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In this paper, we use the technique of updating the solution to suggest and analyze a class
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1 Introduction

General mixed variational inequality is a useful and important generalization of vari-
ational inequalities with a wide range of applications in industry, economics, finance,
network analysis, optimization, elasticity and structural engineering; see [1]–[21] and
the references therein. There are several numerical methods including resolvent method
and its variant forms, auxiliary principle and operator-splitting for solving mixed varia-
tional inequalities. Resolvent method and its variant forms represent an important tool
for finding the approximate solutions. The main idea in this technique is to establish
the equivalence between the mixed variational inequalities and the fixed-point problem
by using the concept of the resolvent. The novel feature of this technique for solving
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the mixed variational inequalities is that the resolvent step involves the subdifferential
of the proper, convex and lower semicontinuous function part only and the other part
facilitates the problem decomposition. This can lead to the development of very efficient
methods, since one can treat each part of the original operator independently. In the
context of variational inequalities, Noor [11, 12, 13, 14, 15, 17] has used the resolvent
operator technique in conjunction with the technique of updating the solution to suggest
some two-step, three-step and four-step forward-backward resolvent-splitting methods
for solving mixed variational inequalities. In this paper, we suggest and analyze a new
class of self-adaptive algorithms for general mixed variational inequalities by modify-
ing the associated fixed-point formulation. The new splitting methods are self-adaptive
type methods involving the line search strategy, where the step size depends upon the
resolvent equation and searching direction is a combination of the resolvent residue and
the modified extraresolvent direction. Our results include the previous results of Noor
and Noor [8] and Noor [11, 12, 13, 14, 15, 17] for solving different classes of variational
inequalities as special cases. It is shown that the convergence of these new methods
requires only the pseudomonotonicity, which is a weaker condition than monotonicity.
Our results can be viewed as a novel application of the technique of updating the solu-
tion for developing new iterative methods for solving mixed variational inequalities and
related optimization problems.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖.‖ respectively. Let K be a nonempty closed convex set in H. Let ϕ : H → R∪ {+∞}
be a function. For given nonlinear operators T, g : H → H, consider the problem of
finding u ∈ H such that

〈Tu, g(v) − g(u)〉 + ϕ(g(v)) − ϕ(g(u)) ≥ 0, for all g(v) ∈ H. (2.1)

Inequality of type (2.1) is called the general mixed variational inequality or the general
variational inequality of the second kind. If the function ϕ(.) is a proper, convex and
lower semicontinuous function, then problem (2.1) is equivalent to finding u ∈ H such
that

0 ∈ Tu + ∂ϕ(g(u)),

which is known as the problem of finding a zero of the sum of two (maximal) monotone
operators and has been studied extensively in recent years. We remark that if g ≡ I,
the identity operator, then problem (2.1) is equivalent to finding u ∈ H such that

〈Tu, v − u〉 + ϕ(v) − ϕ(u) ≥ 0, for all v ∈ H, (2.2)

which are called the mixed variational inequalities. It has been shown that a wide
class of linear and nonlinear problems arising in finance, economics, circuit and network
analysis, elasticity, optimization and operations research can be studied via the mixed
variational inequalities (2.1) and (2.2). For the applications, numerical methods and
formulations; see [1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 17, 20].

We note that if ϕ is the indicator function of a closed convex set K in H, that is,

ϕ(u) ≡ IK(u) =
{

0, if u ∈ K
+∞, otherwise,
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then problem (2.1) is equivalent to finding u ∈ H, g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 ≥ 0, for all g(v) ∈ K. (2.3)

Inequality of the type (2.3) is known as the general variational inequality, which was
introduced and studied by Noor [7] in 1988. It turned out that the odd-order and
nonsymmetric free, unilateral, obstacle and equilibrium problems can be studied by the
general variational inequality (2.3). It has been shown in [16] that a class of quasi-
variational inequalities and nonconvex programming problem can be viewed as the the
general variational inequality problems. For the applications and numerical methods;
see [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21] and the references therein.

From now onward, we assume that the operator g is onto K and g−1 exists unless
otherwise specified.

If K∗ = {u ∈ H : 〈u, v〉 ≥ 0, for all v ∈ K} is a polar cone of a convex cone K in H,
then problem (2.3) is equivalent to finding u ∈ H such that

g(u) ∈ K, Tu ∈ K∗, and 〈Tu, g(u)〉 = 0, (2.4)

which is known as the general complementarity problem, which was introduced and
studied by Noor [7] in 1988. We note that if g(u) = u−m(u), where m is a point-to-point
mapping, then problem (2.4) is called the quasi(implicit) complementarity problem. If
the operators T and g are affine, then problem (2.4) is known as the vertical linear
complementarity problem; see, for example, [21].

For g ≡ I, the identity operator, problem (2.3) collapses to: find u ∈ K such that

〈Tu, v − u〉 ≥ 0, for all v ∈ K, (2.5)

which is called the standard variational inequality introduced and studied by Stampac-
chia [19] in 1964. For recent state-of-the art research; see [1]–[20].

It is clear that problems (2.2)–(2.5) are special cases of the general mixed variational
inequality (2.1). In brief, for a suitable and appropriate choice of the operators T , g, ϕ
and the space H, one can obtain a wide class of variational inequalities and complemen-
tarity problems. This clearly shows that problem (2.1) is a quite general and unifying
one. Furthermore, problem (2.1) has important applications in various branches of pure
and applied sciences; see [1]–[20].

We now recall some well-known concepts and results.
Definition 2.1: For all u, v, z ∈ H, an operator T : H → H is said to be:

(i) g-monotone, if
〈Tu − Tv, g(u) − g(v)〉 ≥ 0

(ii) g-pseudomonotone,

〈Tu, g(v) − g(u)〉 ≥ 0 implies 〈Tv, g(v) − g(u)〉 ≥ 0.

For g ≡ I, where I is the identity operator, Definition 2.1 reduces to the classical
definition of monotonicity and pseudomonotonicity. It is known that monotonicity im-
plies pseudomonotonicity but the converse is not true, see [2]. Thus we conclude that
the condition of pseudomonotonicity is weaker than monotonicity.
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Definition 2.2: If A is maximal monotone operator on H, then for a constant ρ > 0,
the resolvent operator associated with A is defined as

JA(u) = (I + ρA)−1(u), for all v ∈ H,

where I is the identity operator.
It is well-known that the operator A is maximal monotone if and only if the resolvent

operator JA is defined everywhere on the space. The operator JA is single-valued and
nonexpansive.

Remark 2.1: It is well known that the subdifferential ∂ϕ of a proper, convex and
lower semicontinuos function ϕ : H −→ R ∪ {∞} is a maximal monotone operator, so

Jϕ(u) = (I + ∂ϕ)−1(u), for all u ∈ H,

is the resolvent operator associated with ∂ϕ and is defined everywhere.
Lemma 2.1: For a given z ∈ H, u ∈ H satisfies

〈u − z, v − u〉 + ρϕ(v) − ρϕ(u) ≥ 0, for all v ∈ H (2.6)

if and only if

u = Jϕz,

where Jϕ is the resolvent operator.
We remark that if the proper, convex and lower semicontinuous function ϕ is an

indicator function of closed convex set K in H, then Jϕ ≡ PK , the projection of H onto
K. In this case Lemma 2.2 is equivalent to the projection lemma; see [1].

3 Main Results

In this section, we use the resolvent operator technique to suggest a modified resolvent
method for solving general mixed variational inequalities (2.1). For this purpose, we
need the following result, which can be proved by using Lemma 2.1.

Lemma 3.1: The general mixed variational inequality (2.1) has a solution u ∈ H if
and only if u ∈ H satisfies

g(u) = Jϕ[g(u) − ρTu], (3.1)

where Jϕ = (I + ρ∂ϕ)−1 is the resolvent operator.
Lemma 3.1 implies that problems (2.1) and (3.1) are equivalent. This alternative

equivalent formulation has played an important part in suggesting several iterative
methods for solving general mixed variational inequalities and related problems; see
[5, 6, 11, 12, 13, 14, 15, 17, 20]. The fixed-point formulation (3.1) has been used to
suggest and analyze the iterative method for solving general variational inequalities
(2.1).

Algorithm 3.1: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

g(un+1) = Jϕ[g(un) − ρTun], n = 0, 1, . . .
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It is well-known (see [11]) that the convergence of Algorithm 3.1 requires that the
operator T is both strongly monotone and Lipschitz continuous. These strict conditions
rule out many applications of the resolvent Algorithm 3.1. These facts motivated to
develop other techniques. In recent years, a number of iterative resolvent methods
have been suggested and analyzed by using the technique of updating the solution by
performing an additional forward step and resolvent at each step; see [8, 11, 12, 13, 14,
15, 17, 20]. If g−1 exists, then we can rewrite the equation (3.1) in the form

g(u) = Jϕ[g(u) − ρTg−1Jϕ[g(u) − ρTu]]. (3.2)

This fixed-point formulation allows us to suggest and analyze the following iterative
method, which is known as the extraresolvent method.

Algorithm 3.2: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme
Predictor Step.

g(vn) = Jϕ[g(un) − ρnTun],

where ρn satisfies

ρn〈Tun − Tg−1Jϕ[g(un) − ρnTun], R1(un)〉 ≤ σ‖R1(un)‖2, σ ∈ (0, 1)

Corrector Step.

g(un+1) = Jϕ[g(un) − αnTvn], n = 0, 1, 2, . . .

where

R1(un) = g(un) − Jϕ[g(un) − ρnTun]

αn =
(1 − σ)‖R1(un)‖2

‖Tvn‖2

Tvn = Tg−1Jϕ[g(un) − ρnTun].

We note that if the proper, convex and lower-semicontinuous function ϕ(.) is the in-
dictor function of a closed convex set K in H, then Jϕ ≡ PK , the projection operator
from H onto K. Consequently Algorithm 3.2 reduces to the improved version of the
extragradient method for solving the general variational inequalities (2.3).

Noor [11] used the technique of updating the solution to rewrite the equation (3.1)
in the form:

g(u) = Jϕ[Jϕ[g(u) − ρTu] − ρTg−1Jϕ[g(u) − ρTu]]
= Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]g(u)
= (I − ρTg−1)−1{Jϕ[I − ρTg−1]Jϕ[I − ρTg−1] + ρTg−1}g(u)

This fixed-point formulation is used to suggest and analyze the following method for
solving general mixed variational inequalities (2.1).

Algorithm 3.3: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

g(un+1) = Jϕ[Jϕ[g(un) − ρTun] − ρTJϕ[g(un) − ρTun]]
= Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]g(un),
= (I + ρTg−1)−1{Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]

+ρTg−1}g(un), n = 0, 1, 2, . . . ,
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which is known as the two-step forward-backward splitting method. For the convergence
analysis of Algorithm 3.3; see Noor [11].

For a positive constant α, one can rewrite equation (3.1) in the form

g(u) = Jϕ[g(u) − α{g(u) − Jϕ[g(u) − ρTu] + ρTJϕ[g(u) − ρTu]}]
= Jϕ[g(u) − αd(u)],

where

d(u) = g(u) − Jϕ[g(u) − ρTu] + ρTJϕ[g(u) − ρTu]
= R1(u) + ρTJϕ[g(u) − ρTu].

This fixed-point formulation is used to suggest and analyze the following self-adaptive
iterative method.

Algorithm 3.4: For a given u0, compute the approximate solution un+1 by the
iterative scheme
Predictor step.

g(vn) = Jϕ[g(un) − ρnTun],

where ρn satisfies

ρn〈Tun − TJϕ[g(un) − ρnTun], R1(un)〉 ≤ σ‖R1(un)‖2, σ ∈ (0, 1).

Corrector step.

g(un+1) = Jϕ[g(un) − αnd(un)]
d(un) = R1(un) + ρnTun

αn =
〈R1(un), D(un)〉

‖d(un)‖2

D(un) = R1(un) − ρnTun + ρTJϕ[g(un) − ρnTun].

Note that for αn = 1, Algorithm 3.4 coincides with Algorithm 3.3. For the convergence
analysis of Algorithm 3.4; see Noor [12].

We again use the technique of updating the solution to rewrite the equation (3.1) in
the form.

g(u) = Jϕ[g(z) − ρTz] (3.3)
g(z) = Jϕ[g(w) − ρTw] (3.4)
g(w) = Jϕ[g(y) − ρTy] (3.5)
g(y) = Jϕ[g(u) − ρTu], (3.6)

or equivalently

g(u) = Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]g(u)
= (I + ρTg−1)−1{Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]

+ρTg−1}g(u), (3.7)

where g−1 is the inverse of the operator g.
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The above fixed-point formulations have been used in [17] to suggest and analyze
the following iterative methods for solving general mixed variational inequalities (2.1).

Algorithm 3.5: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative schemes

g(yn) = Jϕ[g(un) − ρTun]
g(wn) = Jϕ[g(yn) − ρTyn]
g(zn) = Jϕ[g(w) − ρTwn]

g(un+1) = Jϕ[g(zn) − ρTzn], n = 0, 1, 2 . . .

which is known as the predictor-corrector method; see Noor [17]. Algorithm 3.5 can be
considered as a generalization of the forward-backward splitting method of Noor [14].
If g−1 exists, then Algorithm 3.5 can be written in the equivalent form as:

Algorithm 3.6: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

g(un+1) = Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]g(un),
n = 0, 1, 2, . . .

which is known as the four-step forward-backward splitting algorithm. Note that the
order of T and Jϕ has not been changed. This method can be considered as a gen-
eralization of the three-step forward-backward splitting algorithm of Glowinski and Le
Tallec [5] and Noor [14]. For the convergence analysis of Algorithm 3.6; see Noor [17].

Algorithm 3.7: For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = (I + ρTg−1)−1{Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]Jϕ[I − ρTg−1]
+ρTg−1}g(un), n = 0, 1, 2 . . . , (3.8)

which is again four-step forward-backward splitting type method considered and stud-
ied by Noor [17]. Algorithm 3.7 can be viewed as generalization of a modified two-step
forward-backward splitting method for maximal monotone mappings of Tseng [20]. Us-
ing essentially the technique of Tseng [20] one can discuss the applications of Algorithm
3.7 in optimization and mathematical programming.

In this paper, we suggest a new method involving the line search strategy, which
includes these splitting type methods as special cases. For this purpose, we now define
the resolvent residue vector by

R(u) = g(u) − Jϕ[g(w) − ρTw] ≡ g(u) − g(z), (3.9)

where g(w) and g(z) are defined by (3.5) and (3.4) respectively.
From Lemma 3.1, it follows that u ∈ H is a solution of (2.1) if and only if u ∈ H is

a solution of the equation

R(u) = 0. (3.10)

For a positive constant α, we rewrite the equation (3.1), using (3.3), (3.4), (3.5) and
(3.9), in the following form.

g(u) = Jϕ[g(u) − α{g(u) − g(z) + ρTz}]
= Jϕ[g(u) − α{R(u) + ρTz}]
= Jϕ[g(u) − αd(u)], (3.11)
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where

d(u) = R(u) + ρTz ≡ R(u) + ρTg−1Jϕ[g(w) − ρTw]. (3.12)

This fixed-point formulation enables us to suggest the following self-adaptive re-
solvent method for general mixed variational inequalities (2.1) and this is the main
motivation of this paper.

Algorithm 3.8: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative schemes
Predictor step.

g(yn) = Jϕ[g(un) − ρnTun] (3.13)
g(wn) = Jϕ[g(yn) − ρnTyn] (3.14)
g(zn) = Jϕ[g(wn) − ρnTwn] (3.15)

where ρn satisfies

ρn〈Tun − Tzn, R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1). (3.16)

Corrector step.

g(un+1) = g(un) − αnd(un), n = 0, 1, 2 . . . (3.17)

where

d(un) = R(un) + ρnTzn = R(u) + ρnTg−1Jϕ[g(wn) − ρnTwn] (3.18)

αn =
〈R(un), D(un)〉

‖d(un)‖2
(3.19)

D(un) = R(un) − ρnTun + ρnTzn

= R(un) − ρnTun + ρnTg−1Jϕ[g(wn) − ρnTwn], (3.20)

where αn is the corrector step size.
If the proper, convex and lower-semicontinuous function ϕ is an indicator function

of a closed convex set K in H, then Jϕ ≡ PK , the projection of H onto K. Consequently
Algorithm 3.8 collapses to:

Algorithm 3.9: For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative schemes
Predictor step.

g(yn) = PK [g(un) − ρnTun]
g(wn) = PK [g(yn) − ρnTyn]
g(zn) = PK [g(wn) − ρnTwn],

where ρn satisfies

ρn〈Tun − Tzn, R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1)

Corrector step.

g(un+1) = g(un) − αnd1(un), n = 0, 1, 2 . . .
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where

d1(un) = R(un) + ρnTzn

αn =
〈R(un), D1(un)〉

‖d1(un)‖2

D1(un) = R(un) − ρnTun + ρnTzn.

Algorithm 3.9 appears to be a new one for the general variational inequalities (2.3).
For g ≡ I, the identity operator, we obtain new improved versions of algorithms for
(mixed) variational inequalities and related optimization problems. This clearly shows
that Algorithm 3.8 is a unifying one and includes several known and new algorithms as
special cases.

For the convergence analysis of Algorithm 3.8, we need the following results, which
can be proved using the technique of Noor [12]. We include their proofs for the sake of
completeness and to convey an idea.

Lemma 3.2: If ū ∈ H is a solution of (2.1) and T is g-pseudomonotone, then

〈g(u) − g(ū), d(u)〉 ≥ (1 − σ)‖R(u)‖2, for all u ∈ H. (3.21)

Proof: Let ū ∈ H be a solution of (2.1). Then

〈T ū, g(v) − g(ū)〉 + ϕ(g(v)) − ϕ(g(ū)) ≥ 0, for all v ∈ H,

which implies

〈Tv, g(v) − g(ū)〉 + ϕ(g(v)) − ϕ(g(ū)) ≥ 0, (3.22)

since T is g-pseudomonotone.
Taking g(v) = Jϕ[g(w) − ρTw] = g(z) in (3.22), we have

〈Tz, g(z) − g(ū)〉 + ϕ(g(z)) − ϕ(g(ū)) ≥ 0,

from which we have

〈g(u) − g(ū), ρTz〉 ≥ ρ〈R(u), T z〉 + ρϕ(g(ū)) − ρϕ(g(z)). (3.23)

Setting u = g(z), z = g(u) − ρTu and v = g(ū) in (2.6), we have

〈g(z) − g(u) + ρTu, g(ū) − g(z)〉 + ρϕ(g(ū)) − ρϕ(g(z)) ≥ 0,

from which we obtain

〈g(u) − g(ū), R(u)〉 ≥ 〈R(u), R(u) − ρTu〉 − ρϕ(g(ū)) + ρϕ(g(z))
+ρ〈Tu, g(u) − g(ū)〉.

≥ 〈R(u), R(u) − ρTu〉 − ρϕ(g(ū)) + ρϕ(g(z)), (3.24)

where we have used the fact that the operator T is g-pseudomonotone.
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Adding (3.23) and (3.24), we have

〈g(u) − g(ū), R(u) + ρTz〉 = 〈g(u) − g(ū), d(u)〉
≥ 〈R(u), D(u)〉 (3.25)
= 〈R(u), R(u) − ρTu + ρTz〉
≥ ‖R(u)‖2 − ρ〈R(u), Tu − Tz〉
≥ (1 − σ)‖R(u)‖2, using (3.16), (3.26)

the required result. �
Lemma 3.3: Let ū ∈ H be a solution of (2.1) and let un+1 be the approximate

solution obtained from Algorithm 3.8. Then

‖g(un+1) − g(ū)‖2 ≤ ‖g(un) − g(ū)‖2 − (1 − σ)2‖R(un)‖4

‖d(un)||2 . (3.27)

Proof: From (3.17), (3.19) and (3.21), we have

‖g(un+1) − g(ū)‖2 ≤ ‖g(un) − g(ū) − αnd(un)‖2

≤ ‖g(un) − g(ū)‖2 − 2αn〈g(un) − g(ū), d(un)〉
+α2

n‖d(un)‖2

≤ ‖g(un) − g(ū)‖2 − αn〈R(un), D(un)〉
≤ ‖g(un) − g(ū)‖2 − αn(1 − σ)‖R(un)‖2

≤ ‖g(un) − g(ū)‖2 − (1 − σ)2‖R(un)‖4

‖d(un)‖2
,

the required result. �
Theorem 3.1: Let g : H −→ H be invertible and let H be a finite dimensional

space. If un+1 is the approximate solution obtained from Algorithm 3.8 and ū ∈ H is a
solution of (2.1), then limn→∞ un = ū.

Proof: Let ū ∈ H be a solution of (2.1). From (3.27), it follows that the sequence
{||g(ū) − g(un)||} is nonincreasing and consequently {g(un)} is bounded. Under the
assumptions of g, it follows that the sequence {un} is also bounded. Furthermore, we
have

∞∑

n=0

(1 − σ)2‖R(un)‖4

‖d(un)‖2
≤ ||g(u0) − g(ū)||2,

which implies that

lim
n→∞

R(un) = 0. (3.28)

Let û be the cluster point of {un} and let the subsequence {unj
} of the sequence {un}

converge to û ∈ H. Since R(u) is continuous,

R(û) = lim
j→∞

R(unj
) = 0,

which implies that û solves the general mixed variational inequality (2.1) by invoking
Lemma 3.1. From (3.27) and (3.28), it follows that

‖g(un+1) − g(ū)‖2 ≤ ‖g(un) − g(ū)‖2.
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Thus it follows from the above inequality that the sequence {un} has exactly one cluster
point û and

lim
n→∞

g(un) = g(û).

Since g is invertible,
lim

n→∞
(un) = û,

the required result. �
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