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This paper is concerned with fast Fourier transform (FFT) approach to option valuation,
where the underlying asset price is governed by a regime-switching geometric Brownian
motion. An FFT method for the regime-switching model is developed first. Aiming at
reducing computational complexity, a near-optimal FFT scheme is proposed when the
modulating Markov chain has a large state space. To test the FFT method, a novel semi-
Monte Carlo simulation algorithm is developed. This method takes advantage of the ob-
servation that the option value for a given sample path of the underlying Markov chain
can be calculated using the Black-Scholes formula. Finally, numerical results are reported.

Copyright © 2006 R. H. Liu et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Fast Fourier transform (FFT) (see Brigham [5]) is one of the most significant advances
in scientific computing; it has played an increasingly important role in financial engi-
neering, especially for determining values of derivatives numerically. It is applicable to
problems for which the characteristic functions of the underlying price processes can be
obtained analytically. It has been recognized that a wide range of models considered in the
literature meets this requirement. They include the stochastic volatility models, the affine
jump diffusions, and the exponential Lévy models, among others; see Carr and Madan
[7], Carr and Wu [8], and Duffie et al. [13] for detailed discussions of these models.

Because of its prevalence, increasing research efforts have been devoted to the FFT
approach in option pricing. For example, Carr and Madan [7] illustrated the fundamen-
tal idea of using FFT for valuing European options based on the Black-Scholes setting
and applied it to the variance gamma (VG) model (see Madan et al. [19]). Černý [9]
presented a detailed discussion on the implementation of FFT to option pricing. Ben-
hamou [3] used FFT for discrete Asian options valuation. Dempster and Hong [12] de-
veloped an approximation method for pricing European options on spread using the
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two-dimensional fast Fourier transform. Lee [18] studied the error bound in using FFT
for approximate valuation. Chourdakis [10] employed the fractional FFT technique (see
Bailey and Swarztrauber [1]) to overcome the difficulty of the inverse (see (2.39)) between
the two grid sizes in the Carr and Madan FFT approach.

Along another line, considerable attention has been focused on the regime-switching
diffusion models for asset prices recently. In this setting, model parameters (rate of re-
turn, volatility, and risk-free interest rate) are assumed to depend on a finite-state Markov
chain, whose states represent different “states of world” or regimes, which can describe
various randomly changing economical factors. By incorporating a hidden Markov chain
into the formulation, the regime-switching framework can capture the effect of those
less frequent but significant events that have impact on the individual asset price behav-
ior (especially for long-term dynamics). This is a major advantage compared with other
models, see Yao1 et al. [21], and Zhang [25], among others for discussions on considera-
tions leading to this modelling approach.

Option valuation with regime-switching has been dealt with by a host of researchers.
Buffington and Elliott [6] treated both European and American options. A system of
Black-Scholes like partial differential equations satisfied by the call option price is de-
rived using risk-neutral valuation principle. For American options, they extended the
approximation approach of Barone-Adesi and Whaley (see [2]) to the regime-switching
setting. Bollen [4] employed lattice and simulation methods. Yao1 et al. [21] studied the
system of PDEs with carefully chosen smooth boundary conditions to approximate the
option price and developed a successive approximation scheme. Guo [15], and Guo and
Zhang [16] derived closed-form solutions for the European and perpetual American op-
tions prices, respectively, in the case when the underlying Markov chain has two states.
Fuh and Wang [14] used similar ideas to study the general m-dimensional problem and
presented an approximation method by replacing the time-dependent probability distri-
bution of the Markov chain with its stationary distribution. Related works concerning
regime-switching models include the optimal selling rules for stock trading (Guo and
Zhang [17], Pemy and Zhang [20], Yin et al. [22], Zhang [25], and Zhang et al. [27]),
optimal asset allocation in portfolio management (Zhang and Yin [26]), and dynamic
Markowitz’s asset selection problem (Zhou and Yin [28]).

Our contributions in this paper are as follows. (1) By adopting the methodology of
Carr and Madan [7], we develop a fast Fourier transform approach to option pricing for
regime-switching models of the underlying asset process. The Fourier transform of the
option price is obtained in terms of the joint characteristic function of the sojourn times
of the Markov chain. We present the joint characteristic function in explicit form for
two-state (m= 2) Markov chains, and in terms of solutions of systems of m-dimensional
differential equations for m-state case. (2) Under the formulation of a regime-switching
model, to take various economical factors into consideration in modelling, the state space
of the driving Markov chain is inevitably large. As a consequence, the computational
complexity involved in option valuation becomes a serious issue since typically the com-
plexity depends crucially on the state space of the Markov chain. It is thus foremost to be
able to reduce the computational complexity. Here, we develop an approximation strategy
for the use of FFT. The essence is multiscale modelling and near optimality. The approach
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we are taking is a two-time-scale formulation. Note that for reducing computational bur-
den in stock liquidation, Zhang et al. [27] proposed a two-time-scale regime-switching
framework based on a singular perturbation approach. The main idea is to formulate the
asset model using a Markov chain with two-time-scale structure, a fast time scale and a
slow one. Then the quantities associated with the fast scale can be replaced by weighted
averages with respect to the corresponding stationary distributions. As a result, a limit
model is obtained with reduced number of states. Solution to the limit problem provides
an approximation to the original complex problem. We refer to [27] for further discus-
sions on the two-time-scale modelling motivations for asset prices and to Yin and Zhang
[23] for more illustrations on singularly perturbed Markov chains and applications. (3)
As a consequence of (2), a limit price process and the associated option pricing formula
are defined first. The Fourier transform of the original true option values is shown to
converge to that of the limit option values as the time scale parameter ε approaches zero.
This result, in turn, implies the convergence of the option values by the uniqueness of
the transform. Note that the state space corresponding to the jump component of the
regime-switching diffusion is much smaller than that of the original system. (4) We use
the FFT of the limit valuation to approximate the true option prices. Numerical results
demonstrate the performance of these approximations. Most importantly, by working
on the limit problem, the computational time can be reduced significantly. Noticeably,
this near-optimal scheme combines the salient feature of FFT in computational speedup
with that of the two-time-scale approach in structurally reducing complexity, resulting in
considerable advantage over the Monte Carlo simulation and PDE methods. (5) Further-
more, we present an efficient numerical method, which is Monte Carlo simulation-based
algorithm to be used as a benchmark of true option values for testing the accuracy of
the FFT and near-optimal FFT methods, especially for large-dimensional models. One
of the key points is that the simulation is done primarily with respect to the underly-
ing Markov chain. Note that (see Buffington and Elliott [6]), for a given realization of
the underlying Markov chain, the model parameters (rate of return, volatility, and risk-
free interest rate) can be determined. Consequently, the option price associated with the
realization can be exactly calculated by the usual Black-Scholes formula in which the
volatility and the interest rate are replaced by the sample path values. Therefore, it is
only required to sample the Markov chain trajectories in order to carry out the Monte
Carlo simulation. For this reason, we call the approach a semi-Monte Carlo simulation.
A numerical example shows that the semi-Monte Carlo simulation outperforms the other
approaches.

The rest of the paper is organized as follows. Section 2 begins with risk-neutral valua-
tion for European option, where the asset price follows a regime-switching diffusion. The
FFT approach is then developed. Section 3 presents a two-time-scale setup of the option
pricing problem for the regime-switching model when the modulating Markov chain has
a large state space. Also presented is near optimality for the FFT. As the small parameter
diminishes, convergence of the option price is proved. In Section 4, we develop a novel
semi-Monte Carlo simulation algorithm that can be used to yield benchmark values in
numerical experiments. Numerical results are reported in Section 5. Finally, Section 6
provides further remarks and concludes the paper.
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2. FFT approach for regime-switching option pricing

In this section, we generalize the FFT technique introduced by Carr and Madan in [7] for
option pricing to the regime-switching model and develop the FFT scheme.

2.1. Regime-switching model and risk-neutral option pricing. Suppose that (Ω, �, �)
is the underlying probability space, upon which all the stochastic processes below are
defined. Let α(t) be a finite-state continuous time Markov chain with state space � =
{1, . . . ,m}, which may represent general market trends and/or other economic factors
(also called “state of the world” or regime). For example, when m = 2, α(t) = 1 denotes
an uptrend and α(t)= 2 a downtrend.

Suppose that S(t), the price of the underlying asset, satisfies a stochastic differential
equation

dS(t)
S(t)

= ν
(
α(t)

)
dt+ σ

(
α(t)

)
dB(t), t ≥ 0, (2.1)

where S(0) = S0 > 0 is the initial price, B(t) is a one-dimensional real-valued standard
Brownian motion independent of α(t), and ν(α(t)) and σ(α(t)) are the rates of expected
return and volatility of the asset, respectively. We assume that σ( j) > 0, for each j ∈�.
Assume that the instantaneous risk-free interest rate also depends on α(t) and use r(α(t))
in the paper.

A standard methodology for option pricing is the risk-neutral valuation. The idea is
to derive a suitable probability space upon which the discounted asset price process be-
comes a martingale; this probability space is usually called the risk neutral world and the
associated probability measure is referred to as the risk-neutral or equivalent martingale
measure. As a consequence, the fair value of an option is expressed as the expected value
of the discounted option payoff with respect to this equivalent martingale measure.

Risk-neutral valuation is adopted for regime-switching models (see Yao1 et al. [21],
Guo [15]). Yao1 et al. [21] provided a generalized Girsanov theorem for Markov modu-

lated processes and derived an equivalent martingale measure �̃ under which (2.1) be-
comes

dS(t)
S(t)

= μ(α(t)
)
dt+ σ

(
α(t)

)
dB̃(t), t ≥ 0, (2.2)

where B̃(t) is a standard �̃-Brownian motion independent of α(t), μ(α(t)) denotes the
risk-free drift rate. Note that we use μ(α(t)), not r(α(t)), for the drift in (2.2). This is
because the drift in the risk-neutral price process may not be equal to the risk-free interest
rate. For example, a dividend rate (if nonzero) should be subtracted from the interest
rate. Also as discussed by Guo [15], to have a complete market, Arrow-Debreu securities
related to the switching cost need to be used. This results in an extra component that is
subtracted from the interest rate. We refer the reader to Yao1 et al. [21], Guo [15] for
detailed discussions and technical proofs concerning the regime-switching risk-neutral
valuation.
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From now on, we will work with the risk-neutral world (Ω, �, �̃). Throughout the

rest of the paper, all expectations are taken with respect to the risk-neutral measure �̃.
Let

X(t)=
∫ t

0

(
μ
(
α(s)

)− 1
2
σ2(α(s)

)
)
ds+

∫ t

0
σ
(
α(s)

)
dB̃(s), t ≥ 0. (2.3)

Then the solution to (2.2) is given by

S(t)= S0 exp
[
X(t)

]
. (2.4)

Consider an European call option written on S(t) with strikeK > 0 and maturity T > 0.
By the risk-neutral valuation principle, the option price C(K) is given by

C(K)= E
{

exp
(
−
∫ T

0
r
(
α(t)

)
dt
)
(
S0e

X(T)−K)+
}
. (2.5)

Let k = ln(K/S0). Then (2.2) can be written as

C(k)= S0E
{

exp
(
−
∫ T

0
r
(
α(t)

)
dt
)
(
eX(T)− ek)+

}
. (2.6)

Note that we use k (a modified log strike) instead of the log strike itself to ensure that
k = 0 will be always corresponding to the at-the-money case.

2.2. Fourier transform of the option price. Note that the call price C(k) does not decay
to 0 as k goes to −∞. Hence we cannot directly take its Fourier transform. Carr and
Madan [7] introduced an extra exponential term to make the modified function be square
integrable with respect to k over (−∞,∞), whose Fourier transform is well defined and
also square integrable. We use this idea here for the regime-switching model.

Define a modified price function c(k) by

c(k)= eρk C(k)
S0

, −∞ < k <∞, (2.7)

where ρ > 0 is a prespecified positive number (damping factor). We derive an explicit
formula for the Fourier transform of c(k) next.

Let �T be the σ-algebra generated by the Markov chain α(t), 0≤ t ≤ T , that is, �T =
σ{α(t), 0 ≤ t ≤ T}. Let f�T (x) be the conditional density function of X(T) given �T .
Define

LT =
∫ T

0
μ
(
α(t)

)
dt, VT =

∫ T

0
σ2(α(t)

)
dt, RT =

∫ T

0
r
(
α(t)

)
dt. (2.8)
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Then the Fourier transform of c(k) is calculated as follows:

ψ(u)=
∫∞

−∞
eiukc(k)dk

=
∫∞

−∞
eiukeρkE

{
e−RT

(
eX(T)− ek)+}

dk

= E
{∫∞

−∞
eiukeρke−RTE

{(
eX(T)− ek)+ |�T

}
dk
}

= E
{∫∞

−∞
eiukeρke−RT

∫∞

k

(
ex − ek) f�T (x)dxdk

}

= E
{∫∞

−∞
e−RT f�T (x)

∫ x

−∞

(
exe(ρ+iu)k − e(1+ρ+iu)k)dkdx

}

= E
{∫∞

−∞
e−RT f�T (x)

(
e(1+ρ+iu)x

ρ+ iu
− e(1+ρ+iu)x

1 + ρ+ iu

)
dx
}

= E
{
e−RT

(
φ�T

(
u− i(1 + ρ)

)

ρ+ iu
− φ�T

(
u− i(1 + ρ)

)

1 + ρ+ iu

)}

= E
{
e−RTφ�T

(
u− i(1 + ρ)

)}

ρ2 + ρ−u2 + i(1 + 2ρ)u
,

(2.9)

where

φ�T (u)= E{eiuX(T) |�T
}=

∫∞

−∞
eiux f�T (x)dx (2.10)

is the conditional characteristic function of X(T) given �T .
Note that given �T , X(T) has Gaussian distribution with mean (LT − (1/2)VT) and

variance VT . It follows that

φ�T (u)= exp
(
iu
(
LT − 1

2
VT

)
− 1

2
u2VT

)
. (2.11)

Using (2.11) in (2.9), we have

ψ(u)= 1
ρ2 + ρ−u2 + i(1 + 2ρ)u

E
{

exp
(

(1 + ρ)
(
LT +

1
2
ρVT

)
−RT

− 1
2
u2VT + iu

(
LT +

(
1
2

+ ρ
)
VT

))}
.

(2.12)

To derive an explicit formula for ψ(u), it is necessary to calculate the expectation with
respect to the random variables LT , VT , and RT . To this end, let

Tj =
∫ T

0
I{α(t)= j}dt, j ∈�, (2.13)
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be the sojourn time of the Markov chain α(t) in state j during the interval [0,T]. Then
∑m

j=1Tj = T . It follows that

LT =
m−1∑

j=1

(
μ( j)−μ(m)

)
Tj +μ(m)T ,

VT =
m−1∑

j=1

(
σ2( j)− σ2(m)

)
Tj + σ2(m)T ,

RT =
m−1∑

j=1

(
r( j)− r(m)

)
Tj + r(m)T.

(2.14)

Using (2.14) in (2.12), we obtain that

ψ(u)= 1
ρ2 + ρ−u2 + i(1 + 2ρ)u

exp
(
B(u)T

)
E

{

exp

(

i
m−1∑

j=1

A(u, j)Tj

)}

, (2.15)

where for j = 1, . . . ,m− 1,

A(u, j)=
[
(
μ( j)−μ(m)

)
+
(

1
2

+ ρ
)
(
σ2( j)− σ2(m)

)
]
u+

1
2
u2(σ2( j)− σ2(m)

)
i

+
[
(
r( j)− r(m)

)− (1 + ρ)
(
μ( j)−μ(m)

)− 1
2
ρ(1 + ρ)

(
σ2( j)− σ2(m)

)
]
i,

B(u)= iu
[
μ(m) +

(
1
2

+ ρ
)
σ2(m)

]
− 1

2
u2σ2(m) + (1 + ρ)μ(m)− r(m) +

1
2
ρ(1 + ρ)σ2(m).

(2.16)

Therefore, the determination of ψ(u) reduces to calculating the characteristic function of
the random vector (T1, . . . ,Tm−1)′.

Two-state case. Consider m= 2. Let the generator of the Markov chain α(·) be given by

Q =
(−λ1 λ1

λ2 −λ2

)

, λ1,λ2 > 0, (2.17)

where λ1 is the jump rate from state 1 to state 2 and λ2 is the jump rate from state 2 to
state 1. In this case, we need to find the characteristic function of T1, the sojourn time in
state 1.

Assume the initial state α(0)= j0. Define

φj0 (θ,T)= E(eiθT1 | α(0)= j0
)
, j0 = 1,2. (2.18)
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Then φ1(θ,T) and φ2(θ,T) satisfy the following system of integral equations (see Guo
[15]):

φ1(θ,T)= eiθTe−λ1T +
∫ T

0
eiθtφ2(θ,T − t)λ1e

−λ1tdt,

φ2(θ,T)= e−λ2T +
∫ T

0
φ1(θ,T − t)λ2e

−λ2tdt.

(2.19)

Taking Laplace transform, we obtain the following system of algebraic equations:

�
{
φ1(θ,T)

}= 1
s+ λ1− iθ +

λ1

s+ λ1− iθ�
{
φ2(θ,T)

}
,

�
{
φ2(θ,T)

}= 1
s+ λ2

+
λ2

s+ λ2
�
{
φ1(θ,T)

}
.

(2.20)

Solving the pair of equations yields

�
{
φ1(θ,T)

}= s+ λ1 + λ2

s2 +
(
λ1 + λ2− iθ

)
s− iθλ2

,

�
{
φ2(θ,T)

}= s+ λ1 + λ2− iθ
s2 +

(
λ1 + λ2− iθ

)
s− iθλ2

.

(2.21)

Taking inverse Laplace transform, we have

φ1(θ,T)= 1
s1− s2

((
s1 + λ1 + λ2

)
es1T − (s2 + λ1 + λ2

)
es2T

)
,

φ2(θ,T)= 1
s1− s2

((
s1 + λ1 + λ2− iθ

)
es1T − (s2 + λ1 + λ2− iθ

)
es2T

)
,

(2.22)

where s1 and s2 are the two roots of the equation

s2 +
(
λ1 + λ2− iθ

)
s− iθλ2 = 0. (2.23)

The Fourier transform (2.15) in this case is given by

ψ(u)= exp
(
B(u)T

)
φj0
(
A(u),T

)

ρ2 + ρ−u2 + i(1 + 2ρ)u
, (2.24)

where

A(u) := A(u,1)

=
[
(
μ(1)−μ(2)

)
+
(

1
2

+ ρ
)
(
σ2(1)− σ2(2)

)
]
u+

1
2
u2(σ2(1)− σ2(2)

)
i

+
[(
r(1)− r(2)

)− (1 + ρ)
(
μ(1)−μ(2)

)− 1
2
ρ(1 + ρ)

(
σ2(1)− σ2(2)

)]
i,

B(u)= iu
[
μ(2) +

(
1
2

+ ρ
)
σ2(2)

]
− 1

2
u2σ2(2) + (1 + ρ)μ(2)− r(2) +

1
2
ρ(1 + ρ)σ2(2).

(2.25)
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General case (m≥ 2). Let the generator of the Markov chain α(·) be given by an m×m
matrix Q = (qi j)m×m such that qi j ≥ 0 for i �= j and

∑m
j=1 qi j = 0 for each i∈�. Let

I(t)= (I{α(t)=1},I{α(t)=2}, . . . ,I{α(t)=m}
)′ ∈Rm×1 (2.26)

denote the vector of indicator functions. Then it is shown by Yin and Zhang [23, Lemma
2.4, Chapter 2] that

I(t)−
∫ t

0
Q′I(s)ds (2.27)

is a martingale, where Q′ denotes the transpose of Q.
To determine the characteristic function

E

{

exp

(

i
m−1∑

j=1

θjTj

)}

= E
{

exp

(

i
m−1∑

j=1

θj

∫ T

0
I{α(t)= j}dt

)}

, (2.28)

define a random vector

Z(T)= (z1(T),z2(T), . . . ,zm(T)
)′ ∈Rm×1, (2.29)

where

zj(T)= exp

(

i
m−1∑

j=1

θj

∫ T

0
I{α(t)= j}dt

)

I{α(T)= j}, j = 1,2, . . . ,m. (2.30)

Using the martingale property (2.27), it can be shown as by Buffington and Elliott [6]
that E[Z(T)] satisfies the following vector differential equation:

dE
[

Z(T)
]

dT
= (Q′ + idiag

(
θ1,θ2, . . . ,θm−1,0

))
E
[

Z(T)
]
, E

[
Z(0)

]= I(0), (2.31)

where diag(θ1,θ2, . . . ,θm−1,0) is the diagonal matrix with diagonal entries θ1,θ2, . . . ,θm−1,
0. The solution to (2.31) is given by

E
[

Z(T)
]= exp

(
Q′ + i diag

(
θ1,θ2, . . . ,θm−1,0

))
I(0). (2.32)

Consequently, the characteristic function can be determined by

E

{

exp

(

i
m−1∑

j=1

θjTj

)}

=
m∑

j=1

E
[
zj(T)

]= 1′mE
[

Z(T)
]

= 1′m exp
(
Q′ + i diag

(
θ1,θ2, . . . ,θm−1,0

))
I(0),

(2.33)

where 1m = (1, . . . ,1)′ ∈Rm×1.
Setting θj = A(u, j) in (2.33) and then using the result in (2.15), we obtain the Fourier

transform ψ(u), which can then be used in the inverse transform to determine the option
price.
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2.3. FFT algorithm for option pricing. We adopt the approach introduced by Carr and
Madan [7]. Recall that the discrete Fourier transform of a given sequence { f j}N−1

j=0 is de-
fined by

Fl =
N−1∑

j=0

e−i(2π/N)l j f j , l = 0,1, . . . ,N − 1. (2.34)

It is typical to choose N as a power of 2 when the FFT procedure is used to calculate the
transform {Fl}N−1

l=0 .
Given the transform function ψ(u), the modified option price c(k) can be obtained by

the inverse Fourier transform

c(k)= 1
2π

∫∞

−∞
e−iukψ(u)du= 1

π

∫∞

0
e−iukψ(u)du, (2.35)

and the option price is, in view of (2.7), C(k)= e−ρkS0c(k).
Set uj = jΔu, j = 0,1, . . . ,N − 1, where Δu is the grid size in the variable u. Then (2.35)

can be approximated by the following summation:

c(k)≈ 1
π

N−1∑

j=0

e−iujkψ
(
uj
)
Δu. (2.36)

Next, let Δk be the grid size in k and choose a grid along the modified log strike k as
below:

kl =
(
l− N

2

)
Δk, l = 0,1, . . . ,N − 1. (2.37)

Then

c
(
kl
)≈ 1

π

N−1∑

j=0

e−i jlΔuΔk ei j(N/2)ΔuΔkψ
(
jΔu

)
Δu, l = 0,1, . . . ,N − 1. (2.38)

If we set

ΔuΔk = 2π
N

, (2.39)

then we have

c
(
kl
)≈ Δu

π

N−1∑

j=0

e−i jl(2π/N)ei jπψ
(
jΔu

)
, l = 0,1, . . . ,N − 1. (2.40)

Using Simpson’s rule for numerical integration, define a sequence of weighting factors by

w( j)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
3

, if j = 0,

4
3

, if j is odd,

2
3

, if j is even.

(2.41)
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Then

c
(
kl
)≈ Δu

π

N−1∑

j=0

e−i jl(2π/N)ei jπψ
(
jΔu

)
w( j), l = 0,1, . . . ,N − 1. (2.42)

Comparing (2.42) with (2.34), it is easily seen that {c(kl)}N−1
l=0 can be obtained by taking

the Fourier transform of the sequence {ei jπψ( jΔu)w( j)}N−1
j=0 .

Remark 2.1. In order to apply the FFT procedure, a discrete sum (2.36) is used to approx-
imate the continuous infinite integral (2.35). This will cause approximation errors in op-
tion values. For models without regime-switching, Lee [18] developed upper bounds for
the truncation and discretization errors of the approximation. However, numerical re-
sults show that the actual errors in option prices frequently are much smaller than those
bounds. Our numerical experiments in Section 5 (see Table 5.1) show that for the regime-
switching option valuation, using the chosen grid sizes, the effect of this discretization
error is nearly unnoticeable.

3. A near-optimal approach using a two-time-scale Markov chain

In order to find the Fourier transform ψ(u), it is necessary to solve the system of m dif-
ferential equations (2.31) (or equivalently, to calculate the matrix exponential (2.33)).
When the number of states m of the Markov chain is large, the computational complex-
ity becomes a main concern. To overcome the difficulty, we develop an approximation
approach using FFT and a two-time-scale Markov chain structure. We prove that this ap-
proach is near optimal in the sense that the approximation of the prices converges to the
true prices as the time-scale parameter ε approaches to zero.

3.1. A two-time-scale Markov chain. To reveal the explicit dependence on a small posi-
tive number ε, in this section, we use αε(·) instead of α(·) for the driving Markov chain.
Let Qε be its generator and assume Qε has the following decomposition form:

Qε = 1
ε
Q̃+ Q̂ = 1

ε

⎛

⎜
⎜
⎜
⎝

Q̃1

. . .

Q̃l

⎞

⎟
⎟
⎟
⎠

+ Q̂, (3.1)

where, for each k = 1, . . . , l, Q̃k is a generator with dimension mk ×mk, and Q̂ is a genera-
tor with dimension m×m. We have m1 + ···+ml =m. Suppose that, for k = 1, . . . , l, Q̃k

are irreducible. Then we may rewrite the state space of αε(·) as

� =�1∪···∪�l =
{
s11, . . . ,s1m1

}∪···∪ {sl1, . . . ,slml

}
, (3.2)

where for each k = 1, . . . , l, �k = {sk1, . . . ,skmk} is the substate space corresponding to the
kth recurrent class. Let νk = (νk1, . . . ,νkmk

) denote the stationary distribution of Q̃k, that is,
νk is the only solution to

νkQ̃k = 0, νk1mk = 1, (3.3)
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where 1mk = (1, . . . ,1)′ ∈Rmk×1. Define an aggregated process αε(·)∈ {1, . . . , l} by

αε(t)= k, if αε(t)∈�k. (3.4)

Next, define an l× l matrix Q by

Q = diag
(
ν1, . . . ,νl

)
Q̂diag

(
1m1 , . . . ,1ml

)
, (3.5)

where we use diag(A1, . . . ,Al) for the block diagonal matrix with entries A1, . . . ,Al. It was
shown by Yin and Zhang [23, Theorems 7.2 and 7.4] that the following limit results hold.

(1) For any bounded and measurable deterministic functions βk j(t), the corresponding
occupation times satisfy

E
(∫ T

0

(
I{αε(t)=sk j} − νkj I{αε(t)=k}

)
βk j(t)dt

)2

=O(ε). (3.6)

(2) Given T > 0, αε(·) converges weakly to α(·), a Markov chain with generatorQ given
in (3.5) and state space � = {1, . . . , l}.

3.2. Limit price model and near-optimal pricing method. Next, we define a limit price
process using the limit Markov chain α(·). For k = 1, . . . , l, let

μ(k)=
mk∑

j=1

νkj μ
(
sk j
)
, σ2(k)=

mk∑

j=1

νkj σ
2(sk j

)
, r(k)=

mk∑

j=1

νkj r
(
sk j
)
. (3.7)

Let S(t) be a diffusion process satisfying

dS(t)
S(t)

= μ(α(t)
)
dt+ σ

(
α(t)

)
dB̃(t), t ≥ 0. (3.8)

We assume that the Brownian motion B̃(t) is independent of the limit Markov chain
α(t), and the initial price S(0)= S0, the same initial value as in (2.2). Note that the limit
price process S(t) is defined such that the parameters μ(·), σ(·), and r(·) are replaced by
their averages with respect to the corresponding stationary distributions. Noticeably, this
process is still a switching diffusion process (i.e., a set of diffusions coupled by the limit
Markov chain α(·)). But the number of states is reduced from m to l.

Consider an European call option written on the price process S(t) with the same
maturity T and strike K , whose value is given by

C(k)= E
{

exp
(
−
∫ T

0
r
(
α(t)

)
dt
)
(
S0e

X(T)−K)+
}

, (3.9)

where

X(t)=
∫ t

0

(
μ
(
α(s)

)− 1
2
σ2(α(s)

)
)
ds+

∫ t

0
σ
(
α(s)

)
dB̃(s), t ≥ 0. (3.10)
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Similar to (2.8), define

LT =
∫ T

0
μ
(
α(t)

)
dt, VT =

∫ T

0
σ2(α(t)

)
dt, RT =

∫ T

0
r
(
α(t)

)
dt. (3.11)

Let c(k)= eρk(C(k)/S0). Then the Fourier transform of c(k) is given by

ψ(u)= 1
ρ2 + ρ−u2 + i(1 + 2ρ)u

E
{

exp
(

(1 + ρ)
(
LT +

1
2
ρVT

)
−RT

− 1
2
u2VT + iu

(
LT +

(
1
2

+ ρ
)
VT

))}
,

(3.12)

and c(k) is given by the inverse Fourier transform

c(k)= 1
π

∫∞

0
e−iukψ(u)du, (3.13)

which can be calculated by using the FFT presented in Section 2.

Remark 3.1. It should be pointed out that the purpose of defining the limit process (3.8)
and the associated option price (3.9) is for developing a near-optimal method that can
produce good approximation to the true (or original) option price with significantly re-
duced computation.

3.3. Convergence analysis. In this section, we show that as ε→ 0, the option price con-
verges to the limit price. Note that corresponding to αε(·), the functions c(k), ψ(u), and
so forth should all be indexed by ε to highlight their ε dependence. However, for nota-
tional simplicity, we suppress the ε-dependence in what follows. Thus, for example, by
c(k)→ c(k), we mean that cε(k)→ c(k) as ε→ 0. To proceed, we introduce the following
quantities associated with the aggregated process αε(·).

Let

L
ε
T =

∫ T

0
μ
(
αε(t)

)
dt, V

ε
T =

∫ T

0
σ2(αε(t)

)
dt, R

ε
T =

∫ T

0
r
(
αε(t)

)
dt. (3.14)

Define an auxiliary function ψε(u) by

ψε(u)= 1
ρ2 + ρ−u2 + i(1 + 2ρ)u

E
{

exp
(

(1 + ρ)
(
L
ε
T +

1
2
ρV

ε
T

)
−RεT

− 1
2
u2V

ε
T + iu

(
L
ε
T +

(
1
2

+ ρ
)
V
ε
T

))}
.

(3.15)

Lemma 3.2. The following error bounds hold:

E
∣
∣LT −LεT

∣
∣=O(√ε), (3.16)

E
∣
∣RT −RεT

∣
∣=O(√ε),

E
∣
∣VT −Vε

T

∣
∣=O(√ε). (3.17)
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Proof. In view of the definitions (2.8), (3.7), and (3.14), we have

∣
∣LT −LεT

∣
∣=

∣
∣
∣
∣

∫ T

0
μ
(
αε(t)

)
du−

∫ T

0
μ
(
αε(t)

)
dt
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

l∑

k=1

mk∑

j=1

μ
(
sk j
)
∫ T

0
I{αε(t)=sk j}dt−

l∑

k=1

μ(k)
∫ T

0
I{αε(t)=k}dt

∣
∣
∣
∣
∣

≤
l∑

k=1

∣
∣
∣
∣
∣

mk∑

j=1

μ
(
sk j
)
∫ T

0
I{αε(t)=sk j}dt−

mk∑

j=1

νkj μ
(
sk j
)
∫ T

0
I{αε(t)=k}dt

∣
∣
∣
∣
∣

≤
l∑

k=1

mk∑

j=1

∣
∣
∣
∣

∫ T

0

(
I{αε(t)=sk j} − νkj I{αε(t)=k}

)
μ
(
sk j
)
dt
∣
∣
∣
∣.

(3.18)

In terms of the limit result (3.6), an application of the Cauchy-Schwarz inequality yields

E
∣
∣LT −LεT

∣
∣≤

l∑

k=1

mk∑

j=1

E
∣
∣
∣
∣

∫ T

0

(
I{αε(t)=sk j} − νkj I{αε(t)=k}

)
μ
(
sk j
)
dt
∣
∣
∣
∣=O

(√
ε
)
. (3.19)

This proves (3.16). The other two inequalities can be obtained similarly. �

Lemma 3.3. There is a positive number β > 0 such that for 0≤ u <∞,

∣
∣ψ(u)−ψε(u)

∣
∣= e−βu2

(
u2 +u+ 1

u2 + ρ(1 + ρ)

)
O
(√
ε
)
. (3.20)

Proof. Let

X(u)= (1 + ρ)
(
LT +

1
2
ρVT

)
−RT − 1

2
VTu

2, Y(u)= u
(
LT +

(
1
2

+ ρ
)
VT

)
,

X
ε
(u)= (1 + ρ)

(
L
ε
T +

1
2
ρV

ε
T

)
−RεT −

1
2
V
ε
Tu

2, Y
ε
(u)= u

(
L
ε
T +

(
1
2

+ ρ
)
V
ε
T

)
.

(3.21)

Let

μmax =max
i∈�

{
μ(i)

}
, μmax =max

i∈�

{
μ(i)

}
,

σ2
max =max

i∈�

{
σ2(i)

}
, σ2

max =max
i∈�

{
σ2(i)

}
,

σ2
min =min

i∈�

{
σ2(i)

}
, σ2

min =min
i∈�

{
σ2(i)

}
.

(3.22)

Then we have

μmax ≤ μmax, σ2
max ≤ σ2

max, σ2
min ≥ σ2

min. (3.23)

Then

LT ≤ μmaxT , L
ε
T ≤ μmaxT ≤ μmaxT ,

σ2
minT ≤VT ≤ σ2

maxT , σ2
minT ≤ σ2

minT ≤Vε
T ≤ σ2

maxT ≤ σ2
maxT.

(3.24)
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It follows that

X(u)≤ (1 + ρ)
(
μmax +

1
2
ρσ2

max

)
T − 1

2
σ2

minu
2,

X
ε
(u)≤ (1 + ρ)

(
μmax +

1
2
ρσ2

max

)
T − 1

2
σ2

minu
2,

(3.25)

for u≥ 0.
In view of (2.12) and (3.15), we have

∣
∣ψ(u)−ψε(u)

∣
∣≤ E

∣
∣exp

(
X(u) + iY(u)

)− exp
(
X
ε
(u) + iY

ε
(u)
)∣∣

∣
∣ρ2 + ρ−u2 + i(1 + 2ρ)u

∣
∣

≤ E
∣
∣exp

(
X(u) + iY(u)

)− exp
(
X
ε
(u) + iY

ε
(u)
)∣∣

u2 + ρ(1 + ρ)
.

(3.26)

It is elementary to show that for any two complex numbers x1 + iy1 and x2 + iy2,

∣
∣exp

(
x1 + iy1

)− exp
(
x2 + iy2

)∣∣≤√2max
{
ex1 ,ex2

}(∣∣x1− x2
∣
∣+

∣
∣y1− y2

∣
∣). (3.27)

Therefore,

∣
∣ψ(u)−ψε(u)

∣
∣≤ Ce−βu2 E

∣
∣X(u)−Xε

(u)
∣
∣+E

∣
∣Y(u)−Yε

(u)
∣
∣

u2 + ρ(1 + ρ)
, (3.28)

where

β := 1
2
σ2

min > 0, C :=√2exp
(

(1 + ρ)
(
μmax +

1
2
ρσ2

max

)
T
)
. (3.29)

Using Lemma 3.2, we have

E
∣
∣X(u)−Xε

(u)
∣
∣≤ (1 + ρ)E

∣
∣LT −LεT

∣
∣+

1
2
ρ(1 + ρ)E

∣
∣VT −Vε

T

∣
∣

+E
∣
∣RT −RεT

∣
∣+

1
2
u2E

∣
∣VT −Vε

T

∣
∣

≤ (1 + ρ)O
(√
ε
)

+
1
2
ρ(1 + ρ)O

(√
ε
)

+O
(√
ε
)

+
1
2
u2O

(√
ε
)

= (1 +u2)O
(√
ε
)
.

(3.30)

Similarly,

E
∣
∣Y(u)−Yε

(u)
∣
∣= uO(√ε). (3.31)

Combining (3.28), (3.30), and (3.31) yields (3.20). �

Theorem 3.4. As ε→ 0, the Fourier transform ψ(u) converges to the limit Fourier transform
ψ(u), that is,

lim
ε→0

ψ(u)= ψ(u). (3.32)
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Proof. Using the auxiliary function ψε(u), we have

∣
∣ψ(u)−ψ(u)

∣
∣≤ ∣∣ψ(u)−ψε(u)

∣
∣+

∣
∣ψε(u)−ψ(u)

∣
∣. (3.33)

The first term in (3.33) goes to zero by Lemma 3.3. To show that the second term also goes
to zero, we rewrite the random variables in ψε(u) and ψ(u) in terms of the aggregated
process αε(·) and the limit Markov chain α(·), respectively. Then it follows that

∣
∣ψε(u)−ψ(u)

∣
∣≤

∣
∣E
{

exp
(
h
(
αε(·)))}−E{exp

(
h
(
α(·)))}∣∣

u2 + ρ(1 + ρ)
, (3.34)

where

h
(
αε(·))=

l∑

k=1

[
(1 + ρ)

(
μ(k) +

1
2
ρσ2(k)

)
− r(k)− 1

2
σ2(k)u2

+ iu
(
μ(k) +

(
1
2

+ ρ
)
σ2(k)

)]∫ T

0
I{αε(t)=k}dt,

(3.35)

and h(α(·)) is given by replacing αε(t) with α(t) in the above expression.
Using the weak convergence of αε(·) to α(·) (see [23, Theorem 7.4]), by virtue of the

Skorohod representation (see, e.g., [24, Theorem 14.5]), and the dominated convergence
theorem, we can show that

E
{

exp
(
h
(
αε(·)))}−→ E

{
exp

(
h
(
α(·)))}, (3.36)

which, in turn, implies

ψε(u)−→ ψ(u). (3.37)

This completes the proof. �

Corollary 3.5.

lim
ε→0

c(k)= c(k). (3.38)

Proof. As in the proof of Lemma 3.3, it is easy to show that

∣
∣ψ(u)

∣
∣≤ exp

(
(1 + ρ)

(
μmax + (1/2)ρσ2

max

)
T − (1/2)σ2

minu
2
)

u2 + ρ(1 + ρ)
. (3.39)

The right-hand side function is integrable. Applying the dominated convergence theo-
rem, we have (3.38). �

4. A semi-Monte Carlo algorithm

Monte Carlo simulations are frequently used when closed-form solutions are not avail-
able for complex stochastic problems. A Monte Carlo algorithm frequently serves as a
benchmark for the “true value” used for testing other numerical methods. The bench-
mark value is obtained by running a great number of sample paths in simulating the
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Let N be the number of replications.
For n= 1, . . . ,N ,

(1) obtain the nth sample path of α(t), 0≤ t ≤ T ,
(2) calculate LT , VT , and RT associated with the sample path,
(3) calculate the Black-Scholes price Cn(K) for the nth sample path,
(4) calculate the average C(K)= (1/N)

∑N
n=1Cn(K).

Algorithm 4.1

underlying stochastic dynamics. It is very time consuming and therefore not feasible for
most practical use in real time.

Guo [15] used the CRR framework (Cox et al. [11]) to discretize the regime-switching
model (2.2) and developed a binomial tree approach for option pricing. Fuh and Wang
[14] presented a Monte Carlo simulation algorithm based on the discretized price model.
As noted by Buffington and Elliott [6], for a given realization of the Markov chain α(·)=
{α(t) : 0 ≤ t ≤ T}, the corresponding option price can be calculated by the usual Black-
Scholes formula in which the volatility and the interest rate are replaced by the sample
path values. In this section, we propose a semi-Monte Carlo algorithm for option pricing.
This approach only takes random sampling of the Markov chain and then takes advantage
of the availability of analytical formula (therefore exact) of the conditional price. The
numerical results presented in this section demonstrate that it is superior than both the
tree and the Monte Carlo simulation methods mentioned above.

Recall that from Section 2, �T denotes the σ-algebra generated by the Markov chain
α(t), 0≤ t ≤ T . Then the call option price can be calculated by

C(K)= E
{

exp
(
−
∫ T

0
r
(
α(t)

)
dt
)(
S(T)−K)+

}

= E
{
E
[
e−RT

(
S(T)−K)+ |�T

]}
.

(4.1)

The conditional expectation is given by the Black-Scholes formula, that is,

E
[
e−RT

(
S(T)−K)+ |�T

]
= S0e

−(RT−LT )N
(
d1
(
LT ,VT

))−Ke−RTN(d2
(
LT ,VT

))
, (4.2)

where

d1
(
LT ,VT

)= ln
(
S0/K

)
+LT + (1/2)VT√
VT

, d2
(
LT ,VT

)= d1
(
LT ,VT

)−√VT , (4.3)

andN(·) is the cumulative standard normal distribution function. We present Algorithm
4.1 for the semi-Monte Carlo simulation.

To implement the semi-Monte Carlo algorithm, we follow the method for sampling
Markov chains by Yin and Zhang [23, Section 4, Chapter 2].

We consider a two-state (m= 2) example. When the underlying Markov chain α(·) has
only two states, an analytical formula in terms of an integral with respect to the Bessel
function is developed by Guo [15] for the European call option prices. Fuh and Wang
[14] considered a specific example and compared various methods (binomial tree, Monte
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Table 4.1. Comparison of semi-Monte Carlo with other methods.

T (year) Analytical MC (error) Tree (error) FW-method (error) Semi-MC (error)

0.1 10.993 10.986 (0.007) 10.910 (0.083) 10.993 (0.000) 10.993 (0.000)

0.2 12.164 12.151 (0.013) 12.257 (−0.093) 12.166 (−0.002) 12.165 (−0.001)

0.5 15.614 15.592 (0.022) 15.497 (0.117) 15.639 (−0.025) 15.614 (0.000)

1.0 20.721 20.681 (0.040) 20.740 (−0.019) 20.811 (−0.091) 20.721 (0.000)

2.0 29.287 29.256 (0.031) 29.166 (0.121) 29.478 (−0.191) 29.291 (−0.004)

3.0 36.476 36.426 (0.050) 36.219 (0.257) 36.689 (−0.213) 36.481 (−0.005)

Carlo, and an approximation approach presented in their paper) with the analytical re-
sults. Here we consider the same example to compare the semi-Monte Carlo algorithm
with those methods.

Example 4.1. The parameters in this example are S0 = 100, K = 90, λ1 = λ2 = 1.0, μ(1)=
μ(2) = r(1) = r(2) = 0.1, σ(1) = 0.2, σ(2) = 0.3. The initial state α(0) = 1. N = 100000
replications are used in the semi-Monte Carlo simulations. Table 4.1 lists the numerical
results for a range of option expiry times.

In Table 4.1, the second column is the analytical prices, the third and fourth columns
list the results obtained by the Monte Carlo and the binomial tree methods based on the
discretized asset model, respectively, the fifth column has numbers obtained by the ap-
proximation approach presented by Fuh and Wang [14]. The results in those columns are
obtained in [14]. The last column reports the numerical results by using the semi-Monte
Carlo simulation algorithm presented in this section. The numbers in parentheses are the
differences between the analytical prices (exact values) and the approximate numbers.

It is clear from Table 4.1 that the semi-Monte Carlo simulation outperforms the other
three approximation methods. While most of the errors in the third to fifth columns
exceed 2 cents (the worst case is about a quarter), all the errors in the last column are at
most half cent, a clear indication of high accuracy. We also mention that Fuh and Wang
[14] used 50000000 replications in their Monte Carlo simulations to obtain the numbers.
We only used 100000 replications (1/50 of theirs) in the semi-Monte Carlo simulations
but achieved a much higher degree of accuracy.

5. Numerical experiments using FFT and near-optimal FFT

In this section, we report numerical results of using FFT and near-optimal FFT for op-
tion pricing developed in this paper. We use the semi-Monte Carlo simulation results
as benchmarks for comparisons. Two numerical examples are provided. The first one is
concerned with the FFT method and the second one is for the near-optimal FFT.

In implementing the FFT, we choose the number of grid points N = 4096 (212). That
is, we invoke the FFT procedure to calculate 4096 option prices simultaneously. The grid
size along the log strike price k is set to be Δk = 0.01. Consequently,Δu = 0.1534 by (2.39).
We choose the damping factor ρ to be ρ = 1.0 and use 100000 replications for the semi-
Monte Carlo simulations. All options considered in the examples have maturity T = 1
(year). The initial asset price S0 = $100.
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Table 5.1. Option prices using FFT and semi-Monte Carlo simulations.

ln
(
K/S0

)
(K)

Semi-MC FFT Semi-MC FFT

α(0)= 1 α(0)= 1 α(0)= 2 α(0)= 2

−0.3 (74.082) 34.774 34.774 (0.000) 34.742 34.742 (0.000)

−0.2 (81.873) 29.696 29.696 (0.000) 29.642 29.642 (0.000)

−0.1 (90.484) 24.764 24.764 (0.000) 24.688 24.689 (−0.001)

0 (100) 20.117 20.116 (0.001) 20.022 20.022 (0.000)

0.1 (110.517) 15.881 15.881 (0.000) 15.773 15.774 (−0.001)

0.2 (122.140) 12.158 12.157 (0.001) 12.042 12.043 (−0.001)

0.3 (134.986) 9.006 9.006 (0.000) 8.892 8.893 (−0.001)

5.1. FFT example. We consider a two-state Markov chain model. The parameters are
given by λ1 = 20, λ2 = 30, μ(1) = r(1) = 0.05, μ(2) = r(2) = 0.1, σ(1) = 0.5, σ(2) = 0.3.
Note that unlike Example 4.1, in this model, the parameters μ, σ , and r all vary with dif-
ferent states. Large jump rates λ1 and λ2 are chosen so that the system switches frequently
during the life of the options.

Table 5.1 reports the results for 7 call options with different strike prices (from deep-
in-the-money to at-the-money and to deep-out-of-money) obtained using FFT and the
semi-Monte Carlo simulations. Column one lists the log strike (the strike) for the op-
tions. Columns two to five list the FFT and semi-Monte Carlo simulation prices for both
α(0) = 1 and α(0) = 2. The numbers in parentheses are the differences between the two
approaches. We can see that the differences are very small (1/10 cent).

We used a notebook PC with Celeron CPU 2.40 GHz for the experiments. In each case
(α(0)= 1 and α(0)= 2), a single run of FFT algorithm produces 4096 option prices (each
one with a different strike price and all other parameters are the same). We used the semi-
Monte Carlo simulations to calculate the prices of the same 4096 option prices. We found
that it took about an hour for the semi-Monte Carlo simulation to finish the calculation,
while it took only a few seconds to run the FFT algorithm. This shows the clear advantage
of the FFT.

5.2. Near-optimal FFT example. We consider a four-state Markov chain αε(·) with state
space � = {s11,s12,s21,s22} and generator

Qε = 1
ε

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−λ1 λ1 0 0

λ2 −λ2 0 0

0 0 −λ1 λ1

0 0 λ2 −λ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−μ1 0 μ1 0

0 −μ1 0 μ1

μ2 0 −μ2 0

0 μ2 0 −μ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (5.1)

for some constants λ1, λ2, μ1, and μ2. The generator has two blocks. The stationary dis-
tributions are given by

ν1 = ν2 =
(

λ2

λ1 + λ2
,

λ1

λ1 + λ2

)

. (5.2)
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Table 5.2. Comparison between near-optimal FFT prices and benchmark prices (ε= 0.01).

ln
(
K/S0

)
(K)

Limit- Semi- Semi- Limit- Semi- Semi-

FFT MC MC FFT MC MC

α(0)= 1 α(0)= s11 α(0)= s12 α(0)= 2 α(0)= s21 α(0)= s22

−0.3 (74.082) 36.935 36.942 (0.007) 36.929 (−0.006) 36.733 36.737 (0.004) 36.730 (−0.003)

−0.2 (81.873) 32.057 32.063 (0.006) 32.051 (−0.006) 31.734 31.738 (0.004) 31.728 (−0.006)

−0.1 (90.484) 27.275 27.282 (0.007) 27.268 (−0.007) 26.832 26.836 (0.004) 26.830 (−0.002)

0 (100) 22.709 22.716 (0.007) 22.700 (−0.009) 22.156 22.163 (0.007) 22.153 (−0.003)

0.1 (110.517) 18.469 18.476 (0.007) 18.459 (−0.010) 17.831 17.838 (0.007) 17.826 (−0.005)

0.2 (122.140) 14.648 16.655 (0.007) 14.637 (−0.011) 13.959 13.965 (0.006) 13.954 (−0.005)

0.3 (134.986) 11.312 11.320 (0.008) 11.303 (−0.009) 10.613 10.619 (0.006) 10.608 (−0.005)

The generator of α(·), the limit Markov chain, is given by

Q =
⎛

⎝−μ1 μ1

μ2 −μ2

⎞

⎠ . (5.3)

The expected rate of return μ(α), the volatility σ(α), and the risk-free interest rate r(α),
at different states α= sk j ∈�, are chosen as

μ
(
s11
)= 0.03, μ

(
s12
)= 0.10, μ

(
s21
)= 0.05, μ

(
s22
)= 0.15,

σ
(
s11
)= 80%, σ

(
s12
)= 30%, σ

(
s21
)= 60%, σ

(
s22
)= 20%,

r
(
s11
)= 0.03, r

(
s12
)= 0.10, r

(
s21
)= 0.05, r

(
s22
)= 0.15.

(5.4)

The parameters in the generator Qε are set to be

λ1 = 5.0, λ2 = 3.0, μ1 = 4.0, μ2 = 2.5, ε = 0.01. (5.5)

We used the FFT to calculate the two-state limit prices as approximations to the true
prices, and used semi-Monte Carlo simulations for the original four-state model to obtain
benchmark prices. Table 5.2 reports the results on the 7 call options.

In Table 5.2, all but one option have errors within 1 penny. This clearly demonstrates
the effectiveness of the near-optimal FFT approach. In some applications, projection for
instance, where the exact numbers are not so critical but hundred and thousand op-
tions prices need to be estimated quickly, fast algorithms are especially needed. The near-
optimal FFT we presented in this paper is efficient and suitable for the intended applica-
tions since it can produce the results in a fast way with a very limited sacrifice in accuracy.

6. Concluding remarks

Fast Fourier transform (FFT) has been used for calculating option prices for a wide range
of asset price models. In this paper, we extended the technique to the class of regime-
switching diffusion models and developed the FFT scheme. When the number of states
of the driving Markov chain in the model is very large, the calculation of the characteristic
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function involved in the FFT approach becomes computationally intensive. To reduce the
computational burden, we presented a near-optimal FFT approach based on a two-time-
scale structure of the underlying model. It was shown by both mathematical analysis and
numerical experiments that the near-optimal values can be used to approximate the true
option values with satisfactory accuracy. The salient feature of this approach is that it
combines the speedup of FFT with the ability of structurally reducing the complexity
of the two-time-scale modelling and that results in an effective and efficient numerical
approximation algorithm for large-dimensional problems, which is a promising direction
for future research.
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