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In this paper, we study the stability of weakly efficient solution sets for optimization

problems with set-valued maps. We introduce the concept of essential weakly efficient

solutions and essential components of weakly efficient solution sets. We first show that

most optimization problems with set-valued maps (in the sense of Baire category) are

stable. Secondly, we obtain some sufficient conditions for the existence of one essential

weakly efficient solution or one essential component of the weakly efficient solution set .
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1 Introduction and Preliminaries

In this paper, our principle aim is to study the stability of the set of weakly efficient
solutions for optimization problems with set-valued maps. We give an example that
shows that the weakly efficient solution set for the optimization problem with set-valued
maps is not stable. We then introduce the concept of an essential weakly efficient
solution and essential component for optimization problems with set-valued maps. We
first show that most optimization problems with set-valued maps (in the sense of Baire
category) are stable. Secondly, we obtain some sufficient conditions for the existence of
an essential weakly efficient solution or an essential component of the weakly efficient
solution set for optimization with set-valued maps.

Let X be a nonempty subset in a topological vector space E, and let Y and Z be
two ordered linear topological spaces with positive cones C and D, with intC 6= ∅ and
intD 6= ∅, where intC denotes the interior of the set C.
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In [6], the authors consider the following optimization problem:
(MP) minintCF (x)
s.t. (−G(x)) ∩ D 6= ∅
where F : X → 2Y and G : X → 2Z are set-valued mappings.

We denote by V the feasible set of (MP), i.e.

V := {x ∈ X : (−G(x)) ∩ D 6= ∅}

Definition 1.1: A point x0 ∈ V is said to be a weakly efficient solution of (MP)
F iff there exists y0 ∈ F (x0), and for each x ∈ V , there exists no y ∈ F (x) satisfying
y0 ∈ y + intC, i.e.

(y0 − F (V ))
⋂

(intC) = ∅

where F (V ) = ∪x∈V F (x).
Definition 1.2: Let T be a set-valued map from Hausdorff topological spaces E

to H.

(1) T is upper semicontinuous (usc) (respectively, lower semicontinuous, lsc) at x0∈E
if for each open set O in H with O ⊃ T (x0) (respectively, O ∩ T (x0) 6= ∅),
there exists an open neighborhood N(x0) of x0 such that O ⊃ T (x) (respectively,
O ∩ T (x) 6= ∅) for each x ∈ N(x0).

(2) T is usc (respectively, lsc) on E if T is usc (respectively, lsc) at every point x ∈ E.

(3) T is continuous at x0 ∈ E if it is both usc and lsc at x0; T is continuous on E if
it is continuous at every point x ∈ E.

Lemma 1.1:([1]) Let X and Y be two Hausdorff topological spaces and X is compact,
T : X → 2Y be upper semicontinuous with compact values, then T (X) = ∪x∈XT (x) is
compact.

Lemma 1.2:([5]) Let X and Y be two topological spaces with Y regular. If T is an
usc set-valued map from X to Y with T (x) closed for each x ∈ X, then T is closed, i.e.,
for xα, x0 ∈ X with xα → x0, for any yα ∈ T (xα) and yα → y0, then y0 ∈ T (x0).

Lemma 1.3: Let X be a nonempty compact subset of a Hausdorff topological space
E, and let (Z, D) be an ordered linear topological space with a closed positive cone D.
If G : X → 2Z is usc with compact values, then V = {x ∈ X : (−G(x)) ∩ D 6= ∅} ⊂ X
is compact.

Proof: Since G : X → 2Z is usc with compact values, by Lemma 1.1, G(X) =
∪x∈X(G(x)) is compact. Let a net {xα} ⊂ V and xα → x∗ ∈ X. That is, (−G(xα)) ∩
D 6= ∅, take yα ∈ (−G(xα)) ∩ D, then {yα} ⊂ (−G(X)), since (−G(X)) is compact,
{yα} has a cluster point y∗ ∈ (−G(X)). We may assume that yα → y∗, by Lemma 1.2,
y∗ ∈ (−G(x∗)). Further, D is closed, y∗ ∈ D, hence, y∗ ∈ (−G(x∗)) ∩ D, then x∗ ∈ V ,
V is closed and hence V is compact. �

Lemma 1.4:([4]) If X is (completely) metrizable, Z is a Baire space, and T : Z →
K(X) is an usc with compact values mapping, then the subset of points where T is lsc
is a (dense) residual set in Z.

Lemma 1.5:([2]) Let {Aα}α∈Γ be a net in K(X) that converges to A ∈ K(X) in
the Vietoris topology (see [5]). Then any net {xα}α∈Γ with xα ∈ Aα for each α ∈ Γ has
a cluster point in A where K(X) is the space of all non-empty compact subsets of X.
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2 Weakly Efficient Solution Mapping

We suppose that X is a nonempty compact subset of a Hausdorff topological space E,
(Y, C), (Z, D) are two ordered Banach spaces with closed positive cones, and intC 6= ∅,
intD 6= ∅. Then G : X → 2Z is usc with nonempty compact values, and V = {x ∈ X :
(−G(x)) ∩ D 6= ∅}. Define
M = {F : X → 2Y : F continuous with compact values, ∃x0 ∈ V, ∃y0 ∈ F (x0) such that (y0−
F (V )) ∩ intC = ∅}.

Then for any F, F ′ ∈ M , we define

ρ(F, F ′) = sup
x∈X

H(F (x), F ′(x))

where H is the Hausdorff metric defined on Y . Clearly, (M, ρ) is a complete metric
space.

For any F ∈ M , we denote by S(F ) the weakly efficient solution set of the (MP)
F . That is, S(F ) = {x ∈ X : ∃y ∈ F (x) such that (y − F (V )) ∩ intC = ∅}. Then we
have S(F ) 6= ∅, where S is a weakly efficient solution set-valued mapping from M to
X. Then we have the following usc of the mapping S.

Theorem 2.1: The mapping S : M → 2X is usc with nonempty compact values.
Proof: For any F ∈ M , we need to prove S(F ) ⊂ X is compact. Let a net

{xα} ⊂ S(F ) and xα → x∗ ∈ X. By xα ∈ S(F ) , there exists yα ∈ F (xα) ⊂ F (V ) such
that

(yα − F (V )) ∩ (intC) = ∅

By Lemma 1.3, V is compact, by Lemma 1.1, F (V ) is compact, then {yα} has a cluster
point y∗ ∈ F (V ). We may assume that yα → y∗, where by Lemma 1.2, y∗ ∈ F (x∗).

Suppose that (y∗ − F (V )) ∩ intC 6= ∅, then there exists z0 ∈ F (V ) such that y∗ −
z0 ∈intC. But, intC is an open set and yα → y∗. Then there exists α0 such that
yα − z0 ∈ int C for any α ≥ α0 which contradicts the fact that (yα − F (V ))∩intC = ∅.
Hence (y∗ − F (V ))∩int C = ∅ and x∗ ∈ S(F ), S(F ) is compact.

Because X is compact, to prove the usc of mapping S, we only need to show that

GraphS = {(F, x) ∈ M × X : x ∈ S(F )}

= {(F, x) ∈ M × X : ∃y ∈ F (x)such that(y − F (V )) ∩ intC = ∅}

is closed.
Let a net {(Fα, xα)} ⊂ GraphS and (Fα, xα) → (F ∗, x∗) ∈ M × X. Then ∃yα ∈

Fα(xα) such that (yα − Fα(V ))∩ intC = ∅.
Because Fα → F ∗ and xα → x∗, we have Fα(xα) → F ∗(xα) → F ∗(x∗). Further,

because Fα(xα) is compact, by Lemma 1.5, {yα} has a cluster point y∗ ∈ F ∗(x∗) so we
may assume yα → y∗.

Suppose that (y∗ − F ∗(V )) ∩ intC 6= ∅, then ∃z0 ∈ F ∗(V ) such that y∗ − z0 ∈
intC. Then ∃q0 ∈ V such that z0 ∈ F ∗(q0), since Fα(q0) → F ∗(q0). There exists
zα ∈ Fα(q0) ⊂ Fα(V ) such that zα → z0, then yα − zα → y∗ − z0 and y∗ − z0 ∈ intC.
There exists α0 such that ∀α > α0, yα − zα ∈ intC which contradicts the fact that
(yα −Fα(V ))∩ intC = ∅. Hence (y∗ −F ∗(V ))∩ intC = ∅ , (F ∗, x∗) ∈ GraphS and S is
usc. Therefore, S is usc with nonempty compact values. �

Definition 2.1: For F ∈ M , the weakly efficient solution set S(F ) is called stable
if the mapping S is continuous at F .
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Remark 2.1: There exists F ∈ M such that S(F ) is not stable.
Example 2.1: Let X = [0, 2], Y = Z = (−∞, +∞), C = D = [0, +∞), V = {x ∈

X : G(x) ∩ D 6= ∅} = [0, 2], and F : X → 2Y as:

F (x) =
{

[0, 4], if x∈[0, 1]
[x − 1, 4 − (x − 1)], if x∈(1, 2].

Then F (V ) = [0, 4]. For any ε with 0 < ε < 1, take

F ε(x) =
{

[ ε
2 (1 − x), 4 − ε

2 (1 − x)], if x∈[0, 1]
[x − 1, 4 − (x − 1)], if x∈(1, 2].

Then F ε(V ) = [0, 4] and S(F ε) = {1}. Hence, ρ(F, F ε) = ε
2 → 0 (ε → 0). But,

S(F ε) 6→ S(F ) (ε → 0). That is, S is not continuous at F , and hence, S(F ) is not
stable.

3 Essential Weakly Efficient Solution

To study the stability of a weakly efficient solution set, we first introduce the following
notions.

Definition 3.1: For F ∈ M ,

(1) x ∈ S(F ) is said to be an essential weakly efficient solution of (MP) F relative to M
if, for any open neighborhood N(x) of x in X, there exists an open neighborhood
N(F ) of F in M such that for any F ′ ∈ N(F ), S(F ′) ∩ N(x) 6= ∅,

(2) F is essential relative to M if every x ∈ S(F ) is an essential weakly efficient
solution relative to M .

Remark 3.1: If X is a complete metric space, Definition 3.1 shows that if the
(MP) F is essential, then for any ε > 0, there exists δ > 0 such that for any other
(MP) F ′ ∈ M with ρ(F, F ′) < δ, having at least one weakly efficient solution x′ in the
ε-neighborhood of the weakly efficient solution set of F . By Theorem 2.1, the set-valued
mapping S is continuous at F when F is essential. Therefore, the essential property of
F characterizes the continuous property of its weakly efficient solution mapping S at F .

By Theorem 2.1 and Definition 3.1, we have the following theorem:
Theorem 3.1:

(1) S is lsc at F ∈ M if and only if F is essential relative to M .

(2) S is continuous at F ∈ M if and only if F is essential relative to M .

Proof:

(1) From the fact that F ∈ M is essential relative to M , for any open set O with
O ∩ S(F ) 6= ∅, take x0 ∈ O ∩ S(F ). Then x0 ∈ O, since O is an open set.
There exists an open neighborhood N(x0) of x0 in X such that N(x0) ⊂ O, and
x0 ∈ S(F ) is an essential weakly efficient solution relative to M . By Definition
3.1, there exists an open neighborhood N(F ) of F in M such that ∀F ′ ∈ N(F ),
S(F ′) ∩ N(x0) 6= ∅. Then S(F ′) ∩ O 6= ∅ and S is lsc at F .



Stability of Weakly Efficient Solution Set 271

Conversely, suppose S is lsc at F . Then ∀x ∈ S(F ), for any open neighborhood
N(x) of x in X with N(x) ∩ S(F ) 6= ∅. there exists an open neighborhood N(F )
of F in M such that ∀F ′ ∈ N(F ), N(x) ∩ S(F ′) 6= ∅. Hence x is an essential
weakly efficient solution and F is essential relative to M .

(2) The result follows from Theorem 3.1 (1) and Theorem 2.1. �

By Lemma 1.4 , Theorem 2.1 and Theorem 3.1, it is easy to prove the following
result (proof omitted).

Theorem 3.2: Let X be a complete metric space , then there exists a dense residual
subset Q ⊂ M such that each F ∈ Q is essential relative to M .

If X is a complete metric space with metric d, then K(X) is a complete metric space
when equipped with the Hausdorff metric h induced by d. By Corollary 4.2.3 [5, ?],
the Vietoris topology on K(X) coincides with the topology induced by the Hausdorff
metric h. Then the mapping S : M → K(X) is continuous at F ∈ M if and only if
for any ε > 0, there exists δ > 0 such that h(S(F ), S(F ′)) < ε whenever F ′ ∈ M and
ρ(F, F ′) < δ. That is, the weakly efficient solution set S(F ) of F is stable: S(F ′) is
close to S(F ) whenever F ′ is close to F for all F ′ ∈ M . Theorem 3.1(2) implies that if
F ∈ M , then F is essential relative to M if and only if the weakly efficient solution set
S(F ) is stable.

The following Example 3.1 shows that there exists F ∈ M , ∀x ∈ S(F ), where x is
not an essential weakly efficient solution relative to M , and hence S(F ) is not stable.

Example 3.1: Let X = [0, 1], Y = Z = (−∞, +∞), C = D = [0, +∞), V = {x ∈
X : G(x)∩D 6= ∅} = [0, 1], F : X → 2Y , ∀x ∈ [0, 1], F (x) = [0, 1]. Then F (V ) = [0, 1],
and ∀x ∈ [0, 1], there exists y0 = 0 ∈ F (x) such that

(y0 − F (V )) ∩ intC = (0 − [0, 1]) ∩ (0, +∞) = ∅.

Then S(F ) = [0, 1].
For any x0 ∈ S(F ), take δ > 0 such that N(x0, δ) ⊂ [0, 1] (if x0 = 1, take N(1, δ) =

(1 − δ, 1] ⊂ [0, 1]; if x0 = 0, take N(0, δ) = [0, δ) ⊂ [0, 1]).
For any ε with 0 < ε < 1, we define

F ε(x) =





[0, 1], if x∈[0, x0 − δ],
[ ε
δ (x − (x0 − δ)), 1], if x∈(x0 − δ, x0],

[− ε
δ (x − (x0 + δ)), 1], if x ∈ (x0, x0 + δ),

[0, 1], if x ∈ [x0 + δ, 1].

Then F ε : X → 2Y is continuous and F ε(V ) = [0, 1], ρ(F, F ε) < ε.
But, ∀x ∈ [0, 1] \ N(x0, δ), take y0 = 0 ∈ F ε(x) such that (0 − [0, 1]) ∩ intC = ∅
∀x ∈ N(x0, δ), ∀y ∈ F ε(x) , (y − [0, 1]) ∩ intC 6= ∅.
Then S(F ε) = [0, 1]\N(x0, δ), S(F ε)∩N(x0, δ) = ∅, therefore ∀x0 ∈ S(F ), x0 is not

an essential weakly efficient solution relative to M .
We have a sufficient condition that F ∈ M is essential relative to M .
Theorem 3.3: If F ∈ M and S(F ) is a singleton set, then F is essential relative

to M .
Proof: Suppose that S(F ) = {x}, let O be any open set in X such that S(F ) ∩

O 6= ∅, then x ∈ O, so that S(F ) ⊂ O. Since S is usc at F ∈ M , there exists an
open neighborhood N(F ) of F in M such that S(F ′) ⊂ O for each F ′ ∈ N(F ) Then
S(F ′) ∩ O 6= ∅ for each F ′ ∈ N(F ). Thus, S is lsc at F , by Theorem 3.1 and F is
essential relative to M . �
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4 Essential Component of Weakly Efficient Solution
Set

In Example 3.1, the S(F ) is not stable, but, S(F ) = [0, 1] is connected.
For F ∈ M , the component of a point x ∈ S(F ) is the union of all connected subsets

of S(F ) which contain the point x, (see pp.356 in [3]). Components are connected
closed subsets of S(F ) and are also compact as S(F ) is compact. It is easy to see that
the components of two distinct points of S(F ) either coincide or are disjoint so that
all components constitute a decomposition of S(F ) into connected pairwise disjoint
compact subset. That is,

S(F ) =
⋃

α∈Λ

Cα(F )

where Λ is an index set. For any α ∈ Λ, Cα(F ) is a nonempty connected compact set
and for any α, β ∈ Λ(α 6= β), Cα(F ) ∩ Cβ(F ) = ∅.

Definition 4.1: For F ∈ M , Cα(F ) is called an essential component of S(F ) if
for any open set O containing Cα(F ), ∃δ > 0 such that ∀F ′ ∈ M with ρ(F, F ′) < δ,
S(F ′) ∩ O 6= ∅.

Remark 4.1: For F ∈ M , if x ∈ S(F ) is an essential weakly efficient solution, then
the component which contains the point x is an essential component.

Theorem 4.1: For F ∈ M , if S(F ) is connected, then S(F ) is an essential compo-
nent.

Proof: For F ∈ M , S(F ) is connected, since S is usc at F . For any open set
O containing S(F ), there exists δ > 0 such that S(F ′) ⊂ O for any F ′ ∈ M with
ρ(F, F ′) < δ, then S(F ′) ∩ O 6= ∅, hence S(F ) is an essential component. �

Example 4.1: Let X = [0, 3], Y = Z = (−∞, +∞), C = D = [0, +∞), V = {x ∈
X : G(x) ∩ D 6= ∅} = [0, 3], and F : X → 2Y as

F (x) =





[0, 3], if x∈[0, 1]
[x − 1, 3 − (x − 1)], if x∈(1, 1.5]
[−x + 2, 3 − (−x + 2)], if x ∈ (1.5, 2)
[0, 3], if x ∈ [2, 3],

then F ∈ M , F (V ) = [0, 3], and
∀x ∈ (1, 2), ∀y ∈ F (x), (y − [0, 3]) ∩ intC 6= ∅;
∀x ∈ [0, 1] ∪ [2, 3], ∃y0 = 0 ∈ F (x) = [0, 3], (0 − [0, 3]) ∩ intC = ∅.
Hence S(F ) = [0, 1] ∪ [2, 3], C1(F ) = [0, 1], and C2(F ) = [2, 3].
For C1(F ) = [0, 1], take δ > 0 such that O([0, 1], δ)∩X = [0, 1 + δ) ⊂ [0, 1.5), then

(O([0, 1], δ) ∩ X) ∩ [2, 3] = [0, 1 + δ) ∩ [2, 3] = ∅.
For any ε with 0 < ε < 3 − δ, we define

F ε(x) =





[ε, 3], if x∈[0, 1]
[(1 − ε

δ )x + ε
δ − 1 + ε, 3 − (x − 1)], if x∈(1, 1 + δ)

[x − 1, 3 − (x − 1)], if x ∈ [1 + δ, 1.5]
[−x + 2, 3 − (−x + 2)], if x ∈ (1.5, 2)
[0, 3], if x ∈ [2, 3],

then F ε ∈ M , F ε(V ) = [0, 3], ρ(F, F ε) < ε, and
∀x ∈ [0, 2), ∀y ∈ F ε(x) , (y − [0, 3]) ∩ intC 6= ∅;
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∀x ∈ [2, 3], ∃y0 = 0 ∈ F ε(x) = [0, 3], (0 − [0, 3]) ∩ intC = ∅.
Then S(F ε) = [2, 3] and S(F ε) ∩ [0, 1 + δ) = ∅. Hence C1(F ) = [0, 1] is not an

essential component of S(F ). Similarly, one may prove that C2(F ) = [2, 3] is not an
essential component of S(F ). Hence S(F ) has no essential component.

References

[1] Aubin, J.P. and Ekeland, I., Applied Nonlinear Analysis, Wiley, New York 1984.

[2] Beer,G., On a generic optimization theory of Kenderov, Nonl. Anal. TMA 12(1988), 647–
655.

[3] Engelking, R., General Topology, Heldermann-Verlag, Berlin 1989.

[4] Fort, Jr. M.K., Points of continuity of semicontinuous functions, Publ. Math. Debrecen
2(1951), 100–102.

[5] Klein, E. and Thompson, A.C., Theory of Correspondences, Wiley, New York 1984.

[6] Yang, X.M., Yang, X.Q. and Chen, G.Y., Theorems of the alternative and optimization
with set-valued maps, J. Optim. Theory and Appl., 107(2000), 627–640.


