ∈ Bk and hence, ‖uk(s)‖H ≤ k, for all 0 ≤ s ≤ T . So, by
(H17) and (H18), there exist gi,k(i = 1, 2), jk ∈ L1(0, T ; IR+) such that for almost all
0 ≤ s ≤ T

E‖fi(s, uk(s))‖2
H ≤ gi,k(s), (i = 1, 2), (4.12)

E||g(s, uk(s))‖2
BL ≤ jk(s).
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Using (4.12) in (4.11) yields (with the help of (H13))

‖J (uk)‖C ≤ 4MS



[
e1‖uk‖C + e2 + ‖x0‖L2

0

]
+ T 1/2

(∫ T

0

g2,k(s)ds

)1/2

+MBT 3/2

(∫ T

0

g1,k(s)ds

)1/2

+ MCT 1/2

(∫ T

0

jk(s)ds

)1/2

 .

and subsequently,

limk→∞k−1‖J (uk)‖C ≤ 4MS limk→∞

[
e1k

−1‖uk‖C + (e2 + ‖x0‖L2
0
)k−1

+4MST 1/2(k−2

∫ T

0

g2,k(s)ds)1/2

+ MBT 3/2

(
k−2

∫ T

0

g1,k(s)ds

)1/2

+ 4MSMCT

(
k−2

∫ T

0

jk(s)ds

)1/2



≤ 4MS [e1 + T 1/2(α1/2
2 + MBT 3α

1/2
1 + MCT 2β1/2)]

< 1 (by (H19)),

contradicting (4.10). Consequently, there is an n0 ∈ IN such that J (Bn0) ⊂ Bn0 . Thus,
Schauder’s fixed point theorem guarantees the existence of x ∈ Bn0 such that J (x) = x,
which is the mild solution that we seek.

Remark: An inspection of the proof shows that (H13) can be weakened slightly in
that instead of imposing the sublinear growth restriction on h, we need only assume
that lim‖x‖C→∞ ‖h(x)‖L2

0
/‖x‖C = ζ < ∞.

5 Convergence Results

Throughout this section we assume that A, F , G, and h satisfy (H1)—(H4) and that
(3.2) holds. For each n ∈ IN , consider a linear operator An : D(An)(= D(A)) → H
and mappings Fn : C([0, T ]; H) → Lp(0, T ; L2(Ω; H)), Gn : C([0, T ]; H) → CBL, and
hn : C([0, T ]; H) → L2

0(Ω; H) satisfying the following conditions:

(H20) An generates a C0-semi-group {Sn(t) : t ≥ 0} such that ‖Sn(t)‖BL ≤ MSeαt, for
some α > 0 (independent of n), for each n ∈ IN , and Anx → Ax strongly as
n → ∞, for each x ∈ D(A),

(H21) (i) ‖Fn(x) − Fn(y)‖Lp ≤ MF ‖x − y‖C , for all x, y ∈ C([0, T ]; H),

(ii) Fn(x) Lp

→ F (x) as n → ∞, for all x ∈ C([0, T ]; H),

(H22) (i) ‖Gn(x) − Gn(y)‖CBL
≤ MG‖x − y‖C , for all x, y ∈ C([0, T ]; H),

(ii) Gn(x) CBL→ G(x) as n → ∞, for all x ∈ C([0, T ]; H),

(H23) (i) ‖hn(x) − hn(y)‖L2
0
≤ Mh‖x − y‖C , for all x, y ∈ C([0, T ]; H),
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(ii) hn(x)
L2

0→ h(x) as n → ∞, for all x ∈ C([0, T ]; H).

(Here, the constants MS , MF , MG, and Mh are the same ones appearing in (H1)–(H4)
and so, are independent of n.)

Let x be the mild solution to (1.1) as guaranteed by Theorem 3.2. By virtue of (H6),
(H20), (H21)(i), (H22)(i), and (H23)(i), Theorem 3.2 implies that, for each n ∈ IN , the
problem

x′
n(t) = Anxn(t) + Fn(xn)(t) +

∫ t

0

Gn(xn)(s)dW (s), 0 ≤ t ≤ T, (5.1)

xn(0) = hn(xn) + x0,

has a unique mild solution xn ∈ C([0, T ]; H).
Consider the following initial-value problem:

y′
n(t) = Anyn(t) + Fn(x)(t) +

∫ t

0

Gn(x)(s)dW (s), 0 ≤ t ≤ T, (5.2)

yn(0) = hn(x) + x0.

Since hn(x)+x0 is a fixed element of L2
0(Ω; H), a standard argument (see Ch. 7 in [14])

guarantees the existence of a unique mild solution yn of (5.2). We need the following
lemma.

Lemma 5.1: If (H20)–(H23) hold, then yn
C→ x as n → ∞.

Proof: Using (H20) in conjunction with Theorem 4.1 in [19], pg. 46, we infer that
Sn(t)z → S(t)z strongly as n → ∞, for all z ∈ H, uniformly in t ∈ [0, T ]. Observe that

‖yn(t) − x(t)‖H ≤ ‖Sn(t)(hn(x) − h(x)) + (Sn(t) − S(t))h(x)‖H

+
∫ t

0

‖Sn(t − s)(Fn(x)(s) − F (x)(s))‖Hds +
∫ t

0

‖(Sn(t − s) − S(t − s))F (x)(s)‖Hds

+‖
∫ t

0

∫ s

0

[(Sn(s−τ)(Gn(x)(τ)−G(x)(τ)))+(Sn(s−τ)−S(s−τ))G(x)(τ)]dW (τ)ds‖H.

A standard argument invoking the Trotter-Kato Theorem [30] can be used, invoking
(H21)(ii)–(H23)(ii), to complete the proof.

We now state the first of our two main convergence results. A comparable theorem
for a nonlinear deterministic evolution equation is discussed in [2].

Theorem 5.2: Assume that (H1)–(H6), (3.2), and (H20)–(H23) are satisfied.
Then, xn

C→ x, provided 8MS [Mh + T 1/qMF + T 5/2MG] < 1, where MS = MSeαT .
Proof: Let yn be the mild solution of (5.2). Observe that

‖xn(t) − x(t)‖2
H ≤ 4[‖xn(t) − yn(t)‖2

H + ‖yn(t) − x(t)‖2
H ]

≤ 4
{
16
[
‖Sn(t)(hn(xn) + x0 − hn(x) − x0)‖2

H

+

(∫ T

0

‖Sn(T − s)(Fn(xn)(s) − Fn(x)(s))‖Hds

)2
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+

(∫ T

0

‖
∫ T

0

Sn(T − τ)(Gn(xn)(τ) − Gn(x)(τ))dW (τ)‖Hds

)2

+ ‖yn(t) − x(t)‖2

H



 .

Now, taking the expectation, followed by taking square roots, yields after some compu-
tation

‖xn(t) − x(t)‖L2(Ω;H) ≤ 2
{
4
[
E‖Sn(t)(hn(xn) − hn(x))‖L2(Ω;H) (5.3)

+T 1/2

(∫ T

0

E‖Sn(T − s)(Fn(xn)(s) − Fn(x)(s))‖2
Hds

)1/2

+T 1/2

(∫ T

0

E‖
∫ T

0

Sn(T − τ)(Gn(xn)(τ) − Gn(x)(τ))dW (τ)‖2
Hds

)1/2



+‖yn(t) − x(t)‖L2(Ω;H)

}
.

For convenience, we relabel the first three terms on the right-side of (5.3) as I1, I2 and
I3, respectively, and estimate each separately below.

First, note that (H23) immediately yields

I1 ≤ MS‖hn(xn) − hn(x)‖L2
0
≤ MSMh‖xn − x‖C . (5.4)

Next, (H21) yields, with the help of Hölder’s inequality,

I2 ≤ T 1/qMS‖Fn(xn) − Fn(x)‖Lp ≤ T 1/qMSMF ‖xn − x‖C . (5.5)

Finally, using (H22), we obtain

I3 ≤ T 1/2MS

(∫ T

0

∫ T

0

‖Gn(xn)(τ) − Gn(x)(τ)‖2
L2(Ω;BL(K;H))dτ ds

)1/2

(5.6)

≤ T 5/2MS‖Gn(xn) − Gn(x)‖CBL

≤ T 5/2MSMG‖xn − x‖C .

Using (5.4)–(5.6) in (5.3) yields, after taking supremum over [0, T ],

1/2(1 − 8MS [Mh + T 1/qMF + T 5/2MG])‖xn − x‖C ≤ ‖yn − x‖C . (5.7)

In view of (H20)–(H23), and the fact that 1 − 8MS [Mh + T 1/qMF + T 5/2MG] > 0, we
can apply Lemma 5.1 to conclude from (5.7) that xn

C→ x as n → ∞.
Now, let Px and Pxn

denote the probability measures on C([0, T ]; H) induced by the
mild solutions x and xn of (1.1) and (5.1), respectively. Using Theorem 5.2, we can
prove that Pxn

w→ Px as n → ∞, for a certain subclass of perturbations. Precisely, we
have

Theorem 5.3:Let p ≥ 4 and assume that Sn(·)An is a bounded operator, for each
n ∈ IN . Then, Pxn

w→ Px as n → ∞, provided that

(H24) 1 − MS
2
[M2

h + T 2/qMF
2

+ C3
GT 3M2

G] > 0.
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Proof: We shall employ a standard argument involving Theorem 2.6 similar to the
one used in [22].

We begin by showing {Pxn
}∞n=1 is relatively compact in C([0, T ]; H) by appealing to

the Arzelá-Ascoli theorem. To this end, we shall first show that there exists η > 0 such
that

sup
n∈IN

sup
0≤t≤T

‖xn(t)‖L2(Ω;H) = η < ∞. (5.8)

Note that xn is given by

xn(t) = Sn(t)(hn(xn) + x0) +
∫ t

0

Sn(t − s)Fn(xn)(s)ds (5.9)

+
∫ t

0

∫ s

0

Sn(s − τ)Gn(xn)(τ)dW (τ)ds, 0 ≤ t ≤ T.

Since hn(0)
L2

0→ h(0), there exists Mh > 0 (independent of n) such that ‖hn(0)‖L2
0
≤ Mh,

for all n. Using this fact, together with (H20) and (H23)(i), we arrive at

‖Sn(t)(hn(xn) + x0)‖2
L2(Ω;H) ≤ MS

2
M2

h‖xn‖2
C + MS

2
[Mh

2
+ ‖x0‖2

L2
0
]. (5.10)

Likewise, (H21)(ii) and (H22)(ii) guarantee that there exist MF , MG > 0 such that
‖Fn(0)‖Lp ≤ MF and ‖Gn(0)‖CBL

≤ MG, for all n, so that a standard argument now
yields

E‖
∫ t

0

Sn(t − s)Fn(xn)(s)ds‖2
H ≤ T 2/qMS

2
[M2

F ‖xn‖2
C + MF

2
] (5.11)

and

E‖
∫ t

0

∫ s

0

Sn(s − τ)Gn(xn)(τ)dW (τ)ds‖2
H ≤ T 3MS

2
C2

G[M2
G‖xn‖2

C + MG
2
]. (5.12)

Combining the estimates (5.10)–(5.12) and rearranging terms, we can now conclude
from (5.9) that (5.8) holds due to (H24) and the fact that all constants in (5.10)–(5.12)
are independent of n.

Next, we establish the equicontinuity by showing E‖xn(t)−xn(s)‖4
H → 0 as (t−s) →

0, for all 0 ≤ s ≤ t ≤ T , uniformly for all n ∈ IN . We estimate each term of the
representation formula for xn(t) − xn(s) (cf. (5.9)) separately. Employing Theorem
2.4(d) in [30] and taking into account (H20), (H23), and the uniform boundedness of
Sn(·)An, we conclude that

E‖[Sn(t) − Sn(s)](hn(xn) + x0)‖4
H ≤ T 4/3

∫ t

s

E‖Sn(τ)An(hn(xn) + x0)‖4
Hdτ (5.13)

≤ T 4/3{MSA[M2
h‖xn‖2

C + Mh
2
] + MS

2‖x0‖2
L0

2
}(t − s)2,

where MSA = supn∈IN ‖Sn(·)An‖BL. Next, note that

∫ t

0

Sn(t − τ)Fn(xn)(τ)dτ −
∫ s

0

Sn(s − τ)Fn(xn)(τ)dτ (5.14)
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=
∫ s

0

[Sn(t − τ) − Sn(s − τ)]Fn(xn)(τ)dτ

+
∫ t

s

Sn(t − τ)Fn(xn)(τ)dτ.

Estimating each of the two integrals on the right-side of (5.14) separately yields, from
the boundedness of Sn(·)An, (H20), and (H21)(i), that

E‖
∫ s

0

[Sn(t − τ) − Sn(s − τ)]Fn(xn)(τ)dτ‖4
H (5.15)

≤ T 8/3

∫ s

0

∫ t−τ

s−τ

E‖Sn(w)AnFn(xn)(w)‖4
Hdwdτ

≤ M4
SAT 11/3[M4

F ‖xn‖4
C + MF

4
](t − s)(p−4)/p,

and similarly,

E‖
∫ t

s

Sn(t − τ)Fn(xn)(τ)dτ‖4
H ≤ T 2MS

4
∫ t

s

‖Fn(xn)(τ)‖4
L2(Ω;H)dτ (5.16)

≤ T 2MS
4
[M4

F ‖xn‖4
C + MF

4
](t − s)(p−4)/p.

Regarding the difference of the stochastic integrals, note that Fubini’s theorem,
together with basic integral properties, enables us to write
∫ t

0

∫ τ

0

Sn(τ − θ)Gn(xn)(θ)dW (τ)dθ −
∫ s

0

∫ τ

0

Sn(τ − θ)Gn(xn)(θ)dW (τ)dθ (5.17)

=
∫ s

0

∫ τ

s

[Sn(t − θ) − Sn(s − θ)]Gn(xn)(τ)dθdW (τ)

+
[∫ s

0

∫ t

s

+
∫ t

s

∫ s

τ

+
∫ t

s

∫ t

s

]
Sn(t − θ)Gn(xn)(τ)dθdW (τ).

Arguing as above, we see that

E‖
∫ s

0

∫ τ

s

[Sn(t − θ) − Sn(s − θ)]Gn(xn)(τ)dθdW (τ)‖4
H

≤
∫ s

0

T 4/3E‖
∫ τ

s

∫ t−s

0

Sn(µ + s − θ)AnGn(xn)(τ)dW (τ)dθ‖4
Hdµ

≤ T 4/3MSA

∫ s

0

∫ s

τ

∫ t−s

0

‖Gn(xn)(τ)‖4
BLdτdθdµ (5.18)

≤ T 4/3MSA[M4
G‖xn‖4

C + MG
4
](t − s)4,

and that

E‖
[∫ s

0

∫ t

s

+
∫ t

s

∫ s

τ

+
∫ t

s

∫ t

s

]
Sn(t − θ)Gn(xn)(τ)dθdW (τ)‖4

H (5.19)
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≤ 3T 2MS
4
[M4

G‖xn‖4
C + MG

4
](t − s)4.

Invoking (5.8) in (5.13), (5.15), (5.16), (5.18), and (5.19) enables us to conclude that,
in fact, E‖xn(t)−xn(s)‖4

H → 0 as (t− s) → 0, uniformly for 0 ≤ s ≤ t ≤ T and n ∈ IN ,
as desired. Thus, the family {Pxn

}∞n=1 is relatively compact in C([0, T ]; H) and hence,
tight (by Prokorhov’s theorem [11]).

To finish the proof, we remark that Theorem 5.2 implies that the finite-dimensional
joint distributions of Pxn

converge weakly to those of P (cf. Proposition 2.5). Hence,
Theorem 2.6 ensures that Pxn

w→ Px as n → ∞.
Remark: For the classical version of (5.1) (i.e., when hn = 0, for all n), a Gronwall-

type argument can be used to establish the uniform boundedness (in C([0, T ]; H)) of
{xn}∞n=1 and, in such case, condition (H24) can be dropped.

6 Example

Let D be a bounded domain in IRN with smooth boundary ∂D and consider the initial-
boundary value problem

xt(t, z) = ∆zx(t, z) +
∫ T

0

a(t, s)f1

(
s, x(s, z),

∫ s

0

k(s, τ, x(τ, z))dτ

)
ds (6.1)

+
∫ T

0

b(t, s)f2(s, x(s, z))dW (s), a.e. on (0, T ) ×D,

x(0, z) =
n∑

i=1

gi(z)x(ti, z) +
∫ T

0

c(s)f3(s, x(s, z))ds, a.e. on D,

x(t, z) = 0, a.e. on (0, T ) × ∂D,

where 0 ≤ t1 < t2 < . . . < tn ≤ T are given and W is an L2(D)-valued Wiener process
(see [14] for examples). We consider (6.1) under the following conditions on the data:

(H25) f1 : [0, T ] × IR × IR → IR satisfies the Caratheódory conditions (i.e., measurable
in (t, x) and continuous in the third variable), as well as

(i) fi(·, 0, 0) ∈ L2(0, T ),

(ii) |f1(t, x1, y1) − f1(t, x2, y2)| ≤ Mf1 [|x1 + x2| + |y1 − y2|], for all x1, x2, y1,
y2 ∈ IR and almost all t ∈ (0, T ), for some Mf1 > 0,

(H26) f2 : [0, T ]× IR → BL(L2(D)) satisfies the Caratheódory conditions (cf. H(12) (i),
(ii)), as well as

(i) f2(·, 0) ∈ L2(0, T ),

(ii) |f2(t, x) − f2(t, y)|BL(H) ≤ Mf2 |x − y|, for all x, y ∈ IR and almost all t ∈
(0, T ), for some Mf2 > 0.

(H27) f3 : [0, T ] × IR → IR satisfies the Caratheódory conditions (cf. H(12) (i), (ii)), as
well as

(i) f3(·, 0) ∈ L2(0, T ),
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(ii) |f3(t, x) − f3(t, y)| ≤ Mf3 |x − y|, for all x, y ∈ IR and almost all t ∈ (0, T ),
for some Mf3 > 0,

(H28) a ∈ L2((0, T )2),

(H29) b ∈ L∞((0, T )2),

(H30) c ∈ L2(0, T ),

(H31) k : U × IR → IR, where U = {(s, t) : 0 < s < t < T} satisfies

|k(t, s, x1) − k(t, s, x2)| ≤ Mk|x1 − x2|,

for all x1, x2 ∈ IR, and almost all (s, t) ∈ U ,

(H32) gi ∈ L2(D), i = 1, . . . , n.

Let H = K = L2(D) and set

A = ∆z , D(A) = H2(D) ∪ H1
0 (D). (6.2)

It is well-known that A generates a C0-semigroup on (see [30], Chapter 7). Next, define
F : C([0, T ]; H) → L2(0, T ; L2(Ω; H)), G : C([0, T ]; H) → CBL, and h : C([0, T ]; H) →
L2

0(Ω; H), respectively, by

F (x)(t, ·) =
∫ T

0

a(t, s)f1

(
s, x(s, ·),

∫ s

0

k(s, τ, x(τ, ·))dτ

)
ds, (6.3)

G(x)(s, ·) = a(t, s)f2(s, x(s, ·)), (6.4)

h(x)(·) = x(0, z) =
n∑

i=1

gi(·)x(ti, ·) +
∫ T

0

c(s)f3(s, x(s, ·))ds. (6.5)

One can use (H25)–(H32) to verify that F , G, and h satisfy (H2)–(H4), respectively,
with

MF = 2Mf1T |a|L2((0,T )2)(1 + Mk1T
3)1/2, (6.6)

MG = |b|L∞((0,T )2)Mf2 , (6.7)

Mh = 2(
n∑

i=1

‖gi‖L2(D) + Mf3

√
m(D)|G|L2(0,T )) (6.8)

where m(D) is the Lebesgue product measure on D. Thus, (6.1) can be rewritten in
the form (1.1) in H, with A, F , G, and h given by (6.2)–(6.5) so that, once (3.2) holds,
an application of Theorem 3.2 immediately yields

Theorem 6.1: Assume (H25)–(H32) are satisfied. If, in addition, (3.2) holds (with
MF , MG, and Mh and given by (6.6)–(6.8)), then (6.1) has a unique mild solution
x ∈ C([0, T ]; L2(Ω; L2(D)).
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