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1 Introduction

The theory of controllability of differential equations has been extensively studied in
the literature. Zhou [9] studied the approximate controllability for a class of semilin-
ear abstract equations. Naito [7] established the controllability for nonlinear Volterra
integrodifferential systems. Chukwu and Lenhart [2] have studied controllability of non-
linear systems in abstract spaces. Hernández and Henriquez [4] obtained some existence
results for neutral functional differential equations in Banach spaces by using semigroup
theory and the Sadovski fixed point principle. Recently, Dauer and Balachandran [3],
Balachandran and Sakthivel [1] studied exact controllability of neutral integrodifferen-
tial equations in Banach spaces using the Schaefer fixed point theorem. The purpose of
this paper is to study the approximate controllability of semilinear neutral systems in
Hilbert spaces by using the Schauder fixed point theorem.

Consider the following semilinear neutral system

d

dt
[x (t) + g (t, x (t))] = Ax (t) + Bu (t) + f(t, x (t)) (1.1)

x (0) = x0, t ∈ [0, T ]

where A is the infinitesimal generator of an analytic semigroup of bounded linear op-
erators S (t) in Hilbert space X, B : U → X is a bounded linear operator, the control
u (·) ∈ L2 ([0, T ] , U) takes values in a Hilbert space U and the state x (·) takes values
in a space X. f, g : [0, T ] × X → X are continuous functions.
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The paper consists of 4 sections. Section 2 contains the definition of approximate
controllability, the definition of mild solution and some basic assumptions on the data
of the problem. Moreover, a formula for a control steering the initial state x0 to a
neighborhood of arbitrary final state is constructed. In Section 3, the main result on
approximate controllability of semilinear neutral systems using the Schauder fixed point
theorem is obtained. As an application of this result, the initial boundary-value problem
is considered in Section 4.

2 Preliminaries

Definition 2.1: System (1.1) is said to be approximately controllable on the interval
[0, T ] if

R (T, x0) = X

where
R (T, x0) = {x (x0; u) (T ) : u (·) ∈ L2 ([0, T ] , U)} .

Definition 2.2: A function x : [0, T ] → X is a mild solution of the abstract
Cauchy problem (1.1) if x (·) is continuous on [0, T ] ; for each 0 ≤ t < T the function
AS (t − s) g (s, x (s)) , s ∈ [0, t), is integrable and

x (t) = S (t) (x0 + g (0, x0)) − g (t, x (t)) −
∫ t

0

AS (t − s) g (s, x (s)) ds

+
∫ t

0

S (t − s) f (s, x (s)) ds +
∫ t

0

S (t − s)Bu (s) ds (2.1)

for t ∈ [0, T ] .
The existence of mild solutions for the abstract Cauchy problem (1.1) follows from

Theorem 2.1 and 2.2 of [4].
Recall that A is the infinitesimal generator of an analytic semigroup of bounded

linear operators S (t) in X such that

‖S (t)‖ ≤ M1 for some M1 ≥ 1.

At this point, it is possible to define the fractional power (−A)β of (−A) for 0 < β < 1 as
a closed linear operator with domain D

(
(−A)β

)
. Furthermore the subspace D

(
(−A)β

)

is dense in X and the expression

‖x‖β =
∥∥∥(−A)β x

∥∥∥

defines a norm on D
(
(−A)β

)
= Xβ and there exists C > 0 such that

∥∥∥(−A)−β
∥∥∥ ≤ C

for 0 ≤ β ≤ 1.
Lemma 2.1: [8] Let A be the infinitesimal generator of an analytic semigroup S (t) .

If 0 ∈ ρ (A) then for every t > 0 the operator (−A)β
S (t) is bounded and

∥∥∥(−A)β S (t)
∥∥∥ ≤ Cβt−βe−δt, δ > 0.
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We introduce two relevant operators and the basic assumption on these operators.

ΓT
0 =

∫ T

0

S (T − s)BB∗S∗ (T − s) ds

R
(
α, ΓT

0

)
=
(
αI + ΓT

0

)−1
.

(BA1) αR
(
α, ΓT

0

)
→ 0 as α → 0+ in the strong operator topology.

It is known that the assumption (BA1) holds if and only if the linear system

·
x (t) = Ax (t) + Bu (t) (2.2)
x (0) = x0,

is approximately controllable on [0, T ] , see [5, 6].
The following theorem gives a formula for a control transferring the initial state x0

to some neighborhood of h at time T.
Theorem 2.1: For arbitrary h ∈ X, the control

u (t) = B∗S∗ (T − t)R
(
α, ΓT

0

)
p (x) (2.3)

where

p (x) = h − S (T ) [x0 + g (0, x0)] + g (T, x (T ))

−
∫ T

0

S (T − s) f (s, x (s)) ds +
∫ T

0

AS (T − s) g (s, x (s)) ds

transfers the initial state x0 to

x (T ) = h − α
(
αI + ΓT

0

)−1
(

h − S (T ) [x0 + g (0, x0)] + g (T, x (T ))

−
∫ T

0

S (T − r) f (r, x (r)) dr +
∫ T

0

AS (T − r) g (r, x (r)) dr

)
. (2.4)

Proof: By substituting (2.3) in (2.1) and writing the obtained equation at t = T,
one gets the following:

x (T ) = S (T ) [x0 + g (0, x0)] − g(T, x (T ))

−
∫ T

0

AS (T − s) g (s, x (s)) ds +
∫ T

0

S (T − s) f (s, x (s)) ds

+
∫ T

0

S (T − s) BB∗S∗ (T − s)
(
αI + ΓT

0

)−1
p (x) ds

= S (T ) [x0 + g (0, x0)] − g(T, x (T ))

−
∫ T

0

AS (T − s) g (s, x (s)) ds +
∫ T

0

S (T − s) f (s, x (s)) ds

+ ΓT
0

(
αI + ΓT

0

)−1
p (x) .

Using the identity ΓT
0

(
αI + ΓT

0

)−1 = I − α
(
αI + ΓT

0

)−1 one can obtain equality
(2.4).
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The following notations are introduced for convenience:

K = max
{∥∥Γt

0

∥∥ : 0 ≤ t ≤ T
}

,

M = ‖B‖ , M0 = max {‖S (t)x0‖ : 0 ≤ t ≤ T}
M2 = max {‖S (t) g(0, x0)‖ : 0 ≤ t ≤ T}

We assume the following hypotheses:
(H1) The semigroup S (t) , t > 0 is analytic.
(H2) The function f : I × X → X is continuous and there exists a constant L > 0

such that
‖f (t, x)‖ ≤ L for all (t, x) ∈ I × X.

(H3) The function g is Xβ− valued, (−A)β
g is continuous and there exists a constant

C1 > 0 such that
∥∥∥(−A)β

g (t, x)
∥∥∥ ≤ C1 for all (t, x) ∈ I × X.

(H4) For every r > 0, the set of functions
{

s → (−A)β
g (s, x (s)) : x ∈ C (0, T ; X) , sup

t∈[0,T ]

‖x (t)‖ ≤ r

}

is equicontinuous on [0, T ] .

3 Approximate Controllability

In this section, we prove the main result on approximate controllability of semilinear
neutral systems. To do this, we first prove the existence of a fixed point of the operator
F defined below, using the Schauder fixed point theorem. Second, in Theorem 3 we
show that under certain assumptions the approximate controllability of (1.1) is implied
by the approximate controllability of the linear system (2.2) .

Now, define the operator F on C ([0, T ] , X) by means of

(Fx) (t) = S (t) [x0 + g (0, x0)] − g (t, x (t)) −
∫ t

0

AS (t − s) g (s, x(s))ds

+
∫ t

0

S (t − s) f (s, x(s))ds +
∫ t

0

S (t − s)Bu(s)ds, (3.1)

where

u (t) = B∗S∗ (T − t)
(
αI + ΓT

0

)−1
(

h − S (T ) (x0 + g (0, x0))

+ g (T, x (T )) +
∫ T

0

AS (T − s) g (s, x(s))ds

−
∫ T

0

S (T − s) f (s, x(s))ds

)
. (3.2)
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Introduce the set

Yr = {x ∈ C ([0, T ] , X) : x (0) = x0, ‖x‖ ≤ r} ,

where r > 0.
Theorem 3.1: Assume hypotheses (H1) , (H2) , (H3) , (H4) and (BA1) are satis-

fied. Then for each α > 0, the operator F has a fixed point.
Proof: The proof of the theorem is long and technical. Therefore it is convenient

to divide it into several steps.
Step 1 : For all α > 0, there exists r = r (α) such that F maps Yr into Yr.
Using the fractional powers of (−A) the operator (3.1) can be rewritten as follows.

(Fx) (t) = S (t) (x0 + g (0, x0)) − (−A)−β (−A)β
g (t, x (t))

−
∫ t

0

(−A)1−β
S (t − s) (−A)β

g (s, x(s))ds

+
∫ t

0

S (t − s) f (s, x (s)) ds +
∫ t

0

S (t − s)Bu (s) ds, (3.3)

where

u (t) = B∗S∗ (T − t)
(
αI + ΓT

0

)−1
(

h − S (T ) (x0 + g (0, x0))

+ (−A)−β (−A)β g (T, x (T )) −
∫ T

0

S (T − s) f (s, x(s))ds

+
∫ T

0

(−A)1−β S (T − s) (−A)β g (s, x(s))ds

)
. (3.4)

Taking norm on (3.3) and (3.4), yields

‖(Fx) (t)‖ ≤ ‖S (t)x0‖ + ‖S (t)‖ ‖g(0, x0)‖ +
∥∥∥(−A)−β (−A)β g(t, x (t))

∥∥∥

+
∫ t

0

∥∥∥(−A)1−β S (t − s)
∥∥∥
∥∥∥(−A)β g (s, x (s))

∥∥∥ ds

+
∫ t

0

‖S (t − s)‖ ‖f (s, x (s))‖ ds +
∫ t

0

‖S (t − s)‖ ‖B‖ ‖u (s)‖ ds

≤ M0 + M2 + CC1 +
∫ t

0

CβC1

(t − s)1−β
ds + M1LT + MM1

√
T ‖u‖

≤ M0 + M2 + CC1 +
C1CβT β

β
+ M1LT + MM1

√
T ‖u‖ (3.5)

and

‖u (t)‖ ≤ 1
α

MM1

(
‖h‖ + M0 + M2 + CC1 +

∫ T

0

C1Cβ

(T − s)1−β
ds + M1TL

)

≤ 1
α

MM1

(
‖h‖ + M0 + M2 + CC1 +

C1CβT β

β
+ M1TL

)
. (3.6)



238 N.I. MAHMUDOV and S. ZORLU

The last two inequalities (3.5) and (3.6) imply that for large enough r > 0 the following
inequality holds

‖(Fx) (t)‖ ≤ r.

That is (Fx) ∈ Yr. Therefore F maps Yr into itself.
Step 2. V (t) = {(Fx) (t) : x ∈ Yr} is relatively compact for arbitrary t ∈ [0, T ] .
Since V (0) = {x0} , the case where t = 0 is trivial. So let t, 0 < t ≤ T, be a fixed

point and let η be a given real number satisfying 0 < η < t. Define

(Fη
1x) (t) = S (η) (F1x) (t − η) ,

where

(F1x) (t − η) = S (t − η) (x0 + g (0, x0))

+
∫ t−η

0

S (t − s − η) BB∗S∗(T − s)
(
αI + ΓT

0

)−1
p (x) ds

−
∫ t−η

0

(−A)1−β
S (t − s − η) (−A)β

g (s, x(s))ds

+
∫ t−η

0

S (t − s − η) f (s, x(s))ds.

Since S (t) is analytic and F1 is bounded on Yr, by assumption (H4), the set

Vη (t) = {(Fη
1x) (t) + g (t, x (t)) : x ∈ Yr}

is relatively compact set in X. That is, a finite set {yi, 1 ≤ i ≤ m} in X exists such
that

Vη (t) ⊂
m⋃

i=0

N
(
yi,

ε

2

)
,

where N
(
yi,

ε
2

)
is an open ball in X with the center at yi and radius ε

2 .
On the other hand,

‖(F1x) (t) − (Fη
1x) (t)‖ =

∥∥∥∥
∫ t

t−η

S (t − s)BB∗S∗ (T − s)
(
αI + ΓT

0

)−1
p (x) ds

−
∫ t

t−η

(−A)1−β
S (t − s) (−A)β

g (s, x (s)) ds

+
∫ t

t−η

S (t − s) f (s, x (s)) ds

∥∥∥∥

≤ 1
α

M2M2
1 Pη +

C1Cβηβ

β
+ M1Lη

≤ ε

2
.

Consequently,

V (t) ⊂
m⋃

i=0

N (yi, ε) .

Hence, V (t) is relatively compact in X for each t ∈ [0, T ] .
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Step 3. V = {Fx : x ∈ Yr} is equicontinuous on t ∈ [0, T ] .
For 0 < t1 − ε < t1 < t2 < T,

(F1x) (t1) − (F1x) (t2) = (S (t1 − s) − S (t2 − s)) (x0 + g (0, x0))

+
∫ t1

0

[S (t1 − s) − S (t2 − s)] f (s, x (s)) ds −
∫ t2

t1

S (t2 − s) f (s, x (s)) ds

+
∫ t1−ε

0

(−A)1−β
S (t1 − ε − s) (I − S (t2 − t1)) S (ε) (−A)β

g (s, x (s)) ds

+
∫ t1

t1−ε

(I − S (t2 − t1)) (−A)1−β
S (t1 − s) (−A)β

g (s, x (s)) ds

−
∫ t2

t1

(−A)1−β
S (t2 − s) (−A)β

g (s, x (s)) ds

+
∫ t1

0

(S (t1 − s) − S (t2 − s))Bu (s) ds −
∫ t2

t1

S (t2 − s)Bu (s) ds. (3.7)

Taking norm on (3.7) and using hypotheses (H2) , (H3) and Lemma 2.1,

‖ (F1x) (t1) − (F1x) (t2) ‖ ≤ ‖S (t1 − s) − S (t2 − s)‖ (‖x0‖ + M3)

+ L

∫ t

0

‖S (t1 − s) − S (t2 − s)‖ ds + (t2 − t1) M1L

+
(t1 − ε)β

β
M1C1 ‖I − S (t2 − t1)‖

+
εβ

β
C1 ‖I − S (t2 − t1)‖ +

C1 (t2 − t1)
β

β

+ M

∫ t

0

‖S (t1 − s) − S (t2 − s)‖ ‖u (s)‖ ds

+ MM1 ‖u‖
√

t2 − t1

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8. (3.8)

The right hand side of (3.8) does not depend on particular choices of x. It is clear that
I3 → 0, I6 → 0 and I8 → 0 as t2 − t1 → 0. Since the semigroup S (t) , t > 0 is analytic

‖S (t1 − s) − S (t2 − s)‖ → 0

as t1− t2 → 0 for arbitrary t, s such that t−s > 0. By Lebesque dominated convergence
theorem I2 → 0 and I7 → 0 as t2 − t1 → 0. It is obvious that, I4 → 0, I5 → 0 as
t2 − t1 → 0. Hence V is equicontinuous and the equicontinuity of g follows from (H4) .

Note that we only considered the case when 0 < t1 < t2, since the other case
0 < t2 < t1 is similar. Therefore F [Yr] is equicontinuous and bounded. By the Arzela -
Ascoli theorem, F [Yr] is relatively compact in C([0, T ] , X).

Step 4. F is continuous on C ([0, T ] , X) .
In order to apply the Schauder fixed point theorem it remains to show the continuity

of F on C ([0, T ] , X) . Let {yn} ⊂ C ([0, T ] , X) with yn → y in C ([0, T ] , X) . Since

f (s, yn (s)) → f (s, y (s)) , for each s ∈ [0, T ]

(−A)β
g (s, yn (s)) → (−A)β

g (s, y (s)) , for each s ∈ [0, T ] ,
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and

‖ (Fyn) (t) − (Fy) (t) ‖ ≤ C
∥∥∥(−A)β (g (t, yn (t)) − g (t, y (t)))

∥∥∥

+ MM1

√
T

(∫ t

0

‖un (s) − u (s)‖2 ds

)1/2

+
tβ

β

∥∥∥(−A)β (g (t, yn (t)) − g (t, y (t)))
∥∥∥

+ M1

∫ t

0

‖f (s, yn (s)) − f (s, y (s))‖ ds,

the Lebesque dominated convergence theorem implies that

sup
0≤t≤T

‖(Fyn) (t) − (Fy) (t)‖ → 0,

which shows the continuity of F. Thus all the conditions of the Schauder fixed point
theorem are satisfied, and consequently the operator F has a fixed point in C ([0, T ] , X).

Theorem 3.2: Assume hypotheses (H1) , (H2) , (H3) and (BA1) are satisfied. Then
the system (1.1) is approximately controllable on [0, T ].

Proof: Let xα (·) be a fixed point of F in Yr. By Theorem 2.1, any fixed point of F
is a mild solution of (1.1) on [0, T ] under the control

uα (t) = B∗S∗ (T − t)R
(
α, ΓT

0

)
p (xα)

and satisfies

xα (T ) = h − αR
(
α, ΓT

0

){
h − S (T ) [x0 + g (0, x0)] + g (T, x (T ))

+
∫ T

0

AS (T − s) g (s, xα (s)) ds −
∫ T

0

S (T − s) f (s, xα (s)) ds

}
. (3.9)

By (H2) and (H3) , ∫ T

0

‖f (s, xα (s))‖2 ds ≤ L2T

∫ T

0

∥∥∥(−A)β g (s, xα (s))
∥∥∥

2

ds ≤ C2
1T.

Consequently, the sequences {f (s, xα (s))} and
{
(−A)β g (s, xα (s))

}
are bounded

in L2 ([0, T ] , X) . Thus there are subsequences, still denoted by {f (s, xα (s))} and{
(−A)β

g (s, xα (s))
}

, that converge weakly to say f (s) and g (s) in L2 ([0, T ] , X),
respectively. Define

q = h − S (T ) [x0 + g (0, x0)] + g (T, x (T ))

+
∫ T

0

(−A)−β S (T − s) g (s) ds −
∫ T

0

S (T − s) f (s) ds.
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It follows that

‖p (xα) − q‖ ≤

∥∥∥∥∥

∫ T

0

S (T − s) (f (s, xα (s)) − f (s)) ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ T

0

(−A)−β
S (T − s)

(
(−A)β

g (s, xα (s)) − g (s)
)

ds

∥∥∥∥∥ . (3.10)

By the compactness of the operators k (t) →
∫ t

0
S (t − s) k (s) ds : L2 ([0, T ] , X) →

C ([0, T ] , X) and k (t) →
∫ t

0
(−A)−β S (t − s) k (s) ds : L2 ([0, T ] , X) → C ([0, T ] , X),

the right hand side of (3.10) tends to zero as α → 0+.

By (3.9) ,

‖xα (T ) − h‖ =
∥∥αR

(
α, ΓT

0

)
p (xα)

∥∥
=
∥∥αR

(
α, ΓT

0

)
(p (xα) − q + q)

∥∥
≤
∥∥αR

(
α, ΓT

0

)
q
∥∥+

∥∥αR
(
α, ΓT

0

)
(p (xα) − q)

∥∥
≤
∥∥αR

(
α, ΓT

0

)
q
∥∥+

∥∥αR
(
α, ΓT

0

)∥∥ ‖p (xα) − q‖
≤
∥∥αR

(
α, ΓT

0

)
q
∥∥+ ‖p (xα) − q‖ , (3.11)

where (3.11) tends to zero as α → 0+ by the estimation (3.10) and the assumption
(BA1) . This proves the approximate controllability of system (1.1) .

Note that compactness of the operators k (·) →
∫ ·
0
S (· − s) k (s) ds : L2 ([0, T ] , X) →

C ([0, T ] , X) and k (·) →
∫ ·
0
(−A)−β S (· − s) k (s) ds : L2 ([0, T ] , X) → C ([0, T ] , X) are

essential in the above proof.

4 Applications

In this section, we illustrate the obtained result. Let X = L2 [0, π] and A be defined as
follows

Az = z′′

with domain

D (A) = {f (·) ∈ L2 [0, π] : f ′′ ∈ L2 [0, π] , f (0) = f (π) = 0} .

Recall that A is the infinitesimal generator of a strongly continuous semigroup S (t) , t >
0, on X which is analytic and self-adjoint, the eigenvalues are −n2, n ∈ N, with cor-
responding normalized eigenvectors zn (ξ) := (2/π)1/2 sin (nξ) . Moreover the following
hold:

(a) {zn : n ∈ N} is an orthonormal basis of X.

(b) If f ∈ D (A) then A (f) = −
∑∞

n=1 n2 〈f, zn〉 zn.

(c) For f ∈ X, (−A)−1/2 f =
∑∞

n=1
1
n 〈f, zn〉 zn.

(d) The operator (−A)1/2 is given as (−A)1/2 f =
∑∞

n=1 n 〈f, zn〉 zn on the space

D
(
(−A)1/2

)
= {f ∈ X :

∑∞
n=1 n 〈f, zn〉 zn ∈ X} .
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Consider the neutral system

d

dt
[x (t, ξ) + q (t, x (t, ξ))] =

∂2

∂ξ2
x (t, ξ)

+ p (t, x (t, ξ)) + Bu (t, ξ) , (4.1)
x (t, 0) = x (t, π) = 0, t ≥ 0, (4.2)
x (0, ξ) = ϕ (ξ) , 0 ≤ ξ ≤ π, (4.3)

where p : [0, T ] × R → R, q : [0, T ] × R → R are continuous functions, the control
u ∈ U = L2 ([0, T ] × [0, π]) and B is a linear bounded operator from U to X.

To write the initial-boundary value problem (4.1) − (4.3) in the abstract form we
assume the following:

(i) The substitution operator f : R × X → X defined by f (t, x (t)) = p (t, x (t, ξ)) is
continuous and there exists L > 0 such that ‖f (t, x)‖ ≤ L, (t, x) ∈ R × X.

(ii) The substitution operator g : R × X → X defined by g (t, x (t)) = q (t, x (t, ξ)) is
such that (−A)1/2

g is completely continuous on R × X and there exists L > 0
such that

∥∥∥(−A)1/2
g (t, x)

∥∥∥ ≤ L, (t, x) ∈ R × X.

Thus the problem (4.1) − (4.3) can be written in the abstract form

d

dt
(x (t) + g (t, x (t))) = Ax (t) + f (t, x (t)) + Bu (t)

x (0) = x0, t ∈ [0, T ]

and all the conditions of the Theorem 3 are satisfied.This gives the approximate con-
trollability of the neutral system (4.1) − (4.3) .
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