
EXACT AND APPROXIMATE SOLUTIONS
OF DELAY DIFFERENTIAL EQUATIONS
WITH NONLOCAL HISTORY CONDITIONS

S. AGARWAL AND D. BAHUGUNA

Received 28 April 2004 and in revised form 23 July 2004

We study the exact and approximate solutions of a delay differential equation with var-
ious types of nonlocal history conditions. We establish the existence and uniqueness of
mild, strong, and classical solutions for a class of such problems using the method of
semidiscretization in time. We also establish a result concerning the global existence of
solutions. Finally, we consider some examples and discuss their exact and approximate
solutions.

1. Introduction

We are concerned here with exact and approximate solutions of the following delay dif-
ferential equation:

∂w

∂t
(x, t)− ∂2w

∂x2
(x, t)= f

(
x, t,w(x, t),w(x, t− τ)

)
, 0 < t ≤ T <∞, x ∈ (a,b),

w(a, t)=w(b, t)= 0, t ≥ 0,

g
(
w[−τ,0]

)= φ,

(1.1)

where the sought-for real-valued function w is defined on (a,b)× [−τ,T], τ > 0, a < b, f
is a smooth real-valued function defined on (a,b)× [0,T]×R2, g is a map from �0 :=
C([−τ,0];L2(a,b)) into L2(a,b), w[−τ,0] is the restriction of w on (a,b)× [−τ,0], and
φ ∈ L2(a,b).

Some of the cases of the nonlocal history function g in which we will be interested are
the following.

(I) g(ψ)(x) = ∫ 0
−τ k(s)ψ(s)(x)ds for x ∈ (a,b) and ψ ∈ �0, where k ∈ L1(−τ,0) with

κ := ∫ 0
−τ k(s)ds �= 0.

(II) g(ψ)(x) =∑n
i=1 ciψ(θi)(x) for x ∈ (a,b) and ψ ∈ �0, where −τ ≤ θ1 < θ2 < ··· <

θn ≤ 0 and C :=∑n
i=1 ci �= 0.

(III) g(ψ)(x) =∑n
i=1(ci/εi)

∫ θi
θi−εi ψ(s)(x)ds for x ∈ (a,b) and ψ ∈ �0, where θi and ci

are as in (II) and εi > 0 for i= 1,2, . . . ,n.
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Nonlocal abstract differential and functional differential equations have been exten-
sively studied in the literature. We refer to the works of Byszewski [6], Byszewski and
Lakshmikantham [8], Balachandran and Chandrasekaran [5], and Lin and Liu [11]. Most
of them used semigroup theory and fixed point theorem to establish the unique existence
and regularity of solution. In [7], Byszewski and Akca applied Schauder’s fixed point
principle to prove the theorems for existence of mild and classical solutions of nonlocal
Cauchy problem of the form

u′(t) +Au(t)= f
(
t,u(t),u

(
b1(t)

)
, . . . ,u

(
bm(t)

))
, t ∈ (0,T],

u(0) + g(u)= u0,
(1.2)

where −A is the infinitesimal generator of a compact C0 semigroup in a Banach space.
In our recent work [1, 2], we studied the functional differential equation (1.2) with the

nonlocal history condition h(u[−τ,0]) = φ, where h is a Volterra-type operator from �0

into itself and φ ∈�0. We made use of method of semidiscretization in time to derive the
existence and uniqueness of a strong solution. Many authors have used and developed the
method of semidiscretization for nonlinear evolution and nonlinear functional evolution
equations, see, for instance, the papers of Kartsatos and Parrott [9], Kartsatos and Zigler
[10], Bahuguna and Raghavendra [4], and the references listed therein.

Our purpose here is to study the exact and approximate solutions of the delay dif-
ferential equation (1.1) with a nonlocal condition. In doing so, we first use the method
of semidiscretization to derive the existence of a unique strong solution, then we prove
that strong solution is a classical solution if additional conditions are assumed on the op-
erator. The global existence of a solution for (1.1), a nonconsidered problem in [1, 2], is
also established with an additional assumption (see Theorem 4.1). The result of the paper
consists, among other things, in that we obtain a solution of problem of much stronger
regularity than in [1, 2].

2. Existence and uniqueness of solutions

The existence and uniqueness results have been established for the more general case of
(2.2) in Bahuguna [3]. For the sake of completeness, we briefly mention the ideas and the
main result of the existence and uniqueness.

If we takeH := L2(a,b), the real Hilbert space of all real-valued square-integrable func-
tions on the interval (a,b), and the linear operator A defined by

D(A) := {u∈H : u′′ ∈H , u(a)= u(b)= 0
}

, Au=−u′′, (2.1)

then it is well known that−A generates an analytic semigroup etA, t ≥ 0, inH . If we define
u : [−τ,T]→H given by u(t)(x) = w(x, t), then (1.1) may be rewritten as the following
evolution equation:

u′(t) +Au(t)= F(t,u(t),u(t− τ)
)
, 0 < t ≤ T ,

h
(
u[−τ,0]

)=Φ,
(2.2)
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for a suitably defined function F : [0,T]×H2 →H , 0 < T <∞, Φ∈�0 := C([−τ,0];H),
the linear operator A, defined from the domain D(A) ⊂ H into H , is such that −A is
the infinitesimal generator of a C0 semigroup S(t), t ≥ 0, of contractions in H , the map
h is defined from �0 into �0. Here �t := C([−τ, t];H) for t ∈ [0,T] is the space of all
continuous functions from [−τ, t] into H endowed with supremum norm

‖ψ‖t = sup
−τ≤η≤t

∥∥ψ(η)
∥∥, ψ ∈�t . (2.3)

Suppose that there exists a χ ∈�0 such that h(χ)=Φ. Let T̃ be any number such that
0 < T̃ ≤ T . A function u∈�T̃ such that

u(t)=
χ(t), t ∈ [−τ,0],

S(t)χ(0) +
∫ t

0 S(t− s)F(s,u(s),u(s− τ)
)
ds, t ∈ [0, T̃],

(2.4)

is called a mild solution of (2.2) on [−τ, T̃]. By a strong solution u of (2.2) on [−τ, T̃], we
mean a function u ∈ �T̃ such that u(t) ∈ D(A) for a.e. t ∈ [0, T̃], u is differentiable a.e.
on [0, T̃] and

u′(t) +Au(t)= F(t,u(t),u(t− τ)
)
, a.e. t ∈ [0, T̃]. (2.5)

A mild solution u of (1.1) on [−τ, T̃] is called a classical solution of (1.1) if u(t)∈D(A)
for all t ∈ (0, T̃] and u∈ C1((0, T̃);H), and

u′(t) +Au(t)= F(t,u(t),u(t− τ)
)
, t ∈ (0, T̃]. (2.6)

We have the following existence and uniqueness result for (2.2).

Theorem 2.1. Suppose that there exists a Lipschitz continuous χ ∈�0 such that h(χ)=Φ
and F satisfies the condition

∥∥F(t1,u1,v1
)−F(t2,u2,v2

)∥∥≤ LF(r)
[∣∣t1− t2∣∣+

∥∥u1−u2
∥∥+

∥∥v1− v2
∥∥], (2.7)

for all ti ∈ [0,T], ui,vi ∈ Br(H ,χ(0)), i = 1,2, where Br(Z,z0) denotes the closed ball of
radius r > 0 centered at z0 in the Banach space Z. Then there exists a strong solution u of
(2.2) either on the whole interval [−τ,T] or on a maximal interval [−τ, tmax), 0 < tmax ≤ T ,
such that u is a strong solution of (2.2) on [−τ, T̃] for every 0 < T̃ < tmax, and in the latter
case,

lim
t→tmax−

∥∥u(t)
∥∥=∞. (2.8)

If, in addition, S(t) is an analytic semigroup in H , then u is a classical Lipschitz continuous
solution on every compact subinterval of the interval of existence. Furthermore, u is unique
in {ψ ∈�T̃ : ψ = χ on [−τ,0]} for every compact subinterval [−τ, T̃] of the interval of ex-
istence.
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3. Approximations

In this section, we consider the application of the method of semidiscretization in time
and the convergence of the approximate solutions. We first establish the existence and
uniqueness of a strong solution of (2.2) for any given χ ∈�0 and χ(0)∈D(A). Fix R > 0
and let R0 := R+ supt∈[−τ,0]‖χ(t)− χ(0)‖. We choose t0 such that

0 < t0 ≤ T , t0M0 ≤ R, (3.1)

where, M0 := ‖Aχ(0)‖+L f (R0)(T + 5R0) +‖ f (0,χ(0),χ(0))‖.
For n∈N, let hn = t0/n. We set un0 = χ(0) for all n ∈N and define each of {unj }nj=1 as

the unique solution of the equation

u−unj−1

hn
+Au= F(tnj ,unj−1, ũnj−1

(
tnj − τ

))
, (3.2)

where ũn0(t)= χ(t) for t ∈ [−τ,0], ũn0(t)= χ(0) for t ∈ [0, tn1 ], and for 2≤ j ≤ n,

ũnj−1(t)=


χ(t), t ∈ [−τ,0],

uni−1 +
1
hn

(
t− tni−1

)(
uni −uni−1

)
, t ∈ [tni−1, tni

]
, i= 1,2, . . . , j− 1,

unj−1, t ∈ [tnj−1, tnj
]
.

(3.3)

The existence of a unique unj ∈ D(A) satisfying (3.2) is a consequence of the m-mono-
tonicity of A. We define the sequence {Un} ⊂�t0 of polygonal functions

Un(t)=

χ(t), t ∈ [−τ,0],

unj−1 +
1
hn

(
t− tnj−1

)(
unj −unj−1

)
, t ∈ (tnj−1, tnj

]
,

(3.4)

and prove the convergence of {Un} to a unique strong solution u of (2.2) as n→∞. Before
proving the convergence, we state and prove some lemmas which will be used to establish
the main result.

Lemma 3.1. For n∈N, j = 1,2, . . . ,n,

∥∥unj − χ(0)
∥∥≤ R. (3.5)

Proof. From (3.2) for j = 1, we have

∥∥un1 − χ(0)
∥∥≤ hnM0 ≤ R. (3.6)
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Assume that ‖uni − χ(0)‖ ≤ R for i= 1,2, . . . , j− 1. Now, for 2≤ j ≤ n,

∥∥unj − χ(0)
∥∥≤ ∥∥unj−1− χ(0)

∥∥+hnM0. (3.7)

Repeating the above inequality, we obtain

∥∥unj − χ(0)
∥∥≤ jhnM0 ≤ R, (3.8)

as jhn ≤ t0 for 0≤ j ≤ n. This completes the proof of the lemma. �

Lemma 3.2. There exists a positive constant K independent of the discretization parameters
n, j, and hn such that

∥∥∥∥∥u
n
j −unj−1

hn

∥∥∥∥∥≤ K , j = 1,2, . . . ,n, n= 1,2, . . . . (3.9)

Proof. In this proof and subsequently, K will represent a generic constant independent of
j, hn, and n. From (3.2), for j = 1 and monotonicity of A, we have

∥∥∥∥un1 −un0hn

∥∥∥∥≤M0 ≤ K. (3.10)

Now, for 2≤ j ≤ n, using monotonicity of A and local Lipschitz-like condition (2.7) of F,
we get

max
{1≤k≤ j}

∥∥∥∥unk −unk−1

hn

∥∥∥∥≤ (1 +Chn
)

max
{1≤k≤ j−1}

∥∥∥∥unk −unk−1

hn

∥∥∥∥+Chn, (3.11)

whereC is a positive constant independent of j, hn, and n. Repeating the above inequality,
we obtain ∥∥∥∥∥u

n
j −unj−1

hn

∥∥∥∥∥≤ K. (3.12)

This completes the proof of the lemma. �

We introduce another sequence {Xn} of step functions from [−hn, t0] into H by

Xn(t)=
χ(0), t ∈ [−hn,0

]
,

unj , t ∈ (tnj−1, tnj
]
.

(3.13)

For notational convenience, let

f n(t)= f
(
tnj ,u

n
j−1, ũnj−1

(
tnj − τ

))
, t ∈ (tnj−1, tnj

]
, 1≤ j ≤ n. (3.14)
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Then (3.2) may be rewritten as

d−

dt
Un(t) +AXn(t)= f n(t), t ∈ (0, t0

]
, (3.15)

where d−/dt denotes the left derivative in (0, t0]. Also, for t ∈ (0, t0], we have∫ t
0
AXn(s)ds= χ(0)−Un(t) +

∫ t
0
f n(s)ds. (3.16)

Next, we prove the convergence of Un to u in �t0 .

Lemma 3.3. There exists u∈�t0 such thatUn→ u in �t0 as n→∞. Moreover, u is Lipschitz
continuous on [0, t0].

Proof. It can be easily proved using monotonicity of A and condition (2.7) of F in (3.15)
(cf. [1, 2]). �

Proof of Theorem 2.1. By proceeding as in Agarwal and Bahuguna [2] we can show the
existence and uniqueness of the strong solution on [−τ, t0] as well as the continuation of
the solution on [−τ,T]. Thus we have that there exists a strong solution of (2.2) either on
the whole interval [−τ,T] or on the maximal interval of existence [−τ, tmax), 0 < tmax ≤ T .
In the latter case, if limt→tmax−‖u(t)‖ <∞, we have that limt→tmax−u(t) is in the closure
of D(A) in H , and if it is in D(A), then, following the same steps as before, u(t) can
be extended beyond tmax, which contradicts the definition of the maximal interval of
existence.

To prove the remaining part of Theorem 2.1, we assume the interval of existence [−τ,
T]. The proof may be modified for the interval [−τ, tmax). Also −A is the infinitesimal
generator of C0 semigroup. The function F̄ : [0,T]→H := L2(a,b) given by

F̄(t)= F(t,u(t),u(t− τ)
)

(3.17)

is Lipschitz continuous and therefore continuous on [0,T] and F̄ ∈ L1((0,T);H). Now it
is easy to see that if u is the strong solution of (2.2), then u is given by

u(t)=
χ(t), t ∈ [−τ,0],

S(t)χ(0) +
∫ t

0 S(t− s)F̄(s)ds, t ∈ [0,T],
(3.18)

and therefore is a mild solution of (2.2). If S(t) is an analytic semigroup in H , then by the
use of Corollary 3.3 in Pazy [12, page 113], we obtain that u is a classical solution of (2.2).
Clearly, if χ ∈�0 satisfying that h(χ)=Φ is unique on [−τ,0], u is unique since for two
χ, χ̃ in �0 satisfying h(χ) = h(χ̃) =Φ with χ �= χ̃, the corresponding solutions uχ and uχ̃
belonging to {ψ ∈ �T̃ : ψ = χ on [−τ,0]} and {ψ ∈ �T̃ : ψ = χ̃ on [−τ,0]}, respectively,
are different. �

4. Global existence

We turn now to global existence. Here further assumptions are made, under the consid-
eration of which, the existence of a global solution is established.
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Theorem 4.1. Let −A be the infinitesimal generator of a compact C0 semigroup S(t), t ≥ 0,
on H . Let F : [0,∞)×H → H be continuous and map bounded sets in [0,∞)×H into
bounded sets in H . Also there exist two locally integrable functions k1(s) and k2(s) such that∥∥F(s,u,v)

∥∥≤ k1(s)
(‖u‖+‖v‖)+ k2(s), for 0≤ s <∞, u,v ∈H. (4.1)

Then, for every χ ∈�0 satisfying h(χ)=Φ, problem (2.2) has a global solution u∈ C([−τ,
∞),H).

Proof. We know that the corresponding solution u exists on the interval [−τ,T) and is
given by

u(t)=
χ(t), t ∈ [−τ,0],

S(t)χ(0) +
∫ t

0 S(t− s)F(s,u(s),u(s− τ)
)
ds, t ∈ [0,T).

(4.2)

We also know that ‖S(t)‖ ≤Meωt for some M ≥ 1 and ω ≥ 0. Let

ξ(t)= (M + 1)‖χ‖0 +
∫ t

0
Me−ωsk2(s)ds. (4.3)

The function ξ thus defined is obviously continuous on [0,∞).
For t ∈ [−τ,0], ∥∥u(t)

∥∥e−ωt = ∥∥χ(t)
∥∥e−ωt ≤ ‖χ‖0 ≤M‖χ‖0, (4.4)

and for t ∈ [0,T),

∥∥u(t)
∥∥e−ωt ≤ e−ωt∥∥S(t)χ(0)

∥∥+ e−ωt
∫ t

0

∥∥S(t− s)F(s,u(s),u(s− τ)
)∥∥ds

≤M‖χ‖0 +M
∫ t

0
e−ωsk1(s)

(∥∥u(s)
∥∥+

∥∥u(s− τ)
∥∥)ds+M

∫ t
0
e−ωsk2(s)ds

≤M‖χ‖0 +M
∫ t

0
e−ωsk2(s)ds+ 2M

∫ t
0
e−ωsk1(s) sup

η∈[−τ,s]

∥∥u(η)
∥∥ds.

(4.5)

The above inequality implies that

e−ωt sup
η∈[−τ,t]

∥∥u(η)
∥∥≤ ξ(t) + 2M

∫ t
0
e−ωsk1(s) sup

η∈[−τ,s]

∥∥u(η)
∥∥ds. (4.6)

By the application of Gronwall’s inequality, we have

e−ωt sup
η∈[−τ,t]

∥∥u(η)
∥∥≤ ξ(t) + 2M

∫ t
0
k1(s)ξ(s)exp

{
2M

∫ t
s
k1(r)dr

}
ds, (4.7)

which implies the boundedness of ‖u(t)‖ by a continuous function. Consequently, there
exists a global solution u of (2.2) (see Theorem 2.2 on page 193 in Pazy [12]). �
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5. Examples

In this section, to illustrate the applicability of our work, we discuss the exact and ap-
proximate solutions of some initial boundary value problems.

As a first example, we consider the equation

∂u

∂t
(t,x)− ∂2u

∂x2
(t,x)= u(t− τ,x)− e−2t(1 + e2τ)sinx, t > 0, x ∈ [0,π], (5.1)

with the boundary condition

u(t,0)= u(t,π)= 0, t > 0, (5.2)

and a nonlocal history condition

1
τ

∫ 0

−τ
e2su(s,x)ds= sinx, x ∈ [0,π], (5.3)

where τ > 1 is arbitrary. Let H = L2([0,π]). The operator A with domain D(A) = {v ∈
H : v′′ ∈H ,v(0)= v(π)= 0} is given by

Av =−d
2v

dx2
for v ∈D(A). (5.4)

Then −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, in H .
An exact solution of (5.1) is

u(t,x)= e−2t sinx, t ≥−τ, x ∈ [0,π]. (5.5)

In this case χ1 ∈�0 := C([−τ,0];L2([0,π])) is given by

χ1(t)(x)= e−2t sinx, (5.6)

so that the history condition is satisfied.
Divide the interval I = [0,1] into ten subintervals I1,I2, . . . ,I10 (I j = [t j−1, t j], j =

1,2, . . . ,10) of length h = 0.1. For t0 = 0, set u0(x) = sinx and find, subsequently, for t j ,
the approximate solutions uj , j = 1,2, . . . ,10, so that

uj(x)−uj−1(x)

h
−u′′j (x)= χ1

(
t j − τ

)
(x)− e−2t j

(
1 + e2τ)sinx,

uj(0)= uj(π)= 0,
(5.7)

that is,

uj(x)−uj−1(x)

h
−u′′j (x)= e−2t j sinx,

uj(0)= uj(π)= 0,
(5.8)

is satisfied for j = 1,2, . . . ,10.
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Table 5.1. Approximate and exact solutions for the first example (χ = e−2t sinx).

Approximate solution Exact solution
u1(x)= 0.834661sinx u(x, t1)= 0.818731sinx
u2(x)= 0.697844sinx u(x, t2)= 0.670320sinx
u3(x)= 0.584512sinx u(x, t3)= 0.548812sinx
u4(x)= 0.490526sinx u(x, t4)= 0.449329sinx
u5(x)= 0.412490sinx u(x, t5)= 0.367879sinx
u6(x)= 0.347609sinx u(x, t6)= 0.301194sinx
u7(x)= 0.293590sinx u(x, t7)= 0.246597sinx
u8(x)= 0.248546sinx u(x, t8)= 0.201896sinx
u9(x)= 0.210924sinx u(x, t9)= 0.165299sinx
u10(x)= 0.179446sinx u(x, t10)= 0.135335sinx

For j = 1, (5.8) becomes

u′′1 (x)− 1
h
u1(x)=

(
− 1
h

+ e−2t1

)
sinx,

u1(0)= u1(π)= 0.
(5.9)

Consequently, we solve a second-order ordinary differential equation. In this case, the
solution is

u1(x)= 1
1 +h

(
1−he−2h)sinx. (5.10)

Similarly, for j = 2, (5.8) yields

u′′2 (x)− 1
h
u2(x)=

(
− 1
h(1 +h)

(
1−he−2t1

)
+ e−2t2

)
sinx,

u2(0)= u2(π)= 0.
(5.11)

On solving this equation in the same way as before, we get

u2(x)= 1
(1 +h)2

[
1−he−2h(1 + (1 +h)e−2h)]sinx. (5.12)

Similar results are easily obtained for j = 3,4, . . . ,10. Thus we have

uj(x)= 1
(1 +h) j

[
1−he−2h(1 + (1 +h)e−2h + (1 +h)2e−4h + ···+ (1 +h) j−1e2( j−1)h)]sinx

(5.13)

or

uj(x)= 1
(1 +h) j

[
1−he−2h

(
1− (1 +h) j e−2 jh

1− (1 +h)e−2h

)]
sinx, j = 1,2, . . . ,10. (5.14)

Putting here h= 0.1 and rounding off to six decimals, we finally obtain the approximate
solutions uj(x) at t j , j = 1,2, . . . ,10 (see Table 5.1).
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We also calculate the exact solution of (5.1) for t = t1 = 0.1, . . . , t = t10 = 1 (see
Table 5.1).

In the next step we choose another function

χ2(t)(x)= 2τ
1− e−2τ

sinx (5.15)

in �0 which differs from χ1 and satisfies the history condition (5.3).
Divide the interval I = [0,1] into the same number of subintervals with step length

h= 0.1. For t0 = 0, set u0(x)= (2τ/1− e−2τ)sinx and find the approximations uj so that

uj(x)−uj−1(x)

h
−u′′j (x)= χ2

(
t j − τ

)
(x)− e−2t j

(
1 + e2τ)sinx, uj(0)= uj(π)= 0,

(5.16)

that is,

uj(x)−uj−1(x)

h
−u′′j (x)=

[ −2τ
1− e−2τ

+ e−2t j
(
1 + e2τ)]sinx, uj(0)= uj(π)= 0,

(5.17)
is fulfilled for j = 1,2, . . . ,10.

Following the calculations similar to the previous case, we obtain the approximate
solutions uj , j = 1,2, . . . ,10, as follows:

u1(x)=
[

τ

sinh2τ
− h

(1 +h)
e−2h

](
1 + e2τ)sinx,

u2(x)=
[

τ

sinh2τ
− he−2h

(1 +h)2

(
1 + (1 +h)e−2h)](1 + e2τ)sinx,

(5.18)

and

uj(x)=
[

τ

sinh2τ
− he−2h

(1 +h) j

(
1− (1 +h) j e−2 jh

1− (1 +h)e−2h

)](
1 + e2τ)sinx, j = 1,2, . . . ,10.

(5.19)
Putting here h= 0.1 and rounding off to six decimals, we get approximate solutions which
are tabulated in Table 5.2.

In this case the exact solution is obtained by solving the partial differential equation

∂u

∂t
(t,x)− ∂2u

∂x2
(t,x)= 2τ

1− e−2τ
sinx− e−2t(1 + e2τ)sinx, t > 0, x ∈ [0,π],

u(t,0)= u(t,π)= 0, t > 0,

u(x,0)= 2τ
1− e−2τ

sinx, x ∈ [0,π].

(5.20)

We take the solution of the form

u(t,x)= T(t)sinx. (5.21)
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Table 5.2. Approximate and exact solutions for the first example (χ = (2τ/(1− e−2τ))sinx).

Approximate solution Exact solution

u1(x)=
(

q

sinh2q
− 0.074430

)(
1 + e2q

)
sinx u(x, t1)=

(
q

sinh2q
− 0.086106

)(
1 + e2q

)
sinx

u2(x)=
(

q

sinh2q
− 0.128602

)(
1 + e2q

)
sinx u(x, t2)=

(
q

sinh2q
− 0.148411

)(
1 + e2q

)
sinx

u3(x)=
(

q

sinh2q
− 0.166803

)(
1 + e2q

)
sinx u(x, t3)=

(
q

sinh2q
− 0.192007

)(
1 + e2q

)
sinx

u4(x)=
(

q

sinh2q
− 0.192487

)(
1 + e2q

)
sinx u(x, t4)=

(
q

sinh2q
− 0.220991

)(
1 + e2q

)
sinx

u5(x)=
(

q

sinh2q
− 0.208432

)(
1 + e2q

)
sinx u(x, t5)=

(
q

sinh2q
− 0.238651

)(
1 + e2q

)
sinx

u6(x)=
(

q

sinh2q
− 0.216865

)(
1 + e2q

)
sinx u(x, t6)=

(
q

sinh2q
− 0.247617

)(
1 + e2q

)
sinx

u7(x)=
(

q

sinh2q
− 0.219568

)(
1 + e2q

)
sinx u(x, t7)=

(
q

sinh2q
− 0.249988

)(
1 + e2q

)
sinx

u8(x)=
(

q

sinh2q
− 0.217961

)(
1 + e2q

)
sinx u(x, t8)=

(
q

sinh2q
− 0.247432

)(
1 + e2q

)
sinx

u9(x)=
(

q

sinh2q
− 0.213174

)(
1 + e2q

)
sinx u(x, t9)=

(
q

sinh2q
− 0.241271

)(
1 + e2q

)
sinx

u10(x)=
(

q

sinh2q
− 0.206097

)(
1 + e2q

)
sinx u(x, t10)=

(
q

sinh2q
− 0.232544

)(
1 + e2q

)
sinx

Putting this into (5.20), we get a first-order linear differential equation in T(t) which can
be solved by calculating the integrating factor. Thus we have

T(t)= 2τ
1− e−2τ

− (1 + e2τ)(e−t − e−2t). (5.22)

Therefore, the exact solution is

u(t,x)=
[

τ

sinh2τ
− (e−t − e−2t)](1 + e2τ)sinx. (5.23)

Exact solutions for t = t1 = 0.1, . . . , t = t10 = 1 are tabulated in Table 5.2.
On comparison of approximate solutions with exact solution of problem (5.1) at dis-

crete values of variable t in both cases, it is observed that they are very much similar to
each other. It is also seen that for χ1 �= χ2 in �0, the corresponding solutions are different,
which implies the existence of unique solution of (5.1).

As a second example we consider the same partial differential equation with a different
nonlocal history condition:

∂u

∂t
(t,x)− ∂2u

∂x2
(t,x)= u(t− τ,x)− e−2t(1 + e2τ)sinx, t > 0, x ∈ [0,π],

u(t,0)= u(t,π)= 0, t > 0,

1
2e2τ

u(−τ,x) +
1
2
u(0,x)= sinx, x ∈ [0,π].

(5.24)
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Table 5.3. Approximate and exact solutions for the second example (χ = e−2t sinx).

Approximate solution Exact solution

u1(x)= 0.834661sinx u(x, t1)= 0.818731sinx
u2(x)= 0.697844sinx u(x, t2)= 0.670320sinx
u3(x)= 0.584512sinx u(x, t3)= 0.548812sinx
u4(x)= 0.490526sinx u(x, t4)= 0.449329sinx
u5(x)= 0.412490sinx u(x, t5)= 0.367879sinx
u6(x)= 0.347609sinx u(x, t6)= 0.301194sinx
u7(x)= 0.293590sinx u(x, t7)= 0.246597sinx
u8(x)= 0.248546sinx u(x, t8)= 0.201896sinx
u9(x)= 0.210924sinx u(x, t9)= 0.165299sinx
u10(x)= 0.179446sinx u(x, t10)= 0.135335sinx

An exact solution of (5.24) is

u(t,x)= e−2t sinx, t ≥−τ, x ∈ [0,π]. (5.25)

In a similar manner as before, for χ1 ∈�0 given by χ1(t)(x)= e−2t sinx, approximations
uj at discrete values t j , j = 1,2, . . . ,10, of t are

uj(x)= 1
(1 +h) j

[
1−he−2h

(
1− (1 +h) j e−2 jh

1− (1 +h)e−2h

)]
sinx, j = 1,2, . . . ,10. (5.26)

Next, we choose χ2 ∈ �0, such that χ2 �= χ1 satisfying the nonlocal history condition of
(5.24), and given by

χ2(t)(x)= 2e2τ

1 + e2τ
sinx. (5.27)

Following the similar steps of the previous example, here we get the approximate solu-
tions

uj(x)=
[

2e2τ

(1 + e2τ)2
− he−2h

(1 +h) j

(
1− (1 +h) j e−2 jh

1− (1 +h)e−2h

)](
1 + e2τ)sinx, j = 1,2, . . . ,10,

(5.28)

and the exact solution

u(t,x)=
[

2e2τ(
1 + e2τ

)2 −
(
e−t − e−2t)](1 + e2τ)sinx, j = 1,2, . . . ,10. (5.29)

Putting h= 0.1 in both cases, approximate as well as exact solutions are obtained. These
approximate solutions uj , j = 1,2, . . . ,10, corresponding to χ1 and χ2 along with their
respective exact solutions are shown in Tables 5.3 and 5.4, respectively.

From these observations we arrive at a conclusion similar to the one of the previous
example.
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Table 5.4. Approximate and exact solutions for the second example (χ = (2e2τ /(1 + e2τ))sinx).

Approximate solution Exact solution

u1(x)=
(

2e2q

(1 + e2q)2
− 0.074430

)(
1 + e2q

)
sinx u(x, t1)=

(
2e2q

(1 + e2q)2
− 0.086106

)(
1 + e2q

)
sinx

u2(x)=
(

2e2q

(1 + e2q)2
− 0.128602

)(
1 + e2q

)
sinx u(x, t2)=

(
2e2q

(1 + e2q)2
− 0.148411

)(
1 + e2q

)
sinx

u3(x)=
(

2e2q

(1 + e2q)2
− 0.166803

)(
1 + e2q

)
sinx u(x, t3)=

(
2e2q

(1 + e2q)2
− 0.192007

)(
1 + e2q

)
sinx

u4(x)=
(

2e2q

(1 + e2q)2
− 0.192487

)(
1 + e2q

)
sinx u(x, t4)=

(
2e2q

(1 + e2q)2
− 0.220991

)(
1 + e2q

)
sinx

u5(x)=
(

2e2q

(1 + e2q)2
− 0.208432

)(
1 + e2q

)
sinx u(x, t5)=

(
2e2q

(1 + e2q)2
− 0.238651

)(
1 + e2q

)
sinx

u6(x)=
(

2e2q

(1 + e2q)2
− 0.216865

)(
1 + e2q

)
sinx u(x, t6)=

(
2e2q

(1 + e2q)2
− 0.247617

)(
1 + e2q

)
sinx

u7(x)=
(

2e2q

(1 + e2q)2
− 0.219568

)(
1 + e2q

)
sinx u(x, t7)=

(
2e2q

(1 + e2q)2
− 0.249988

)(
1 + e2q

)
sinx

u8(x)=
(

2e2q

(1 + e2q)2
− 0.217961

)(
1 + e2q

)
sinx u(x, t8)=

(
2e2q

(1 + e2q)2
− 0.247432

)(
1 + e2q

)
sinx

u9(x)=
(

2e2q

(1 + e2q)2
− 0.213174

)(
1 + e2q

)
sinx u(x, t9)=

(
2e2q

(1 + e2q)2
− 0.241271

)(
1 + e2q

)
sinx

u10(x)=
(

2e2q

(1 + e2q)2
− 0.206097

)(
1 + e2q

)
sinx u(x, t10)=

(
2e2q

(1 + e2q)2
− 0.232544

)(
1 + e2q

)
sinx

Acknowledgments

The authors would like to thank the National Board for Higher Mathematics for provid-
ing the financial support to carry out this work under its research project no. NBHM/
2001/R&D-II.

References

[1] S. Agarwal and D. Bahuguna, Existence and uniqueness of strong solutions to nonlinear nonlocal
functional differential equations, Electron. J. Differential Equations (2004), no. 52, 1–9.

[2] , Method of semidiscretization in time to nonlinear retarded differential equations with
nonlocal history conditions, Int. J. Math. Math. Sci. 2004 (2004), no. 37, 1943–1956.

[3] D. Bahuguna, Existence, uniqueness and regularity of solutions to semilinear nonlocal functional
differential problems, Nonlinear Anal. Ser. A: Theory Methods 57 (2004), no. 7-8, 1021–
1028.

[4] D. Bahuguna and V. Raghavendra, Application of Rothe’s method to nonlinear integro-differential
equations in Hilbert spaces, Nonlinear Anal. Ser. A: Theory Methods 23 (1994), no. 1, 75–
81.

[5] K. Balachandran and M. Chandrasekaran, Existence of solutions of a delay differential equation
with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), no. 5, 443–449.

[6] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution
nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), no. 2, 494–505.



194 Nonlocal history-valued delay differential equations

[7] L. Byszewski and H. Akca, Existence of solutions of a semilinear functional-differential evolution
nonlocal problem, Nonlinear Anal. Ser. A: Theory Methods 34 (1998), no. 1, 65–72.

[8] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution
of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1991), no. 1, 11–19.

[9] A. G. Kartsatos and M. E. Parrott, A method of lines for a nonlinear abstract functional evolution
equation, Trans. Amer. Math. Soc. 286 (1984), no. 1, 73–89.

[10] A. G. Kartsatos and W. R. Zigler, Rothe’s method and weak solutions of perturbed evolution equa-
tions in reflexive Banach spaces, Math. Ann. 219 (1976), no. 2, 159–166.

[11] Y. P. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem,
Nonlinear Anal. Ser. A: Theory Methods 26 (1996), no. 5, 1023–1033.

[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Ap-
plied Mathematical Sciences, vol. 44, Springer, New York, 1983.

S. Agarwal: Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India
E-mail address: shrutiag@iitk.ac.in

D. Bahuguna: Department of Mathematics, Indian Institute of Technology, Kanpur 208 016, India
E-mail address: dhiren@iitk.ac.in

mailto:shrutiag@iitk.ac.in
mailto:dhiren@iitk.ac.in

