MODERATE DEVIATIONS FOR BOUNDED SUBSEQUENCES

GEORGE STOICA

Received 8 December 2005; Revised 14 April 2006; Accepted 21 April 2006

We study Davis’ series of moderate deviations probabilities for L?-bounded sequences of
random variables (p >2). A certain subseries therein is convergent for the same range of
parameters as in the case of martingale difference or i.i.d. sequences.
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1. Introduction and main results

Let (X,,) =1 be a sequence of random variables on a probability space (0, %,P) and p > 1
a fixed real number. We say that (X,),> is LP-bounded if it has finite pth moments,
that is, [|X,|l, < C for some C >0 and any n > 1. Let ¢ > 0; finding the rate of conver-
gence of the moderate deviations probabilities P[|>}_, Xk| > ea,] with a, = (nlogn)!/?
or (nloglogn)!/? is known in the literature as Davis’ problems. More precisely, let § =
d(p) = 0 be a function of p = 1 and consider the series

I~ 5 n

> (logn) P[ S X, >s(nlogn)1/2},

S = (1.1)
00 1 n *
ZP[ > Xk >s(n10glogn)”2}
i nlogn)’ | | =

the convergence of series (2.1) has been studied by Davis (see [7, 8]) and Gut (see [10])
when (X,),>1 are LP-bounded i.i.d. sequences, and by Stoica (see [14, 15]) when (X,,),=1
are LP-bounded martingale difference sequences.

In the sequel, we are interested in Davis’ theorems under the only assumption that
(Xu)u=1 is LP-bounded. Our results rely on the “subsequence principle,” that is, given
any sequence of LP-bounded random variables, one can find a subsequence that satisfies,
together with all its further subsequences, the same type of limit laws as do i.i.d. vari-
ables (or martingale difference sequences) with similar moment bounds. This principle
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2 Moderate deviations for bounded subsequences

was introduced by Chatterji (see [4—6]) and unifies results by Banach and Saks, Komlos,
Révész, Steinhaus in the context of law of large numbers, iterated logarithm, and central
limit theorem; extensions to exchangeable sequences were given by Aldous [1] and Berkes
and Péter [3]. Also note that Gut [11] and Asmussen and Kurtz [2] gave necessary and
sufficient requirements for subsequences to satisfy the famous Hsu- Robbins-Erdgs com-
plete convergence result related to the law of large numbers. Our results go a step further,
that is, we replace the i.i.d. assumption by LP-boundedness, and consider Davis normal-
izing factors >, (logn)?/nand X, 5(1/n(logn)®) instead of complete convergence. We
thus have the following.

THEOREM 1.1. Forany p >2 and LP-bounded sequence (X,) =1, there exist 1 <mnj; <mny - - -

such that the series
i logN )5 [

N
2. X

>s(N10gN)1/2] (1.2)

is convergent for any 0 < 6 < p/2 — 1 and any € > 0.

TaEOREM 1.2. Forany p = 2 and LP-bounded sequence (X,,)n>1, there exist 1 <mny <ny - - -
such that the series

N

12
. N logN [ &(NloglogN) } (1.3)

is convergent for any € > 0 if either 8 > 1, or § = 1 and p > 2.

If § = 1, Theorem 1.1 holds under the same hypotheses (i.e., p >4), as in the case of
martingale difference sequences (see [15]). In the i.i.d case, Theorem 1.1 holds for L2-
bounded centered sequences (see [7, 10]).

Theorem 1.2 holds under the same hypotheses as in the case of martingale difference
sequences (see [14]). In the i.i.d. case, slightly less than a second moment is needed:
E[X2log log" |X,|7"] < oo for some 0 < 7 < 1 (see [8, 10]), and for necessary moment
conditions, one may consult [13].

In the case of martingale difference sequences, Theorem 1.1 fails if § > p/2 — 1 and
Theorem 1.2 fails if 0 < § < 1 (see [14]), therefore Theorems 1.1 and 1.2 are the best
results one can expect in the L?-bounded case.

2. Proofs
Proof of Theorem 1.1. In the sequel we will make use of the so-called ¢,-inequality (see
[12, page 57]), which says that

EIX+Y|P <2P7Y(E|X|P +E|Y|F) (2.1)

for any random variables X,Y and p > 1. Throughout the paper, C denotes a constant
that depends on p and € (but not on k,7n,N), and may vary from line to line, even within
the same line.
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As (X,) =1 isbounded in L?, according to [9, Corollary IV.8.4], it is weakly sequentially
compact. Denote by (Y,).>1 a subsequence of (X,),>1 that converges weakly in L? to
some Y € LP. Subtracting Y from each element of (Y,),-1, we reduce the problem to a
sequence (Y,),>1 that converges weakly in L? to 0. Further, for any n > 1, we choose a
simple random variable Z, (i.e., Z, takes only a finite number of distinct values), such
that

1
1~ Zal, < 55 (22)

Using Markov’s inequality and (2.1), one has

) 1 N N
Z ogzg\] [ Z NlogN)l/z]
N=2 k=1
- 10gN)5 p/2 N p
et Z N1+p/2 kZ: Yo, (2.3)
=1
) _ p N p
(logN)a p/2 N (logN 8 p/2
< ( SRS N I L I .
N=2 k=1 N= k=1
According to (2.1), we have
N p N p
E|> (Y, -2 <2r7! <E|Ynl—an|p+E ~Zn) ) (2.4)
k=1 k=2
whence by iteration
N N
E| > (Y, -Z < > 2Ke-VElY,, ~Z, |7, (2.5)
k=1 k=1
and assumption (2.2) yields
N N N 4
E|> (Y, -2 Z P < Zz_k <1 foranyN >1, (2.6)
k=1 k=1 k=1

(we used that the subsequence (11 )k>1 is strictly increasing, so nx > k), therefore the last
series in (2.3) converges. To prove Theorem 1.1, it suffices to exibit a subsequence (7 )k=1
such that

(2.7)

One can see that (Z,),>1 also converges weakly in L? to 0. Indeed, for any Q € L4,
where 1/p + 1/q = 1, we have E(Z,Q) = E((Z, — Y,)Q) + E(Y,Q), and the first term on
the right-hand side tends to 0 by Hélder’s inequality and (2.1), while the second term
tends to 0 because Y, converges weakly in L? to 0.
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By induction, one may choose a subsequence of natural numbers 1 < n; <n, - - - such
that
. 1
ElZ, |Z,i€l] < % foreach I C {ny,...,nk_1}, (2.8)

where E[Z,, | Z;, i € I] denotes the conditional expectation of Z,, given the g-algebra
0(Zi, i € I) generated by (Z;)icr. This can be done because 0(Z;, i € I) consists of a finite
partition of Q, and as Z,, — 0 weakly in L?, we have [, Z,dP — 0 forany A in 0(Z;, i € ).

We now prove that (71 )k-1 is the required subsequence in (2.7). Indeed, one can write

Zy, = Vi + Wi, (2.9)

where E[Vi | Vi,...,Vi_1] = 0 and |Wy| < 1/2*. In particular, (Vi)=; is a martingale
difference sequence. Using Minkowski’s inequality, we deduce that

P 1/p P 1/}7 N p I/P
(E ) < (E Vi ) +(E > Wi ) . (2.10)
k=1

According to Burkholder and Holder’s inequalities, we have

N

2. Zn,

N

2.

N P N )22 N
E|> Vil < CE(ZV,?) < CNP2 1Y E| Vi |? < CNP2, (2.11)
k=1 k=1 k=1
Also,
N p N 1 P
E| > Wi| = (Zz—k> <1 foranyN=>1. (2.12)
k=1 k=1
Using (2.9)—(2.12), we obtain
o (logN)®~p?2 P/z ul (logN)>=P2 1) o logN )o-p/2
sz N1+p/2 kZZ” =C Z N1+p/2 N +1 z
= =1 = =2

(2.13)

The latter series in (2.13) is convergent if and only if § < p/2 — 1, thus (2.7) holds and
Theorem 1.1 is proved. O

Proof of Theorem 1.2. With the same notations and method as in the proof of Theorem
1.1, it suffices to prove the following analog of (2.7):

0 N p
1
E Zy < o0, 2.14
Nz:;N1+p/2(logN)S(loglogN)p/z kgl k ( )
Using (2.9)—(2.12), the series in (2.14) is dominated by
(N2 +1)? - 1
CNZZSN”P/z(logN)‘s(loglogN n =€ ZSN (logN)?(loglogN )P/ 215
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The latter series in (2.15) is convergent if and only if either § > 1, or § = 1 and p > 2; thus
(2.14) holds and Theorem 1.2 is proved. O
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