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1 Introduction

A lot of work has been done on the existence of best approximation for continuous and
nonexpansive mappings on Hilbert spaces, Banach spaces and locally convex topological
vector spaces. These results include both single and multivalued maps. In general, fixed
point theorems and the related techniques have been used to prove the results about
best approximation. We refer to [4, 6, 7, 13, 14] and references therein.

In 1969, Ky Fan [6] proved in Theorem 1, the following best approximation result:
Theorem A: Let C be a compact convex set in a locally convex Hausdorff topological

vector space X. If f : C → X is continuous, then either f has a fixed point or there
exist an x ∈ C and a continuous seminorm p on X such that

p(x − fx) = dp(fx, C)

where dp(fx, C) =inf{p(fx − y) : y ∈ C}.
This theorem has been of great importance in nonlinear analysis, game theory and

minimax theorems and it has been extended in various directions by many authors (e.g.
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see [11] and [14]). Prolla [13] has generalized it for a pair of continuous functions on the
subset C of a normed space.

The purpose of this paper is to generalize Prolla’s main result by considering a
continuous function and the other one being a continuous almost quasi-convex onto
function on a suitable subset of a metrizable topological vector space, using Ky Fan’s
intersection lemma [6] as a main tool. Stochastic versions of our results are established
as well. As a consequence, a stochastic generalization of the celebrated Fan’s best
approximation theorem (Theorem A) follows.

In Section 3, we prove some approximation results for single-valued continuous quasi-
convex mappings on a compact as well as on a noncompact subset of a metrizable
topological vector space.

In Section 4, we present random versions of the results in Section 3. Section 2
deals with certain technical preliminaries and establishes notational conventions. Even
though some of the concepts are standard, they are included here to facilitate reading.

2 Preliminaries

Let X denote a topological vector space (TVS, for short). Throughout, we assume that
its topology is tacitly generated by an F -norm on it; that is, there is a real-valued map,
say, q on X such that

(i) q(x) ≥ 0 and q(x) = 0 iff x = 0;

(ii) q(x + y) ≤ q(x) + q(y);

(iii) q(λx) ≤ q(x) for all x, y ∈ X and for all scalars λ with |λ| ≤ 1;

(iv) if q(xn) → 0, then q(λxn) → 0 for all scalars λ;

(v) if λn → 0, then q(λnx) → 0 for all x ∈ X, where (λn) is a sequence of scalars.

The formula d(x, y) = q(x − y) defines a metric on X.
We denote by 2X , C(X) and CK(X) the families of all nonempty, nonempty closed

and nonempty convex compact subsets of X.
Let (Ω, Σ) be a measurable space with Σ a σ-algebra of subsets of Ω. Let P (Z) be a

collection of subsets of a set Z. Denote by N̂ the set of all infinite sequences of positive
integers and by N̂0, the set of all finite sequences of positive integers. A subset A of Z
is said to be obtained from P (Z) by Souslin operation if there is a map k : N̂0 → P (Z)
such that A =

⋃
x∈N̂

⋂∞
n=1 (k(r|n), where r|n denotes the first n elements of the finite

sequence r ∈ N̂ . Note that the union in the Souslin operation is uncountable. So, if
P (Z) is a σ-algebra, then A may be outside P (Z). If P (Z) is closed under the Souslin
operation, then it is called a Souslin family. For more details about Souslin family we
refer to Shahzad [15] and Wagner [17].

Let T : Ω → 2X be a multivalued mapping. The set

Gr(T ) = {(ω, x) ∈ Ω × X : x ∈ T (ω)}

is called the graph of T .
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A mapping T : Ω → 2X is said to be measurable (respectively, weakly measurable) if
T−1(B) ∈ Σ for each closed (respectively, open) subset B of X, where

T−1(B) = {ω ∈ Ω : T (ω) ∩ B 6= φ}.

It is known that the measurability of T : Ω → 2X implies the weak measurability but
not conversely, in general.

A mapping f : Ω → X is said to be a selector of a mapping T : Ω → 2X if
f(ω) ∈ T (ω) for all ω ∈ Ω.

Let Y, Z be two metric spaces. A function T : Ω×Y → Z is said to be a Caratheodory
function if for each y ∈ Y, T (·, y) is measurable and for each ω ∈ Ω, T (ω, ·) is continuous.

Random operators with stochastic domain have been studied by Engl [5] and Shahzad
[15].

Following Engl [5] and Papageorgiou [10], we say that a mapping T : Ω → 2X is
separable if there exists a countable set D ⊆ X such that for all ω ∈ Ω, cl(D ∩ T (Ω)) =
T (ω). For instance, if T has closed, convex and solid (that is, nonempty interior) values,
then T is separable. Further, it is clear from the definition of separability that T has
closed values.

Let F : Ω → C(X) be a weakly measurable mapping. A mapping T : Gr(F ) → 2X

is called a multivalued random operator with stochastic domain F (·) if for all x ∈ X and
all U ⊆ X open, {ω ∈ Ω : T (ω, x) ∩ U 6= φ, x ∈ F (ω)} ∈ Σ.

Let F : Ω → C(X) be a weakly measurable mapping. A random operator T :
Gr(F ) → X with stochastic domain F (·) is called a random contraction if T (ω, ·) is a
contraction on F (ω) for all ω ∈ Ω.

For a finite subset {x1, . . . , xn} of a TVS X, we write the convex hull of {x1, . . . , xn}
as

Co{x1, . . . , xn} = {
n∑

i=1

αixi : 0 ≤ αi ≤ 1,
n∑

i=1

αi = 1}.

We shall need the following result known as Ky Fan’s intersection lemma [6].
Theorem B: Let C be a subset of a TVS X and F : C → 2X a closed-valued map

such that Co(x1, . . . , xn) ⊆
⋃n

i=1 F (xi) for each finite subset {x1, . . . , xn} of C. If F (x0)
is compact for at least one x0 in C, then

⋂
x∈C F (x) 6= φ.

Theorem C: ([9], Theorem 1). Let C be a nonempty convex subset of a Hausdorff
TVS X and A ⊆ C × C such that

(a) for each x ∈ C, the set {y ∈ C : (x, y) ∈ A} is closed in C;

(b) for each y ∈ C, the set {x ∈ C : (x, y) 6∈ A} is convex or empty;

(c) (x, x) ∈ A for each x ∈ C;

(d) C has a nonempty compact convex subset X0 such that the set B = {y ∈ C :
(x, y) ∈ A for all x ∈ X0} is compact.

Then there exists a point y0 ∈ B such that C × {y0} ⊂ A.
Let X be a metrizable TVS with a metric d on it, C a convex subset of X and

g : C → C a continuous map. Then g is said to be (cf. [12])

(i) almost affine if

d
(
g(rx1 + (1 − r)x2), y

)
≤ rd(gx1, y) + (1 − r)d(gx2, y),
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(ii) almost quasi-convex if

d
(
g(rx1 + (1 − r)x2), y

)
≤ max{d(gx1, y), d(gx2, y)},

where x1, x2 ∈ C, y ∈ X and 0 < r < 1.

It is easy to see that (i) implies (ii) but not conversely, in general (see also [16] for
related concepts). A random operator f : Ω × C → X is continuous (almost affine,
almost quasi-convex) if for each ω ∈ Ω, the map f(ω, ·) : C → X is so.

3 Approximation in Metrizable Topological Vector
Spaces

We begin with a theorem which generalizes the main result of Prolla [13] to a wider
class of functions defined on a subset of a metrizable TVS with its proof based on Ky
Fan’s intersection lemma (Theorem B). This result also extends Theorem 1 of Carbone
[4] and partially Theorem 2.1 in [11] (see also [12]).

Theorem 3.1: Let C be a nonempty compact convex subset of a metrizable TVS
X and g : C → C a continuous almost quasi-convex onto function. If f : C → X is a
continuous function, then there exists y ∈ C such that d(gy, fy) = d(fy, C).

Proof: For each z ∈ C, define

F (z) = {y ∈ C : d(gy, fy) ≤ d(gz, fy)}.

Since f and g are continuous, therefore for each z ∈ C, F (z) is a closed set and hence
a compact subset of C.

Let {x1, . . . , xn} be a finite subset of C. Then, Co(x1, . . . , xn) ⊆
⋃n

i=1 F (xi). If
this is not the case, then there is some u in Co(x1, . . . , xn) such that u 6∈

⋃n
i=1 F (xi).

Now u =
∑n

i=1 αixi, where αi ≥ 0 and
∑n

i=1 αi = 1 and as u 6∈
⋃n

i=1 F (xi), so
d(gxi, fu) < d(gu, fu) for all i = 1, 2, . . . , n. Since g is almost quasi-convex, therefore

d(gu, fu) = d

(
g

(
n∑

i=1

αixi

)
, fu

)
≤ max

i
d(gxi, fu) < d(gu, fu)

which is impossible. Then, by Theorem B,
⋂

x∈C F (x) 6= φ and hence there is y ∈⋂
x∈C F (x) so that, for all x ∈ C,

d(gy, fy) ≤ d(gx, fy).

Since g is onto, we get d(gy, fy) ≤ d(z, fy) for all z ∈ C and hence d(gy, fy) = d(fy, C).
�

The compactness of C in Theorem 3.1 can be replaced by a weaker condition to
obtain the following generalization of Theorem 2 of Carbone [4].

Theorem 3.2: Let C be a nonempty convex subset of a metrizable TVS X and
g : C → C a continuous almost quasi-convex onto function. Suppose f : C → X is a
continuous function. If C has a nonempty compact convex subset B such that the set

D = {y ∈ C : d(fy, gy) ≤ d(fy, gx) for all x ∈ B}
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is compact, then there exists an element y ∈ D such that d(fy, gy) = d(fy, C).
Proof: Let A = {(x, y) ∈ C × C : d(fy, gy) ≤ d(fy, gx)}. Obviously, (x, x) ∈ A for

all x ∈ C. By the continuity of f and g, the set {y ∈ C : (x, y) ∈ A} is closed in C for
each x ∈ C. The set

K = {x ∈ C : (x, y) 6∈ A} = {x ∈ C : d(fy, gy) > d(fy, gx)}

is convex. Indeed, suppose x1, x2 ∈ K. Then d(gx1, fy) < d(fy, gy) and d(gx2, fy) <
d(fy, gy). Since g is almost quasi-convex, we have for 0 < λ < 1,

d(g(λx1 + (1 − λ)x2), fy) ≤ max{d(gx1, fy), d(gx2, fy)}
< d(fy, gy).

This implies that λx1 + (1 − λ)x2 ∈ K.
By Theorem C, there exists y ∈ D such that C × {y} ⊂ A. That is, d(fy, gy) ≤

d(fy, gx) for all x ∈ C. As g is onto, so d(fy, gy) = d(fy, C) for some y ∈ B. �
Remarks 3.3:

(i) If we consider f : C → C in Theorems 3.1 and 3.2, then y becomes a coincidence
point of f and g (that is, fy = gy).

(ii) All the results obtained so far trivially hold when X is a Fréchet space.

4 Random Approximation

In this section we establish the random versions of Theorems 3.1 and 3.2 which in turn
extend Theorem 5 of [3] and Theorem 5 of [15] to the general framework of metrizable
topological vector spaces.

Theorem 4.1: Let C be a compact and convex subset of a complete metrizable TVS
X and g : Ω × C → C a continuous almost quasi-convex and onto random operator. If
T : Ω × C → X is a continuous random operator, then there exists a measurable map
ξ : Ω → C satisfying

d(g(ω, ξ(ω)), T (ω, ξ(ω))) = d(T (ω, ξ(ω)), C)

for each ω ∈ Ω.
Proof: Let F : Ω → 2C be defined by

F (ω) = {x ∈ C : d(g(ω, x), T (ω, x)) = d(T (ω, x), C)}.

By Theorem 3.1, F (ω) 6= φ for all ω ∈ Ω. Also, F (ω) is compact for each ω ∈ Ω. Let G
be a closed subset of C. Put

L(G) =
∞⋂

n=1

⋃

x∈Dn

{
ω ∈ Ω : d(g(ω, x), T (ω, x)) < d(T (ω, x), C) +

1
n

}
,

where Dn =
{
x ∈ D : d(x, G) < 1

n

}
.

Note that the functions p : Ω × C → R+ and q : Ω × C → R+ defined by p(ω, x) =
d(g(ω, x), T (ω, x)) and q(ω, x) = d(T (ω, x), C) are measurable in ω and continuous in x
(see [15], Theorem 5). Following arguments similar to those in the proof of Theorem 5 of
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[3], we can show that F is measurable. Applying a selection theorem due to Kuratowski
and Nardzewski [8] we get a measurable map ξ : Ω → C such that ξ(ω) ∈ F (ω) for all
ω ∈ Ω. The result now follows from the definition of F (ω). �

Definition 4.2: Let (X, d1) and (Y, d2) be two metric spaces. The pair of met-
ric spaces (X, Y ) is said to have the Kirzbraun property or property (K) according
to Shahzad [15] if for all choices xi ∈ X, yi ∈ Y and γi > 0, i ∈ I (I an arbi-
trary index set) such that the intersection of the balls B(xi, γi) in X is nonempty and
d2(yi, yj) ≤ d1(xi, xj), i, j ∈ I, then the intersection of the balls B(yi, γi) in Y is also
nonempty.

We need the following result, Theorem 1 of Shahzad [15].
Theorem 4.3: Let (Ω, Σ) be a measurable space with Σ a Souslin family. Let X and

Y be separable complete metric spaces such that the pair (X, Y ) has property (K) and
F : Ω → 2X a separable weakly measurable function. Then every random contraction
f : Gr(F ) → Y with stochastic domain F (·) can be extended to a random contraction
defined on Ω × X.

Remark 4.4: The conclusion of Lemma 6 of Engl [5] remains valid for separable
complete metric spaces (cf. [15], p. 442).

Theorem 4.5: Let (Ω, Σ) be a measurable space with Σ a Souslin family and X
a separable complete metrizable TVS. Assume that F : Ω → 2X is a separable weakly
measurable convex-valued multifunction and f : Gr(F ) → X is a random contraction
with stochastic domain F (·). If g : Gr(F ) → X is a continuous almost quasi-convex
onto random operator with stochastic domain F (·) such that g(ω, x) ∈ F (ω) for all
(ω, x) ∈ Gr(F ). Suppose that G0 : Ω → CK(X) is a measurable multifunction with
G0(ω) ⊆ F (ω) for all ω ∈ Ω such that for a weakly measurable multifunction D,

D(ω) = {y ∈ F (ω) : d(f(ω, y), g(ω, y)) ≤ d(f(ω, y), g(ω, x)) for all x ∈ G0(ω)}

is compact for each ω ∈ Ω. If the pair (X, X) has property (K), then there exists a
measurable map ξ : Ω → X such that for all ω ∈ Ω, ξ(ω) ∈ D(ω) and

d(f(ω, ξ(ω)), g(ω, ξ(ω))) = d(f(ω, ξ(ω)), F (ω)).

Proof: By Theorem 4.3, we get a random contraction f̂ : Ω×X → X. Let H : Ω →
2X be defined by

H(ω) =
{

x ∈ D(ω) : d(g(ω, x), f̂(ω, x)) = d(f̂(ω, x), F (ω))
}

.

By Theorem 3.2, H(ω) 6= φ for each ω ∈ Ω. Define maps h, k : Ω × X → R+ by
h(ω, x) = d(f̂(ω, x), F (ω)) and k(ω, x) = d(f̂(ω, x), g(ω, x)). Obviously h is continuous
and by [5, Lemma 6], h is measurable in ω (see Remark 4.4), so h(·, ·) is a Caratheodory
function. Similarly k(·, ·) is also a Caratheodory function. By the continuity of functions
involved, H(ω) is closed for each ω ∈ Ω.

Define φ(ω, x) = h(ω, x) − k(ω, x). Clearly, φ(·, ·) is jointly measurable. Observe
that

Gr(H) = Gr(F ) ∩ {(ω, x) ∈ Ω × X : φ(ω, x) = 0} ∈ Σ × B(X).

Since Σ is a Souslin family, therefore by Theorem 4.2 in [17], H(·) is weakly measurable.
By the selection theorem in [8], H(·) has a measurable selector ξ : Ω → X. Consequently,
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ξ(ω) ∈ D(ω) and

d(f(ω, ξ(ω)), g(ω, ξ(ω))) = d(f(ω, ξ(ω)), F (ω))

for each ω ∈ Ω. �
An immediate consequence of the above theorem when the underlying domain of

the maps f and g is not varying stochastically is presented below; our result generalizes
Corollary 2 in [2] to metrizable TVS.

Corollary 4.6: Let (Ω, Σ) and X be as in Theorem 4.5 and C a nonempty convex
subset of X. Assume that f : Ω×C → X is a random contraction and g : Ω×C → C is
a continuous almost quasi-convex onto random operator. Let X0 be a nonempty compact
convex subset of C and K be a nonempty compact subset of C. If for each y ∈ C \ K,
there exists x ∈ X0 such that

d(g(ω, x), f(ω, y)) < d(g(ω, y), f(ω, y)),

then there exists a measurable mapping ξ : Ω → K satisfying

d(g(ω, ξ(ω)), f(ω, ξ(w)) = d(f(ω, ξ(ω)), C)

for each ω ∈ Ω.
Remark 4.7: Theorem 4.5 extends Corollary 3.3 [1], Theorem 1 [2], Theorem 5 [3],

Theorem 4 [10] and Theorem 5 [15] to the general framework of metrizable topological
vector spaces.
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