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In this paper we study a class of integrodifferential equations considered in an arbi-

trary Banach space. Using the theory of analytic semigroups we establish the existence,

uniqueness, regularity and continuation of solutions to these integrodifferential equa-

tions.
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1 Introduction

In this paper we are concerned with the following integrodifferential equation in a Ba-
nach space X:

du(t)
dt

+ Au(t) = f(t, u(t)) + K(u)(t), t > t0, (1.1)

u(t0) = u0,

where

K(u)(t) =
∫ t

t0

a(t − s)g(s, u(s))ds. (1.2)

In (1.1), we assume that −A generates an analytic semigroup, S(t), t ≥ 0 on X, the
function a is real-valued and locally integrable on [0,∞), and the nonlinear maps f and g
are defined on [0,∞)×X into X. We first establish that under Assumption F0, stated
below, there exists a unique local mild solution to (1.1). Then under Assumption F,
stated below, we study the regularity of the mild solution to (1.1) and show under
additional condition of Hölder continuity on a that the mild solution to (1.1) is in fact
the classical solution. Further, we analyze the continuation of the solutions to (1.1)

1The author would like to acknowledge the financial help provided by the National Board for Higher
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under different conditions. Finally, at the end we give an example of a class of parabolic
integrodifferential equations as an application of the results obtained for the abstract
integrodifferential equation (1.1).

Equation (1.1) represents an abstract formulation of certain classes of parabolic
integrodifferential equations. These type of equations model the physical phenomena
involving certain type of memory effects. For instance, Nohel [12] has considered a
nonlinear Volterra equation of the type (1.1), in which g(t, u(t)) = Bu(t), where −B is a
nonlinear accretive operator. For more details on such formulations and corresponding
techniques used to study such problems, we refer to Bahuguna and Pani [2], Barbu
[4, 5, 6], Crandall, Londen and Nohel [7].

Heard and Rankin [9] have considered the following integrodifferential equation in a
Banach space X:

du(t)
dt

+ A(t)u(t) = f(t, u(t)) +
∫ t

t0

a(t, s)g(s, u(s))ds, t0 < t < T, (1.3)

u(t0) = u0

where the linear operator −A(t) for each t ≥ 0 is the infinitesimal generator of an
analytic semigroup in X, the nonlinear map g, defined on [0,∞) × D(A(0)) into X, is
such that g(t, .) is Lipschitz continuous on the domain D(A(0)) of A(0) into X with
respect to the graph norm of A(0), the nonlinear map f , defined on [0,∞) × Xα into
X, satisfies the condition that there exist constants L > 0, 0 < η, γ ≤ 1 and 0 < α < 1
such that

‖f(t, x) − f(s, y)‖ ≤ L[|t − s|η + ‖x − y‖γ
α] (1.4)

for all (t, x), (t, y) ∈ [0,∞) × Xα. Here Xα for 0 ≤ α ≤ 1 is the Banach space D(Aα)
endowed with the norm ‖u‖α = ‖Aαu‖.

Webb [15] has also considered (1.3) and has assumed that f maps R × X1 into Xα

and for each t ∈ R there exists a positive constant C(t) such that

‖f(t, x) − f(t, y)‖α ≤ C(t)‖x − y‖1. (1.5)

for all x, y ∈ X1.

The existence result is proved by first solving the following integrodifferential equa-
tion uniquely:

duv(t)
dt

+ A(t)uv(t) = f(t, v(t)) +
∫ t

t0

a(t, s)g(s, uv(s))ds, t0 < t < T, (1.6)

uv(t0) = u0

where v(t) is chosen from a closed, bounded, convex subset S of an appropriate Banach
space. Existence of a unique u(t) is established by proving that the mapping K(v) = uv

is a strict contraction from S into S. This is possible because of the extra smoothness
assumption (1.5) on f . Since Heard and Rankin [9] assumed a weaker condition (1.4),
they require an estimate of the following type on the map K:

‖K(v1) − K(v2)‖C(J;X1) ≤ C‖v1 − v2‖γ
C(J;Xα) + ε (1.7)

and they use Schauder’s fixed point theorem to establish the existence.
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When (1.4) is replaced by the stronger assumption (2.1), stated below, the methods
used by Heard and Rankin [9] do not automatically imply that the solution is unique.
They are able to prove uniqueness in the case in which X is a Hilbert space. Further-
more, the nonlinear map g is assumed to be defined from [t0, T ) × W into X where W
is an open subset of X1 and satisfies the local Lipschitz condition:

‖g(t, x) − g(s, y)‖ ≤ b0‖x − y‖ (1.8)

for all t, s ∈ [t0, T ) and x, y ∈ B1(y0; r) = {z ∈ X1 : ‖z − y0‖1 ≤ r}.

2 Preliminaries

Let X denote a Banach space and let J denote the closure of the interval [t0, T ) t0 <
T ≤ ∞. Let −A be the infinitesimal generator of an analytic semigroup S(t), t ≥ 0
in X. We note that if −A is the infinitesimal generator of an analytic semigroup then
−(A + αI) is invertible and generates a bounded analytic semigroup for α > 0 large
enough. This allows us to reduce the general case in which −A is the infinitesimal
generator of an analytic semigroup to the case in which the semigroup is bounded and
the generator is invertible. Hence for convenience, we suppose that

‖S(t)‖ ≤ M for t ≥ 0

and
0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be
defined as a closed linear invertible operator with its domain D(Aα) being dense in X.
We denote by Xα the Banach space D(Aα) equipped with norm

‖x‖α = ‖Aαx‖

which is equivalent to the graph norm of Aα. We have

Xβ ↪→ Xα for 0 < α < β

and the embedding is continuous.
By a classical solution to (1.1) on J , we mean a function u ∈ C(J ; X)∩C1(J\{t0}; X)

satisfying (1.1) on J . By a local classical solution to (1.1) on J we mean that there exist
a T0, t0 < T0 < T , and a function u defined from J0 = [t0, T0] into X such that u is a
classical solution to (1.1) on J0.

To establish the existence of a unique classical solution to (1.1) in later sections, we
shall require the following assumption on the maps f and g.

Assumption F: Let U be an open subset of [0,∞) × Xα. A function f is said to
satisfy Assumption F if for every (t, x) ∈ U there exist a neighborhood V ⊂ U of
(t, x) and constants L > 0, 0 < θ < 1 such that

‖f(s1, u) − f(s2, v)‖ ≤ L[|s1 − s2|θ + ‖u − v‖α] (2.1)

for all (s1, u) and (s2, v) in V .
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By a mild solution to (1.1) on J we mean a continuous function u defined from J
into X satisfying the following integral equation

u(t) = S(t − t0)u0 +
∫ t

t0

S(t − s)[f(s, u(s) + K(u)(s)]ds, t ∈ J. (2.2)

We say that (1.1) has a local mild solution if there exist a T0, 0 < T0 < T and a
continuous function u defined from J0 = [t0, T0] into X such that u is a mild solution
to (1.1) on J0.

To establish the existence of a unique local mild solution, we only need the following
assumptions on f and g.

Assumption F0: Let U be an open subset of [0,∞) × Xα. The function f is said
to satisfy Assumption F0 if for every (t, x) ∈ U there exist a neighborhood V ⊂ U of
(t, x) and a constant L0 > 0 such that

‖f(s, u) − f(s, v)‖ ≤ L0‖u − v‖α (2.3)

for all (s, u) and (s, v) in V .

3 Local Existence of Mild Solutions

As pointed out earlier, we may suppose without loss of generality that the analytic
semigroup generated by −A is bounded and that −A is invertible. Furthermore, we
assume that 0 < T < ∞ to establish local existence. With these simplifications we have
the following theorem.

Theorem 3.1: Suppose that the operator −A generates the analytic semigroup S(t)
with ‖S(t)‖ ≤ M , t ≥ 0 and that 0 ∈ ρ(−A). If the maps f and g satisfy Assumption
F0 and the real valued map a is integrable on J , then (1.1) has a unique local mild
solution for every u0 ∈ Xα.

Proof: We shall use the notions and notations introduced in the preceding section.
We fix a point (t0, u0) in the open subset U of [0,∞)×Xα and choose t′1 > t0 and δ > 0
such that (2.3), with some constant L0 > 0 holds for the functions f and g on the set

V = {(t, x) ∈ U : t0 ≤ t ≤ t′1, ‖x − u0‖α ≤ δ}. (3.1)

Let
B1 = sup

t0≤t≤t′1

‖f(t, u0)‖

and
B2 = sup

t0≤t≤t′1

‖g(t, u0)‖.

Choose t1 > t0 such that

‖S(t − t0) − I‖‖Aαu0‖ ≤ 1
2
δ, for t0 ≤ t ≤ t1 (3.2)

and

t1 − t0 < min
{

t′1 − t0, [
δ

2
Cα

−1(1 − α){(L0δ + B1) + aT (L0δ + B2)}−1]
1

1−α

}
(3.3)
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where Cα is a positive constant depending on α satisfying

‖AαS(t)‖ ≤ Cαt−α, for t > t0, (3.4)

and

aT =
∫ T

0

|a(s)|ds. (3.5)

Let Y = C([t0, t1]; X) be endowed with the supremum norm

‖y‖Y = sup
t0≤t≤t1

‖y(t)‖.

Then Y is a Banach space. We define a map on Y by Fy = ỹ where ỹ is given by

ỹ(t) = S(t− t0)Aαu0 +
∫ t

t0

AαS(t− s)[f(s, A−αy(s)) +
∫ s

t0

a(s− τ)g(τ, A−αy(τ))dτ ]ds.

Now, for every y ∈ Y , Fy(t0) = Aαu0 and for t0 ≤ s ≤ t ≤ t1 we have

Fy(t) − Fy(s) = [S(t − t0) − S(s − t0)]Aαu0

+
∫ t

s

AαS(t − τ)[f(τ, A−αy(τ))

+
∫ τ

t0

a(τ − η)g(η, A−αy(η))dη]dτ

+
∫ s

t0

Aα[S(t − τ) − S(s − τ)][f(τ, A−αy(τ))

+
∫ τ

t0

a(τ − η)g(η, A−αy(η))dη]dτ. (3.6)

It follows from Assumption F0 on the functions f and g, (3.4) and (3.5) that F :
Y −→ Y .

Let S be the nonempty closed and bounded set given by

S = {y ∈ Y : y(t0) = Aαu0, ‖y(t) − Aαu0‖ ≤ δ} . (3.7)

Then for y ∈ S we have

‖Fy(t) − Aαu0‖ ≤ ‖S(t − t0) − I‖ ‖Aαu0‖

+
∫ t

t0

‖AαS(t − s)‖ ‖f(s, A−αy(s)) − f(s, u0)‖ds

+
∫ t

t0

‖AαS(t − s)‖

[
∫ s

t0

|a(s − τ)| ‖g(τ, A−αy(τ)) − g(τ, u0)‖dτ ]ds

+
∫ t

t0

‖AαS(t − s)‖ ‖f(s, u0)‖ds

+
∫ t

t0

‖AαS(t − s)‖ [
∫ s

t0

|a(s − τ)| ‖g(τ, u0)‖dτ ]ds

≤ 1
2
δ + Cα(1 − α)−1[(L0δ + B1) + aT (L0δ + B2)](t1 − t0)1−α

≤ δ (3.8)
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where the last two inequalities follow from (3.2) and (3.3). Thus, we have that F : S −→
S. Now we show that F is a strict contraction on S which will ensure the existence of
a unique continuous function satisfying equation (2.2). Let y and z be in S; then

‖Fy(t) − Fz(t)‖
= ‖ỹ(t) − z̃(t)‖

≤
∫ t

t0

‖AαS(t − s)‖ ‖f(s, A−αy(s)) − f(s, A−αz(s))‖ds

+
∫ t

t0

‖AαS(t − s)‖

[
∫ s

t0

|a(s − τ)| ‖g(τ, A−αy(τ)) − g(τ, A−αz(τ))‖dτ ]ds. (3.9)

Using Assumption F0 on f and g and (3.4), (3.5), we get

‖Fy(t) − Fz(t)‖ ≤ L0[(1 + aT )
∫ t

t0

‖AαS(t − s)‖ds]‖y − z‖Y

≤ L0(1 + aT )Cα(1 − α)−1(t1 − t0)1−α‖y − z‖Y

≤ 1
δ
L0δ(1 + aT )Cα(1 − α)−1(t1 − t0)1−α‖y − z‖Y

≤ 1
δ
[L0δ + B1 + aT (L0δ + B2)]Cα(1 − α)−1(t1 − t0)1−α‖y − z‖Y

≤ 1
2
‖y − z‖Y , (3.10)

using (3.3) in the last inequality. Thus F is a strict contraction map from S into S and
therefore by the Banach contraction principle there exists a unique fixed point y of F
in S, i.e., there is a unique y ∈ S such that

Fy = y = ỹ. (3.11)

Let u = A−αy. Then for t ∈ [t0, t1], we have

u(t) = A−αy(t)

= S(t − t0)u0 +
∫ t

t0

S(t − s)[f(s, u(s)) + K(u)(s)]ds. (3.12)

Hence u is a unique local mild solution to (1.1).

4 Regularity of Mild Solutions

In this section we establish the regularity of the mild solutions to (1.1). Again, let J
denote the closure of the interval [t0, T ), t0 < T ≤ ∞. In addition to the hypotheses
mentioned in the earlier sections, we assume the following on the kernel a:

(H) There exist constants C0 ≥ 0 and 0 < β ≤ 1 such that

|a(t) − a(s)| ≤ C0|t − s|β

for all t, s ∈ J .
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Theorem 4.1:Suppose that −A generates the analytic semigroup S(t) such that
‖S(t)‖ ≤ M for t ≥ 0, and 0 ∈ ρ(−A). Further, suppose that the maps f and g satisfy
Assumption F and the kernel a satisfies (H). Then (1.1) has a unique local classical
solution for each u0 ∈ Xα.

Proof: From Theorem 3.1, it follows that there exist T0, t0 < T0 < T and a function
u such that u is a unique mild solution to (1.1) on J0 = [t0, T0) given by

u(t) = S(t − t0)u0 +
∫ t

t0

S(t − s)[f(s, u(s)) + K(u)(s)]ds, t ∈ J0, (4.1)

where

K(u)(t) =
∫ t

t0

a(t − s)g(s, u(s))ds.

Let
v(t) = Aαu(t). (4.2)

Then

v(t) = S(t − t0)Aαu0

+
∫ t

t0

AαS(t − s)[f(s, A−αv(s)) +
∫ s

t0

a(s − τ)g(τ, A−αv(τ))dτ ]ds. (4.3)

For simplification, we set

f̃(t) = f(t, A−αv(t)), g̃(t) = g(t, A−αv(t)). (4.4)

Then (4.3) can be rewritten as

v(t) = S(t − t0)Aαu0

+
∫ t

t0

AαS(t − s)[f̃(s) +
∫ s

t0

a(s − τ)g̃(τ)dτ ]ds. (4.5)

Since u(t) is continuous on J0 and the maps f and g satisfy Assumption F, it follows
that f̃ and g̃ are continuous, and therefore bounded on J0. Let

N1 = sup
t∈J0

‖f̃(t)‖ and N2 = sup
t∈J0

‖g̃(t)‖. (4.6)

We show that f̃ and g̃ are locally Hölder continuous on J0. For this, we first show that
v(t) is locally Hölder continuous on J0. From Theorem 2.6.13 in Pazy [13], it follows
that for every 0 < β < 1 − α and every 0 < h < 1, we have

‖(S(h) − I)AαS(t − s)‖ ≤ Cβhβ‖Aα+βS(t − s)‖
≤ Chβ(t − s)−(α+β). (4.7)

Next, we have

‖v(t + h) − v(t)‖ ≤ ‖(S(h) − I)S(t − t0)Aαu0‖

+
∫ t

t0

‖(S(h) − I)AαS(t − s)‖ ‖f̃(s) +
∫ s

t0

a(s − τ)g̃(τ)dτ‖ds

+
∫ t+h

t

‖AαS(t + h − s)‖ ‖f̃(s) +
∫ s

t0

a(s − τ)g̃(τ)dτ‖ds. (4.8)
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Now,
‖(S(h) − I)S(t − t0)Aαu0‖ ≤ C(t − t0)−(α+β)hβ ≤ M1h

β , (4.9)

where M1 depends on t and blows up as t decreases to t0. Furthermore

∫ t

t0

‖(S(h) − I)AαS(t − s)‖ ‖f̃(s) +
∫ s

t0

a(s − τ)g̃(τ)dτ‖ds

≤ [N1 + aT0N2T0]hβCβ

∫ t

t0

(t − s)−(α+β)ds

≤ M2h
β , (4.10)

where M2 is independent of t. Also, we have

∫ t+h

t

‖AαS(t + h − s)‖ ‖f̃(s) +
∫ s

t0

a(s − τ)g̃(τ)dτ‖ds

≤ [N1 + aT0N2T0]Cα

∫ t+h

t

(t + h − s)−αds

≤ M3h
β , (4.11)

where M3 is also independent of t. From the estimates (4.9)–(4.11), it follows that there
exists a constant C1 such that for every t′0 > t0, we have

‖v(t) − v(s)‖ ≤ C1|t − s|β , (4.12)

for all t0 < t′0 < t, s < T0. Now, Assumption F together with (4.12) implies that there
exist constants C2, C3 ≥ 0 and 0 < γ, η < 1 such that for all t0 < t′0 < t, s < T0, we
have

‖f̃(t) − f̃(s)‖ ≤ C2|t − s|γ ,
‖g̃(t) − g̃(s)‖ ≤ C3|t − s|η.

(4.13)

Let

h(t) = f̃(t) +
∫ t

t0

a(t − τ)g̃(τ)dτ. (4.14)

Now we show that h(t) is locally Hölder continuous on J0. For s ≤ t, we have

‖h(t) − h(s)‖ = ‖f̃(t) − f̃(s)‖ +
∫ s

t0

|a(t − τ) − a(s − τ)| ‖g̃(τ)‖ dτ

+
∫ t

s

|a(t − τ)| ‖g̃(τ)‖ dτ

≤ C2|t − s|γ + N2C0T0|t − s|β + N2aT0(2T0)1−β |t − s|β

≤ C4|t − s|δ (4.15)

for some constants C4 ≥ 0 and 0 < δ < 1. Consider the following initial value problem

dv(t)
dt

+ Av(t) = h(t), t > t0, (4.16)

v(t0) = u0.
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By Corollary 4.3.3 in Pazy [13], (4.16) has a unique solution v ∈ C1((t0, T0]; X) given
by

v(t) = S(t − t0)u0 +
∫ t

t0

S(t − s)h(s)ds. (4.17)

For t > t0, each term on the right hand side belongs to D(A) and hence belongs to
D(Aα). Applying Aα to both sides of (4.17) and using the uniqueness of v(t), we have
that Aαv(t) = u(t). Thus, it follows that u is the classical solution to (1.1) on J0.

5 Global Existence

In order to establish the global existence of classical solutions to (1.1), we need the
following lemma.

Lemma 5.1:Let φ(t, s) ≥ 0 be continuous on 0 ≤ s ≤ t ≤ T < ∞. If there are
positive constants A, B and α such that

φ(t, s) ≤ A + B

∫ t

s

(t − σ)α−1φ(σ, s)dσ, (5.1)

for 0 ≤ s < t ≤ T , then there is a constant C such that

φ(t, s) ≤ C.

Proof: For 0 ≤ s < t ≤ T , we have

∫ t

s

(t − τ)α−1(τ − s)dτ = (t − s)α+β−1 Γ(α)Γ(β)
Γ(α + β)

, (5.2)

which holds for every α, β > 0. Integrating (5.1) n − 1 times using (5.2) and replacing
t − s by T , we get

φ(t, s) ≤ A
n−1∑

j=0

(
BTα

α

)j

+
(BΓ(α))n

Γ(nα)

∫ t

s

(t − σ)nα−1φ(σ, s)dσ. (5.3)

Let n be large enough so that nα > 1. We majorize (t − σ)nα−1 by Tnα−1 to obtain

φ(t, s) ≤ c1 + c2

∫ t

s

φ(σ, s)dσ. (5.4)

Application of Gronwall’s inequality leads to

φ(t, s) ≤ c1e
c2(t−s) ≤ c1e

c2T ≤ C. (5.5)

This completes the proof of the lemma.
The following theorem establishes the global existence of classical solutions to (1.1).
Theorem 5.2:Let 0 ∈ D(A) and let −A be the infinitesimal generator of an analytic

semigroup S(t) satisfying
‖S(t)‖ ≤ M
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for t ≥ t0. Let f, g : [t0,∞) × Xα −→ X satisfy Assumption F and let the kernel a
satisfy (H). If there exist continuous nondecreasing functions k1 and k2 from [t0,∞)
into [0,∞) such that

‖f(t, x)‖ ≤ k1(t)(1 + ‖x‖α) for t ≥ t0, x ∈ Xα,
‖g(t, x)‖ ≤ k2(t)(1 + ‖x‖α) for t ≥ t0, x ∈ Xα,

(5.6)

then the initial value problem (1.1) has a unique classical solution u on [t0,∞) for every
u0 ∈ Xα.

Proof: From Theorem 4.1 it follows that there exist a T0, t0 < T0 and a unique
classical solution u on J0 = [t0, T0]. If

‖u(t)‖α ≤ C (5.7)

for t ∈ J0 for some positive constant C, then the solution u(t) may be continued further
on the right of T0. Therefore it suffices to prove that if a classical solution u to (1.1)
exists on [t0, T ], t0 < T < ∞ then ‖u(t)‖α is bounded as t ↑ T . Since u(t) is a classical
solution as well it is a mild solution. Therefore we have

u(t) = S(t − t0)u0

+
∫ t

t0

S(t − s)[f(s, u(s)) +
∫ s

t0

a(s − τ)g(τ, u(τ))dτ ]ds. (5.8)

Making use of the fact that S(t) commutes with A and that

‖S(t)‖ ≤ M,

‖AαS(t)‖ ≤ Cαt−α

for t ≥ t0 in (5.8), after applying Aα and taking norms on both sides, we get

‖u(t)‖α ≤ M‖Aαu0‖

+Cα

∫ t

t0

(t − s)−α‖f(s, u(s)) +
∫ s

t0

a(s − τ)g(τ, u(τ))dτ‖ ds. (5.9)

For the last term in (5.9), we have the estimate
∫ s

t0

|a(s − τ)| ‖g(τ, u(τ))dτ‖ ≤ aT k2(T )
∫ s

t0

[1 + ‖u(τ)‖α]dτ. (5.10)

Incorporating the estimate of (5.10) in (5.9), we get

‖u(t)‖α ≤ M‖Aαu0‖

+Cα[k1(T ) + aT k2(T )]
∫ t

t0

(t − s)−α

[1 + ‖u(s)‖α +
∫ s

t0

(1 + ‖u(τ)‖α)dτ ]ds. (5.11)

After a slight modification in (5.11), we get

‖u(t)‖α ≤ M‖Aαu0‖

+Cα(1 + T )[k1(T ) + aT k2(T )]
T 1−α

1 − α

+
∫ t

t0

(t − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds. (5.12)
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The estimate in (5.12) is of the type

‖u(t)‖α ≤ C1

+ C2

∫ t

t0

(t − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds, (5.13)

for some positive constants C1 and C2 depending on α and T only. Integrating (5.13)
over (t0, t), we get

∫ t

t0

‖u(ξ)‖αdξ ≤ C1T

+ C2

∫ t

t0

∫ ξ

t0

(ξ − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]dsdξ. (5.14)

Changing the order of integration in (5.14), we obtain
∫ t

t0

‖u(ξ)‖αdξ ≤ C1T

+ C2

∫ t

t0

∫ t

s

(ξ − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]dξds. (5.15)

We rewrite (5.15) as
∫ t

t0

‖u(ξ)‖αdξ ≤ C1T

+C2

∫ t

t0

(
∫ ξ

t0

(ξ − s)−αdξ)[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds

≤ C1T +
C2T

1 − α

∫ t

t0

(t − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds. (5.16)

The estimate (5.16) is of the form
∫ t

t0

‖u(ξ)‖αdξ ≤ C3

+C4

∫ t

t0

(t − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds, (5.17)

for some positive constants C3 and C4, depending on α and T only. Adding (5.13)
and (5.17), we have

‖u(t)‖α +
∫ t

t0

‖u(ξ)‖αdξ ≤ C5

+C6

∫ t

t0

(t − s)−α[‖u(s)‖α +
∫ s

t0

‖u(τ)‖αdτ ]ds,(5.18)

for some positive constants C5 and C6, depending on α and T only. Applying Lemma 5.1
to (5.18), we conclude that

‖u(t)‖ ≤ C

on [t0, T ]. This completes the proof of the theorem.
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6 Applications

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. Consider the linear
partial differential operator

A(x, D) =
∑

|α|≤2m

aα(x)Dα. (6.1)

where aα(x) is a real or complex valued function defined on Ω̄ for each multi-index α.
We assume that A(x, D) is strongly elliptic, i.e., there exists a constant c > 0 such that

∑

|α|=2m

aα(x)ξα ≥ c|ξ|2m (6.2)

for all x ∈ Ω̄ and ξ ∈ Rn. Consider the parabolic integrodifferential equation

∂u(x, t)
∂t

+ A(x, D)u(x, t) = f(x, t, u(x, t), Du(x, t), · · · , D2m−1u(x, t))

+
∫ t

t0

a(t − s)g(x, s, u(x, s), Du(x, s), · · · , D2m−1u(x, s)) ds, (6.3)

x ∈ Ω, t > t0,

u(x, t0) = u0(x) x ∈ Ω
u(x, t) = 0, x ∈ Ω, t ∈ [t0, T ), t0 < T ≤ ∞,

where Dj stands for any j-th order derivative. We assume that f and g are continuously
differentiable functions of all their variables, except possibly in x.

The parabolic integrodifferential equation (6.3) can be reformulated as the following
abstract integrodifferential equation in X = Lp(Ω):

du(t)
dt

+ Apu(t) = F (t, u(t)) +
∫ t

t0

a(t − s)G(s, u(s)) ds, t > t0, (6.4)

u(t0) = u0,

where Ap : D(Ap) ⊂ X −→ X given by

D(Ap) = W 2m,p(Ω) ∩ W 2m,p
0 (Ω), Apu = A(x, D)u + λu for u ∈ D(Ap), λ > 0

and F, G : [t0, T ) × D(Ap) −→ X are the Nemyckii operators given by

F (t, u)(x) = f(x, t, u(x, t), Du(x, t), ..., D2m−1u(x, t)) (6.5)
G(t, u)(x) = g(x, t, u(x, t), Du(x, t), ..., D2m−1u(x, t)) (6.6)

where we assume the usual sufficient Caratheodory and growth conditions on the func-
tions f and g for the Nemyckii operators in (6.5) and (6.6) to be well defined. Here
we assume that λ is large enough so that Ap is invertible. It follows that −Ap is the
infinitesimal generator of an analytic semigroup on X. Also, from imbedding theorems
it follows that Xα is continuously imbedded in C2m−1(Ω̄) for 1 − 1/2m < α < 1 and
p large enough. It can be verified that the Assumption F is satisfied by F and G.
Under suitable assumptions on the kernel a, Theorem 4.1 assures the existence of a
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unique global classical solution to (6.4) for p large enough which in turn guarantees the
existence of a unique global classical solution to (6.3).
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