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We consider a retarded differential equation with applications to population dynamics.
We establish the convergence of a finite-dimensional approximations of a unique solu-
tion, the existence and uniqueness of which are also proved in the process.

1. Introduction

Consider the following partial differential equation with delay:

∂u

∂t
(t,x)= ∂2u

∂x2
(t,x) + f

(
t,x,u(t,x),u(t− r,x)

)
, t > 0, x ∈ [0,1],

∂u

∂x
(t,0)= 0= ∂u

∂x
(t,1), t ≥ 0,

u(s,x)= h(s,x), s∈ [−r,0], x ∈ [0,1],

(1.1)

where f : [0,∞)× [0,1]×R×R→R and h : [−r,0]× [0,1]→R is a given function. The
above problem for f (t,x,u,v)=−d(x)u+ b(x)v models a linear growth of a population
in [0,1], where u(t,·) is the population density at time t, and the term ∂2u/∂x2 represents
the internal migration. The continuous functions d,b : [0,1]→ [0,∞) represent space-
dependent death and birth rates, respectively, and r is the delay due to pregnancy (cf.
Engel and Nagel [10, page 434]).

We formulate (1.1) as the following retarded differential equation:

u′(t) +Au(t)= f
(
t,u(t),u

(
a(t)

))
, 0 < t ≤ T <∞,

u(t)= h(t), t ∈ [−r,0],
(1.2)

in a Hilbert spaceH , where−A is the infinitesimal generator of a C0 semigroup {S(t) : t ≥
0} of bounded linear operators in H , h∈�0 := C([−r,0];H) is a given function and the
function a is defined from [0,T] into [−r,T] with the delay property a(t)≤ t for t∈[0,T].
For (1.1), we may take X = L2[0,1] and D(A) = {u ∈ H2[0,1] : u′(0) = u′(1) = 0} with
Au = −d2u/dx2 for u ∈ D(A). It is known that the semigroup S(t) generated by −A is
analytic in H (cf. Engel and Nagel [10, page 454]).

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics and Stochastic Analysis 2005:1 (2005) 1–11
DOI: 10.1155/JAMSA.2005.1

http://dx.doi.org/10.1155/S104895330431004X


2 Retarded differential equations

For t ∈ [0,T], we will use the notation �t := C([−r, t];H) for the Banach space of all
continuous functions from [−r, t] into H endowed with the supremum norm

‖ψ‖t := sup
−r≤η≤t

∥∥ψ(η)
∥∥, ψ ∈�t . (1.3)

The linear case of (1.2) in which f (t,ψ) = Lψ, with a bounded linear operator L :
�T → X is recently considered by Bátkai et al. [7] using the theory of perturbed Hille-
Yosida operators. A particular semilinear case of (1.2) is considered by Alaoui [1].

For the earlier works on existence, uniqueness, and stability of various types of solu-
tions of differential and functional differential equations, we refer to Bahuguna [2, 3],
Balachandran and Chandrasekaran [6], Lin and Liu [13], and the references therein. The
related results for the approximation of solutions may be found in [4, 5].

Initial studies concerning existence, uniqueness, and finite-time blowup of solutions
for the equation

u′(t) +Au(t)= g(u(t)
)
, t ≥ 0,

u(0)= φ,
(1.4)

have been considered by Segal [17], Murakami [15], and Heinz and von Wahl [12]. Bazley
[8, 9] has considered the semilinear wave equation

u′′(t) +Au(t)= g(u(t)
)
, t ≥ 0,

u(0)= φ, u′(0)= ψ,
(1.5)

and has established the uniform convergence of approximations of solutions to (1.5) us-
ing the existence results of Heinz and von Wahl [12]. Göthel [11] has proved the conver-
gence of approximations of solutions to (1.4), but assumed g to be defined on the whole of
H . Based on the ideas of Bazley [8, 9], Miletta [14] has proved the convergence of approx-
imations to solutions of (1.4). The existence, uniqueness, and continuation of classical
solutions to (1.2) are considered by Bahuguna [3]. In the present work, we use the ideas
of Miletta [14] and Bahuguna [2, 3] to establish the convergence of finite-dimensional
approximations of the solutions to (1.2).

2. Preliminaries and assumptions

Existence of a solution to (1.2) is closely associated with the existence of a function u ∈
�T̃ , 0 < T̃ ≤ T satisfying

u(t)=

h(t), t ∈ [−r,0],

S(t)h(0) +
∫ t

0
S(t− s) f (s,ψ(s),ψ

(
a(s)

))
ds, t ∈ [0, T̃],

(2.1)

and such a function u is called a mild solution of (1.2) on [−r, T̃]. A function u ∈�T̃ is
called a classical solution of (1.2) on [−r, T̃] if u ∈ C1((0, T̃];H) and u satisfies (1.2) on
[−r, T̃].
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We assume that in (1.2), the linear operator A satisfies the following hypothesis.
(H1) A is a closed, positive definite, selfadjoint linear operator from the domain D(A)

⊂H into H such that D(A) is dense in H , A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ ··· (2.2)

and a corresponding complete orthonormal system of eigenfunctions {ui}, that is,

Aui = λiui,
(
ui,uj

)= δi j , (2.3)

where δi j = 1 if i= j and zero otherwise.
If (H1) is satisfied, then the semigroup S(t) generated by−A is analytic inH . It follows

that the fractional powers Aα of A for 0≤ α≤ 1 are well defined from D(Aα)⊆H into H
(cf. Pazy [16, pages 69–75]). D(Aα) is a Banach space endowed with the norm

‖x‖α =
∥∥Aαx∥∥, x ∈D(Aα). (2.4)

For t ∈ [0,T], we denote �α
t := C([−r, t];D(Aα)) endowed with the norm

‖ψ‖t,α := sup
−r≤η≤t

∥∥ψ(η)
∥∥
α. (2.5)

The nonlinear function f is assumed to satisfy the following hypotheses.
(H2) The function h∈�α

0 .
(H3) The map f is defined from [0,∞)×D(Aα)×D(Aα) into D(Aβ) for 0 < β ≤ α < 1

and there exists a nondecreasing function LR from [0,∞) into [0,∞) depending on R > 0
such that

∥∥ f (t1,u1,v1
)− f

(
t2,u2,v2

)∥∥≤ LR(t)
[|t− s|γ +

∥∥u1−u2
∥∥
α +

∥∥v1− v2
∥∥
α

]
, (2.6)

for all (ti,ui,vi) ∈ [0,∞)× BR(D(Aα),h(0))× BR(D(Aα),h(a(0))), for i = 1,2, where 0 <
γ < 1, BR(Z,z0)= {z ∈ Z : ‖z− z0‖Z ≤ R} is the ball of radius R centered at z0 in a Banach
space Z with its norm ‖ · ‖Z .

(H4) The function a : [0,T]→ [−r,T] is continuous and satisfies the delay property
a(t)≤ t for t ∈ [0,T].

3. Approximate solutions and convergence

Let Hn denote the finite-dimensional subspace of H spanned by {u0,u1, . . . ,un} and let
Pn :H →Hn be the corresponding projection operator for n=0,1,2, . . . . Let 0 < t < T̃ ≤ T
be such that

∥∥(S(t)− I)Aαh(0)
∥∥≤ R

3
,∥∥Aα(hn(0)−h(0)

)∥∥≤ R

3
.

(3.1)
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Let h̄ be the extension of h by the constant value h(0) on [0,T]. We set

T0 =min

{
T̃ ,

(
(1−α)R
3M0Cα

)1/(1−α)

,

(
3(1−α)

8LR
(
T0
)
Cα

)1/(1−α)}
, (3.2)

whereM0 = [LR(T0)(2R+Tγ + 4‖h̄‖T0,α) +‖ f (0,h(0),h(a(0)))‖] andCα is a positive con-
stant such that ‖AαS(t)‖ ≤ Cαt−α for t > 0.

We define

fn :
[
0,T0

]×H ×H −→D(A),

fn(t,u,v)= Pn f (t,Pnu,Pnv
)
, (t,u,v)∈ [0,T0

]×H ×H ,

hn : [−r,0]−→D(A), hn(t)= Pnh(t), t ∈ [−r,0].

(3.3)

Let Aα : �α
t →�t be given by (Aαψ)(s)= Aα(ψ(s)), s∈ [−r, t], t ∈ [0,T0]. We define a

map Fn : BR(�T0 ,Aαh̄)→�T0 as follows:

(
Fnψ

)
(t)=


Aαhn(t), t ∈ [−r,0],

S(t)Aαhn(0)

+
∫ t

0
AαS(t− s) fn

(
s,A−αψ(s),A−αψ

(
a(s)

))
ds, t ∈ [0,T0

]
,

(3.4)

for ψ ∈ BR(�T0 ,Aαh̄).

Proposition 3.1. For each n ≥ n0, where n0 is large enough and n,n0 ∈N, there exists a
unique wn ∈ BR(�T0 ,Aαh̄) such that Fnwn =wn on [−r,T0].

Proof. First, we show that for any ψ ∈ BR(�T0 ,Aαh̄), Fnψ ∈ BR(�T0 ,Aαh̄). For t ∈ [−r,0],

(
Fnψ

)
(t)−Aαh̄(t)= Aα(Pn− I)h(t)= Aα(Pn− I)h(t)−→ 0, as n−→∞. (3.5)

Thus, for n≥ n0, n0 large enough, for t ∈ [−r,0], we have

∥∥(Fnψ)(t)−Aαh̄(t)
∥∥≤ R. (3.6)

Now, for t ∈ (0,T0], we have

∥∥(Fnψ)(t)−Aαh̄(t)
∥∥≤ ∥∥(S(t)− I)Aαh(0)

∥∥+
∥∥Aα(hn(0)−h(0)

)∥∥
+
∫ t

0

∥∥AαS(t− s)∥∥∥∥ fn(s,A−αψ(s),A−αψ
(
a(s)

))∥∥ds. (3.7)
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For s∈ [0,T0],∥∥ fn(s,A−αψ(s),A−αψ
(
a(s)

))∥∥
≤ ∥∥ f (s,PnA−αψ(s),PnA−αψ

(
a(s)

))∥∥
≤ ∥∥ f (s,PnA−αψ(s),PnA−αψ

(
a(s)

))− f
(
s,Pnh̄(s),Pnh̄

(
a(s)

))∥∥
+
∥∥ f (s,Pnh̄(s),Pnh̄

(
a(s)

))− f
(
0,h(0),h

(
a(0)

))∥∥
+
∥∥ f (0,h(0),h

(
a(0)

))∥∥
≤ LR

(
T0
)(

2R+Tγ + 4‖h̄‖T0,α
)

+
∥∥ f (0,h(0),h

(
a(0)

))∥∥.

(3.8)

It follows from the choice of T0 that Fn : BR(�T0 ,Aαh̄)→ BR(�T0 ,Aαh̄) for n large enough.
Now, we show that Fn is a strict contraction. For ψ1,ψ2 ∈ BR(�T0 ,Aαh̄), (Fnψ1)(t)−
(Fnψ2)(t)= 0 on [−r,0] and for t ∈ [0,T0], we have

∥∥(Fnψ1
)
(t)− (Fnψ2

)
(t)
∥∥≤ 2LR

(
T0
)
Cα

T1−α
0

1−α
∥∥ψ1−ψ2

∥∥
T0
≤ 3

4

∥∥ψ1−ψ2
∥∥
T0
. (3.9)

Taking the supremum over [−r,T0], it follows that Fn is a strict contraction on BR(�T0 ,
Aαh̄) and hence there exits a unique wn ∈ BR(�T0 ,Aαh̄) with wn = Fnwn on [−r,T0]. This
completes the proof of the proposition. �

Let un = A−αwn. Then, un ∈ BR(�α
T0

, h̄) and satisfies

un(t)=


hn(t), t ∈ [−r,0],

S(t)hn(0)

+
∫ t

0
S(t− s) fn

(
s,un(s),un

(
a(s)

))
ds, t ∈ [0,T0

]
.

(3.10)

Remarks 3.2. The above solution un(t) is known as the Faedo-Galerkin approximate so-
lution of (1.2).

Collorary 3.3. If h(t)∈D(A) for all t ∈ [−τ,0], then wn(t)∈D(Aβ) for all t ∈ [−τ,T0],
where 0≤ β < 1, 0≤ α+β < 1, and wn(t) is the solution of the integral equation (3.4).

Proof. For any g ∈D(Aβ) and t ∈ [−τ,0], we have∣∣(Aβg,wn(t)
)∣∣≤ ‖g‖∥∥Aβ+αhn(t)

∥∥. (3.11)

Now, for any t ∈ (0,T0], we have(
Aβg,wn(t)

)= (g,Aβ+αS(t)hn(0)
)

+
∫ t

0

(
g,Aβ+αS(t− s), fn

(
s,A−αwn(s),A−αwn

(
a(s)

)))
ds.

(3.12)

The first term is bounded for t ∈ (0,T] as∣∣(Aβg,S(t)hn(0)
)∣∣≤ ‖g‖M∥∥Aβ+αh(0)

∥∥. (3.13)
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The second term is treated as follows:

∥∥∥∥∫ t
0

(
g,Aβ+αS(t− s), fn

(
s,un(s),un

(
a(s)

)))
ds
∥∥∥∥≤M0‖g‖Cβ+α

T
1−(β+α)
0

1− (β+α)
. (3.14)

Hence the corollary is proved. �

Collorary 3.4. If h(t)∈D(A) for all t ∈ [−τ,0], then for any t ∈ [−τ,T0], there exists a
constant M1, independent of n, such that∥∥Aβwn(t)

∥∥≤M0 (3.15)

for all −τ ≤ t ≤ T0 and 0≤ β < 1.

Corollary 3.4 is a consequence of Corollary 3.3.

Proposition 3.5. The sequence {un} ⊂�T0 is a Cauchy sequence and therefore converges
to a function u∈�T0 if the assumptions (H1)–(H4) hold.

Proof. From Proposition 3.1 we have (3.10). With un = A−αwn, (3.10) becomes

wn(t)=


Aαhn(t), t ∈ [−r,0],

S(t)Aαhn(0)

+
∫ t

0
AαS(t− s) fn

(
s,A−αun(s),A−αun

(
a(s)

))
ds, t ∈ [0,T0

]
.

(3.16)

For n≥m≥ n0, where n0 is large enough, n,m,n0 ∈N, t ∈ [−r,0], we have∥∥wn(t)−wm(t)
∥∥≤ ∥∥hn(t)−hm(t)

∥∥
α

≤ ∥∥(Pn−Pm)h(t)
∥∥
α −→ 0 as m−→∞. (3.17)

For t ∈ (0,T0] and n, m, and n0 as above, we have∥∥wn(t)−wm(t)
∥∥≤ ∥∥(Pn−Pm)S(t)Aαh(0)

∥∥
+
∫ t

0

∥∥AαS(t− s)[ fn(s,A−αwn(s),A−αwn
(
a(s)

))
− fm

(
s,A−αwm(s),A−αwm

(
a(s)

))]∥∥ds.
(3.18)

Now, using Corollaries 3.3 and 3.4, we have∥∥ fn(s,A−αwn(s),A−αwn
(
a(s)

)− fm
(
s,A−αwm(s),A−αwm

(
a(s)

)))∥∥
≤ ∥∥(Pn−Pm) f (s,PmA−αwm(s),PmA−αwm

(
a(s)

))∥∥
+LR

(
T0
)[∥∥(Pn−Pm)wm(s)

∥∥+
∥∥(Pm−Pm)wm

(
a(s)

)∥∥]
+ 2LR

(
T0
)∥∥wn−wm

∥∥
s

≤ C1 +C2
1

λ
β
m

+C2
∥∥wn−wm

∥∥
s

(3.19)
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for some positive constants C1 and C2, where C1 = ‖(pn − Pm)‖[LR(T0)(2R + Tγ +
4‖h̄‖T0,α) + ‖ f (0,h(0),h(a(0)))‖] and C2 = 2LR(T0). Thus, we have the following esti-
mate:

∥∥wn(t)−wm(t)
∥∥≤ C0

∥∥(Pn−Pm)Aαh(0)
∥∥+

C1CαT
1−α
0

(1−α)
+
C2CαT

1−α
0

(1−α)λ
β
m

+C2Cα

∫ t
0
(t− s)−α∥∥wn−wm

∥∥
sds,

(3.20)

where C0 =MeωT . Since ‖wn−wm‖ = ‖hn−hm‖α on [−r,0], we have

∥∥wn−wm

∥∥
t ≤

∥∥hn−hm∥∥α +C0
∥∥(Pn−Pm)Aαh(0)

∥∥+
C1CαT

1−α
0

(1−α)

+
C2CαT

1−α
0

(1−α)λ
β
m

+C2Cα

∫ t
0
(t− s)−α∥∥wn−wm

∥∥
sds.

(3.21)

Application of Gronwall’s inequality gives the required result. This completes the proof
of the proposition. �

With the help of Propositions 3.1 and 3.5, we may state the following existence, unique-
ness, and convergence result.

Theorem 3.6. Suppose that (H1)–(H4) hold. Then, there exist unique functions un ∈
C([−r,T0];Hn) and u∈ C([−r,T0];H) satisfying (3.10) and

u(t)=


h(t), t ∈ [−r,0],

S(t)h(0)

+
∫ t

0
S(t− s) f (s,u(s),u

(
a(s)

))
ds, t ∈ [0,T0

]
,

(3.22)

such that un → u in C([−r,T0];H) as n → ∞, where hn(t) = Pnh(t) and fn(t,u,v) =
Pn f (t,Pnu,Pnv).

4. Regularity

The functions un and u in Theorem 3.6 satisfying (3.10) and (3.22) may be called approx-
imate mild solution and mild solution of (1.2) on [−τ,T0], respectively. In this section,
we establish the regularity of the mild solution u of (1.2) under an additional assumption
of Hölder continuity of the function a on [0,T]. We note that if a is Lipschitz continuous
on [0,T], then it is also Hölder continuous on [0,T]. We establish the following regularity
result.

Theorem 4.1. Suppose that (H1)–(H4) hold and, in addition, suppose that a : [0,T] →
[−r,T] is Hölder continuous, that is, there exist constants 0 < δ < 1 and La ≥ 0 such that∣∣a(t)− a(s)

∣∣≤ La|t− s|δ. (4.1)

Then, the mild solution u given by (3.10) of (1.2) is a unique classical solution of (1.2) on
[−r,T0].
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We prove that u is in fact a unique classical solution. For this, we first prove that the
mild solution

u(t)=

h(t), t ∈ [−r,0],

S(t)h(0) +
∫ t

0
S(t− s) f (s,u(s),u

(
a(s)

))
ds, t ∈ [0,T0

]
,

(4.2)

is locally Hölder continuous on (0, T̃]. Let v(t)= Aαu(t). Then,

v(t)=

Aαh(t), t ∈ [−r,0],

S(t)Aαh(0) +
∫ t

0
S(t− s)Aα f (s,A−αv(s),A−αv

(
a(s)

))
ds, t ∈ [0,T0

]
.

(4.3)

Let

N = sup
t∈[0,T̃]

∥∥ f (t,A−αv(t),A−αv
(
a(t)

))∥∥. (4.4)

It is known that (cf. [16, page 197]) for every β with 0 < β < 1−α and every 0 < h < 1,
we have

∥∥(S(h)− I)AαS(t− s)∥∥≤ Cβhβ∥∥Aα+βS(t− s)∥∥≤ Chβ(t− s)−α+β, 0 < s < t. (4.5)

For 0 < t < t+h≤ T0, we have

∥∥v(t+h)− v(t)
∥∥≤ ∥∥(S(h)− I)AαS(t)χ(0)

∥∥
+
∫ t

0

∥∥(S(h)− I)AαS(t− s) f (s,A−αv(s),A−αv
(
a(s)

))∥∥ds
+
∫ t+h
t

∥∥AαS(t+h− s) f (s,A−αv(s),A−αv
(
a(s)

))∥∥ds.
(4.6)

Using (4.5), we get

∥∥(S(h)− I)AαS(t)χ(0)
∥∥≤ Ct−(α+β)hβ

∥∥χ(0)
∥∥≤M1h

β, (4.7)

where M1 depends on t and M1 →∞ as t→ 0. Now,

∫ t
0

∥∥(S(h)− I)AαS(t− s) f (s,A−αv(s),A−αv
(
a(s)

))∥∥ds
≤ CNhβ

∫ t
0
(t− s)−(α+β)ds

≤M2h
β,

(4.8)
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where M2 is independent of t. For the last integral in (4.6), we have

∫ t+h
t

∥∥AαS(t+h− s) f (s,A−αv(s),A−αv
(
a(s)

))∥∥ds
≤NCα

∫ t+h
t

(t+h− s)−αds

≤ NCα
1−αh

1−α

≤M3h
β,

(4.9)

where M3 is also independent of t. The above estimates imply that

∥∥v(t)− v(s)
∥∥≤ Lv|t− s|β, |t− s| < 1, 0 < s, t ≤ T0. (4.10)

For any 0 < s < t ≤ T0, with t − s ≥ 1, we insert t1 < t2 < ··· < tn between s and t such
that 1/2≤ ti+1− ti < 1 for i= 1,2, . . . ,n− 1 and t− tn < 1. Clearly, n≤ 2T0 ≤ 2T . Then, for
0 < s < t ≤ T0, with t− s≥ 1, we have

∥∥v(t)− v(s)
∥∥≤ ∥∥v(t)− v(tn)∥∥+

n−1∑
i=1

∥∥v(ti+1
)− v(ti)∥∥+

∥∥v(t1)− v(s)
∥∥

≤ Lv
[(
t− tn

)β
+
n−1∑
i=1

(
ti+1− ti

)β
+
(
t1− s

)β]

≤ (2T + 1)Lv|t− s|β = L̃v|t− s|β,

(4.11)

where L̃v = (2T + 1)Lv. Now, for 0 < s, t ≤ T0, we have

∥∥ f (t,A−αv(t),A−αv
(
a(t)

))− f
(
s,A−αv(s),A−αv

(
a(s)

))∥∥
≤ L f (R)

[|t− s|γ +
∥∥v(t)− v(s)

∥∥+
∥∥v(a(t)

)− v(a(s)
)∥∥]

≤ L f (R)
[|t− s|γ + L̃v|t− s|β + L̃v

∣∣a(t)− a(s)
∣∣β]

≤ L f (R)
[|t− s|γ + L̃v|t− s|β + L̃vL

β
a|t− s|δ·β]

≤ L f (R)
(
1 + L̃v + L̃vL

β
a
)|t− s|max{γ,β,δ·β},

(4.12)

which shows that the function t 
→ f (t,A−αv(t),A−αv(a(t))) is locally Hölder continuous
on (0,T0].

Now, consider the initial value problem

dw(t)
dt

+Aw(t)= f
(
t,A−αv(t),A−αv

(
a(t)

))
, w(0)= χ(0). (4.13)
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By [16, Corollary 4.3.3], (4.13) has a unique solution w ∈ C1((0,T0];H) given by

w(t)= S(t)χ(0) +
∫ t

0
S(t− s) f (s,A−αv(s),A−αv

(
a(s)

))
ds. (4.14)

For t > 0, each term on the right of (4.14) is in D(A) ⊆ D(Aα), we may apply Aα on w
to get

Aαw(t)= S(t)Aαχ(0) +
∫ t

0
AαS(t− s) f (s,A−αv(s),A−αv

(
a(s)

))
ds. (4.15)

The right-hand side of (4.15) is equal to v(t) and therefore w(t)= u(t) on [0,T0]. Thus,
u∈ C1((0,T0];H) and hence u is a classical solution of (1.2). This completes the proof of
the theorem.
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