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We consider a retarded differential equation with applications to population dynamics.
We establish the convergence of a finite-dimensional approximations of a unique solu-
tion, the existence and uniqueness of which are also proved in the process.

1. Introduction

Consider the following partial differential equation with delay:

ou o*u

E(t,x) = @(t,x) + f(t,xu(t,x),u(t—r,x)), t>0,x€[0,1],
du oy oo (1.1)
ax(tao) _0_ ax(t>1)) tZO)

u(s,x) = h(s,x), sel[-r,0],x€][0,1],

where f:[0,00) X [0,1] X RXR — Rand h:[-r,0] X [0,1] — R is a given function. The
above problem for f(t,x,u,v) = —d(x)u+ b(x)v models a linear growth of a population
in [0,1], where u(t, -) is the population density at time ¢, and the term 0%u/0dx? represents
the internal migration. The continuous functions d,b : [0,1] — [0, 00) represent space-
dependent death and birth rates, respectively, and r is the delay due to pregnancy (cf.
Engel and Nagel [10, page 434]).

We formulate (1.1) as the following retarded differential equation:

u' () +Au(t) = f(t,u(t),u(a(t))), 0<t<T<oo,

u(t)=h(t), tel-r,0], (1.2)

in a Hilbert space H, where — A is the infinitesimal generator of a Cy semigroup {S(¢) : t >
0} of bounded linear operators in H, h € €, := C([—r,0]; H) is a given function and the
function a is defined from [0, T'] into [—7, T] with the delay property a(t) <t for t € [0, T].
For (1.1), we may take X = L2[0,1] and D(A) = {u € H?[0,1] : /(0) = &/ (1) = 0} with
Au = —d*u/dx* for u € D(A). It is known that the semigroup S(¢) generated by —A is
analytic in H (cf. Engel and Nagel [10, page 454]).
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2 Retarded differential equations

For t € [0, T], we will use the notation €, := C([—r,t]; H) for the Banach space of all
continuous functions from [—r,¢] into H endowed with the supremum norm

Iyl := suptIIw(mH, y €6, (1.3)

—r<n<

The linear case of (1.2) in which f(t,¥) = Ly, with a bounded linear operator L :
%1 — X is recently considered by Batkai et al. [7] using the theory of perturbed Hille-
Yosida operators. A particular semilinear case of (1.2) is considered by Alaoui [1].

For the earlier works on existence, uniqueness, and stability of various types of solu-
tions of differential and functional differential equations, we refer to Bahuguna (2, 3],
Balachandran and Chandrasekaran [6], Lin and Liu [13], and the references therein. The
related results for the approximation of solutions may be found in [4, 5].

Initial studies concerning existence, uniqueness, and finite-time blowup of solutions
for the equation

u'(t)+Au(t) = g(u(t)), t=0,

u(0) = ¢, (14

have been considered by Segal [17], Murakami [15], and Heinz and von Wahl [12]. Bazley
[8, 9] has considered the semilinear wave equation

u” (1) +Au(t) =g(u(t)), t=0,

u(©0)=¢, U0 =y, (12

and has established the uniform convergence of approximations of solutions to (1.5) us-
ing the existence results of Heinz and von Wahl [12]. Géthel [11] has proved the conver-
gence of approximations of solutions to (1.4), but assumed g to be defined on the whole of
H. Based on the ideas of Bazley [8, 9], Miletta [14] has proved the convergence of approx-
imations to solutions of (1.4). The existence, uniqueness, and continuation of classical
solutions to (1.2) are considered by Bahuguna [3]. In the present work, we use the ideas
of Miletta [14] and Bahuguna [2, 3] to establish the convergence of finite-dimensional
approximations of the solutions to (1.2).

2. Preliminaries and assumptions
Existence of a solution to (1.2) is closely associated with the existence of a function u €
€5, 0< T < T satistying

h(t)) te [_r)o])

t) = t ~
uo S(t)h(0)+L S(t=s)f(s,w(s),y(als)))ds, te[0,T],

(2.1)

and such a function u is called a mild solution of (1.2) on [—r, YN“]. A function u € €5 is
called a classical solution of (1.2) on [—r,YN“] if u € C'((0, T"];H) and u satisfies (1.2) on
[—1’, T]-
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We assume that in (1.2), the linear operator A satisfies the following hypothesis.
(H1) A is a closed, positive definite, selfadjoint linear operator from the domain D(A)
C H into H such that D(A) is dense in H, A has the pure point spectrum

0<AOS/\1SA2S"' (22)
and a corresponding complete orthonormal system of eigenfunctions {u;}, that is,
Au; = )L,-u,-, (ui,uj) = (Si]', (23)

where §;; = 1 if i = j and zero otherwise.

If (H1) is satisfied, then the semigroup S(t) generated by —A is analytic in H. It follows
that the fractional powers A% of A for 0 < « < 1 are well defined from D(A%) < H into H
(cf. Pazy [16, pages 69-75]). D(A%) is a Banach space endowed with the norm

lixlle = ||A%]|, x € D(A%). (2.4)
For t € [0, T], we denote €% := C([—r,t]; D(A%*)) endowed with the norm

I¥llea:= sup [lw(n)l,. (2.5)

—r<n<t

The nonlinear function f is assumed to satisfy the following hypotheses.

(H2) The function h € 6§.

(H3) The map f is defined from [0, ) X D(A%) x D(A%) into D(AP) for0<f<a<1
and there exists a nondecreasing function Ly from [0, o) into [0, o) depending on R >0
such that

[ (tr,un,v1) = f(t2u,m2) || < L[ 1t = sIV + [[tr — wa|, + [[vi = 2], ] (2.6)

for all (t;,u;,v;) € [0,00) X BR(D(A%),h(0)) X BR(D(A%),h(a(0))), for i = 1,2, where 0 <
y<1,Br(Z,z0) = {z € Z:|lz— zllz < R} is the ball of radius R centered at z, in a Banach
space Z with its norm || - || z.

(H4) The function a: [0,T] — [—r,T] is continuous and satisfies the delay property
a(t) <tforte[0,T].

3. Approximate solutions and convergence

Let H, denote the finite-dimensional subspace of H spanned by {ug,u1,...,u,} and let
P": H — H, be the corresponding projection operator for n=0,1,2,.... Let 0<t< T < T
be such that

>

[1(S(5) = ) A*h(0)]| <
(3.1)
(A% (ha(0) = h(0)) | =

S-SR B
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Let & be the extension of h by the constant value /4(0) on [0, T]. We set

(1 )R 1/(1-a) 3(1 ) 1/(1-a)
. o~ - -
T()—II]ID{T,( 3M0Ca ) ,(WX> }, (32)

where My = [Lr(To)(2R+ T? +4||i_1||T0,a) + 1 £(0,h(0),h(a(0)))]l] and Cy is a positive con-
stant such that ||A%S(¢t)|| < Cut™* for t > 0.
We define

fn:10,To] x Hx H— D(A),
fu(t,u,v) = P" f(t,P"u,P"v), (t,u,v) €[0,To] X H X H, (3.3)
hy:[-r,0] — D(A), h,(t) = P"h(t), t € [-1,0].

Let A%: 6§ — 6; be given by (A%y)(s) = A*(y(s)), s € [-1,t], t € [0,To]. We define a
map F, : Br(6r,,A%h) — G, as follows:

A%h,(t), te[-r,0],
(Fay) (1) = 4 SOA™(0) (3.4)
+I AS(t = s) fu(s,A™%p(s),A"%w (a(s)))ds, te€[0,To],
0

fory e BR((@TO,A"‘B).

ProposiTION 3.1. For Cflch n = no, where ny is large enough and n,ny € N, there exists a
unique wy, € Br(€r,,A%h) such that F,w, = w, on [—r,Tj].
Proof. First, we show that for any ¢ € Br(€ TO,A”‘l_l), F,y e BR(%TO,A“P_I). Fort e [-r,0],
(Eaw)(t) — A%h(t) = A*(P" — I)h(t) = A*(P" —I)h(t) — 0, asn— o, (3.5)
Thus, for n = ny, ng large enough, for t € [—r,0], we have
|| (Fuy) () = A%h(t)]| < R. (3.6)

Now, for t € (0,Ty], we have

| (Bay) (£) = A%R(D)]| < [1(S() = ) A%h(0)|| + || A% (h(0) — h(0)) |

(3.7)
Jﬁmwt—wmﬁ&A “y(s), A"y (a(s))) | ds.



D. Bahuguna and M. Muslim 5
Fors € [0,Ty],

[ fu (s, A=y (s), Ay (al(s)) ||
<||f (s,P"A*y(s),P" A%y (a(s))) |
<||f (s, P"A"y(s),P"A" "y (a(s))) — f(s,P” s) P"h(a(s)))l]
+|f (s,P"h(s),P"h(a(s))) — f(0,h(0) NIl
+|1£(0,h(0),h(a(0)))||
< Lr(To) 2R+ T7 + 4|l 1,.0) + || £ (0,(0), h(a(0)))]].

(3.8)

It follows from the choice of T, that F,, : Br(6 TU,A“E) — Br(6 TO,A“]:l) for n large enough.
Now, we show that F, is a strict contraction. For y1,y, € Br(6r,,A%h), (F,y1)(t) —
(Fuy2)(t) =0 on [—r,0] and for ¢ € [0, Ty], we have

3
~lly, < Zle_V/ZHTO' (3.9)

||(Fnl//1)(t)_(Fn1/f2 ||<2LR T()

Tak_ing the supremum over [—r, Ty], it follows that Fy is a strict contraction on Br(r,,
A%h) and hence there exits a unique w,, € Br(€r1,,A%h) with w,, = F,w,, on [—r, To]. This
completes the proof of the proposition. O

Let u, = A~*w,. Then, u, € BR((G‘}O,l_z) and satisfies

hy(t), te [-r,0],
(1) =  S()a(0) (3.10)
+J S(t =) fu(s,un(s),un(a(s)))ds, te[0,To].
0
Remarks 3.2. The above solution u,(t) is known as the Faedo-Galerkin approximate so-
lution of (1.2).

COLLORARY 3.3. Ifh(t) € D(A) forallt € [—1,0], then wy(t) € D(AP) forall t € [~1,Ty),
where 0 < $< 1,0 < a+f < 1, and w,(t) is the solution of the integral equation (3.4).

Proof. Forany g € D(AP) and t € [—1,0], we have
| (APg,wu(1)) | < ligll]|AP*hu(t)]]. (3.11)
Now, for any ¢ € (0, Ty], we have

(APg,wa(t)) = (g, APT*S(t)h,(0))

¢ (3.12)
+ L (g APTAS(t = 5), fu (5, AW (s), A"y (a(s))) ) ds
The first term is bounded for t € (0, T] as
| (APg,S(t)h,(0)) | < llgllM||AF+*R(0)]|. (3.13)
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The second term is treated as follows:

1-(B+a)
_0
1-(Bf+a)

Hence the corollary is proved. O

t
H L (g, APTES(t — 5), f (5, tn(s), un (a(s))) ) ds|| < MoligllCpra (3.14)

CoLLORARY 3.4. Ifh(t) € D(A) for all t € [—1,0], then for any t € [—1,T], there exists a
constant M,, independent of n, such that

[|APwa(1)]| < Mo (3.15)
forall =1 <t <Topand0 << 1.

Corollary 3.4 is a consequence of Corollary 3.3.

ProrosiTioN 3.5. The sequence {u,} C €7, is a Cauchy sequence and therefore converges
to a function u € €y, if the assumptions (H1)—(H4) hold.

Proof. From Proposition 3.1 we have (3.10). With u, = A~*w,,, (3.10) becomes

A“hn(t), te [—7’,0],
wa(t) = 1 SOA M (0) (3.16)
+J AS(t = $) fu (s, A" %up(s), A" %uy (a(s)))ds, te€[0,Ty].
0

For n = m = ny, where ny is large enough, n,m,ny € N, t € [—r,0], we have

[wa(8) = win (D[] < [[hn(£) = B ()]

<||(P" = P")h(t)||, — 0 asm — oo. (3.17)

For t € (0,Ty] and n, m, and ng as above, we have
[[Wa(t) = wan (D)]] < [[(P" = P™) S(£) A*h(0)|
+ J(: [A%S(t = $)[ fu (s, A" wnu(s), A" *wy(a(s))) (3.18)
— (S, A7 Wi (5), AWy (a(s)) ) 1] ds.
Now, using Corollaries 3.3 and 3.4, we have

||fn (SJA_O(W?’I(S)>A_‘XWVI (a (s) ) _frn (5 AWy (5),A” %Wy, (a(s))))H
<|[(P"=P") f(s,P" A Wy (s),P" AWy, (a(s)) ||
+ Lr(To) [||(P" = P™)wyu(s)|| + || (P™ = P™) i (a(s))|]]

+2LR(T0)||Wn - Wm||s

(3.19)

1
<C +C2/\7 +C2||Wn — Wm||s

m
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for_ some positive constants C; and C,, where C; = [[(p" — P™)|[[Lr(To)(2R + T? +
4kl 7ya) + 11 £(0,h(0),h(a(0)))l] and C, = 2Lr(Ty). Thus, we have the following esti-
mate:
CIC,TE ™ CCuTE ™
+
(1-a) (1- a))fn

[[Wa(t) = wm(1)|| < Gol| (P" = P™)A%h(0)|| +

| (3.20)
+CoC (1= s,
0
where Cy = Me“™. Since |[wy, — Wi |l = [1hy — hinllo on [—7,0], we have
Ci1C Ti
||Wn - Wm||t < ||hn - hm||o¢+ C0||(Pn _PWl)Ath(O)H + Mxio
(1-a) (3.21)
« t ‘
+ %‘FCzCaJ (£ =) | — willds.
(1 —OC)Am 0

Application of Gronwall’s inequality gives the required result. This completes the proof
of the proposition. O

With the help of Propositions 3.1 and 3.5, we may state the following existence, unique-
ness, and convergence result.

THEOREM 3.6. Suppose that (H1)-(H4) hold. Then, there exist unique functions u, €
C([-r,To);Hy) and u € C([—r,Tol; H) satisfying (3.10) and

h(t), te [_T,O],

u(t) = | SA(O) (3.22)
+J S(t—s)f(s,u(s),u(a(s)))ds, te[0,To],
0

such that u, — u in C([-r,To];H) as n — o, where h,(t) = P"h(t) and f,(t,u,v) =
P f(t,P"u, P"v).
4. Regularity

The functions u, and u in Theorem 3.6 satisfying (3.10) and (3.22) may be called approx-
imate mild solution and mild solution of (1.2) on [—7, Tj], respectively. In this section,
we establish the regularity of the mild solution u of (1.2) under an additional assumption
of Holder continuity of the function a on [0, T']. We note that if a is Lipschitz continuous
on [0, T], then it is also Holder continuous on [0, T']. We establish the following regularity
result.

THEOREM 4.1. Suppose that (H1)—(H4) hold and, in addition, suppose that a: [0,T] —
[—r,T) is Hélder continuous, that is, there exist constants 0 < § < 1 and L, > 0 such that

la(t) —a(s)| < Lg|t—s|°. (4.1)

Then, the mild solution u given by (3.10) of (1.2) is a unique classical solution of (1.2) on
[_7’, TO]



8 Retarded differential equations

We prove that u is in fact a unique classical solution. For this, we first prove that the
mild solution

h(t), te[-r0],
u(t) = t (4.2)
S()h(0) + L S(t— ) f (s, u(s),ula(s))ds, te [0,Tyl,

is locally Holder continuous on (0, T]. Let v(t) = A%u(t). Then,

1A"‘h(t), te[-r,0],
v(t) = (4.3)

S(H)A%h(0) + JtS(t —$)A* f(s,A"v(s),A"*v(a(s)))ds, te€[0,To].
0
Let

N = sup [|f(LA™*v(1),A"*v(a(1)))]]. (4.4)
te[0,T]

It is known that (cf. [16, page 197]) for every fwithO0< <1 —aandevery0<h<1,
we have

[(S(h) — 1) A*S(t—s)|| < CghP||A*FS(t—s)|| < CHF(t—s)"**F, O0<s<t  (4.5)
For0<t<t+h < Ty, we have
[[v(t+h) —v(D)]] < |[(S(h) — I) A*S(£)x(0)]|

t
+ [ 1St - Dasie =9 f (Ao A @O Ids (4

[ 1458005 (54760, A7 ) s
Using (4.5), we get
[1(S(h) =D A*S(D)x(0)]] < Ct~“PhF||x(0)]| < My HF, (4.7)
where M, depends on t and M, — o as f — 0. Now,
[/ 1500~ 1A%S(e - )£ 5,4 9(5), A~* ats)) s

t
< CNhﬁJ (t - 5)- @) ds (4.8)
0

< Mzh‘B,
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where M, is independent of ¢. For the last integral in (4.6), we have

t+h
J [ASS(E + T — 5) f (5, A=%v(s), A= (a(s)))||ds
t
t+h
<NC, J (t+h—s)"%ds
(4.9)
< NCOC hl—a
T l-a
< M3hﬂ,
where Mj3 is also independent of t. The above estimates imply that
() = v(s)|| < L It —slP, |t—s|<1,0<s, t<T,. (4.10)
For any 0 <s <t < Ty, with t —s > 1, we insert t; <t, < - - - < t, between s and t such

that1/2 <t —ti<lfori=1,2,...,n—1landt—t, < 1. Clearly,n < 2T, < 2T. Then, for
0<s<t=<Tywitht—s=>1, wehave

n—1
V() = v = [lv(®) = v(E) [+ X v (tn) = v(@) ]+ v (82) = v
i=1

SLV[(t_tn)ﬁ"'nZ: (ti+1—ti)ﬁ+(t1—s)ﬁ] (4.11)

i=1

<QT+DL,|t—slP=T1,t—sl,

where L = (2T +1)L,. Now, for 0 < s, t < Ty, we have

I[f (A (1), A" (a(1))) — (s, A*v(s),A"%v(a(s)))||
SLf(R)[|t_$|y+||V(t)_V(S)||+||V(a(t)) —v(a(s))l]
R)[It=sl?+L,lt—slF+T, |a(t) —als)| ] (4.12)
<Lf(R)[|t—s|V+L It —sIB+ 1,151t —s|5F)
)(1+

< Ly(R)(1+1, +T,I5) |t — s|maxrBo-B)

which shows that the function t — f(t,A=%v(t),A™*v(a(t))) is locally Holder continuous
on (0, Ty].
Now, consider the initial value problem

dw(t)
dt

+Aw(t) = f(,A(t),A*v(a(t))), w(0) = x(0). (4.13)
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By [16, Corollary 4.3.3], (4.13) has a unique solution w € C'((0, Ty]; H) given by

w(t) = S(t)x(0) + Jot S(t—s)f(s,A~*(s),A"*v(a(s)))ds. (4.14)

For t > 0, each term on the right of (4.14) is in D(A) < D(A%), we may apply A% on w
to get

A*w(t) = S(t)A%x(0) + L:A"‘S(t —5)f(s,A"*v(s),A"*v(a(s)))ds. (4.15)

The right-hand side of (4.15) is equal to v(¢) and therefore w(t) = u(t) on [0, Ty]. Thus,
u € C'((0,Ty); H) and hence u is a classical solution of (1.2). This completes the proof of
the theorem.
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