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We use some consequences of the concept of semihyperbolicity of the solution operator
to show robustness of solutions of the linear delay differential equation x′(t) = Ax(t) +
Bx(t− r) with infinite delay with respect to a small nonlinear perturbation.
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1. Introduction

The theory of continuous-time dynamical systems began with the study of qualitative
properties of the solutions of autonomous ordinary differential equations. It is the prin-
ciple mathematical technique for describing process that evolves continuously in time.
Usually, this qualitative behaviour is described in terms of the solution map of the differ-
ential equation defined on the state space. If the iterations of the time-1 map are consid-
ered, the resulting system is then called discrete-time dynamical system. Due to round-off

error, the approximated behaviour on long time intervals of the dynamical system using
numerical techniques is not expected to reflect the behaviour of the original system. The
concept of bishadowing provides a practical way of comparing the behaviour of the sys-
tem and its approximation, see [6, 7, 9]. This concept is usually used to obtain justification
of the validity of computation.

In this paper, we use bishadowing to obtain a comparison result of solutions of lin-
ear differential equation with infinite delay with respect to its nonlinear perturbation
in terms of the solution maps of the two equations defined on the state space Cγ. In
Section 2, we give some background material, while Section 3 will be devoted to the main
result.

Throughout this paper, E will always denote a Banach space with norm ‖ · ‖E.
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2 Robustness of solutions of infinite delay equation

2. Definitions and terminology

Consider a discrete-time dynamical system generated by iterations xn+1 = f (xn), of a
continuous map f : E → E, n ∈ Z, and n ∈ Z+ in case of semidynamical system. For
x0 ∈ E, let xn = f n(x0), where f n is the composition of f with itself n times, with f n =
( f −1)|n| if n < 0 and f is invertible. The forward trajectory through a point x0 ∈ E is the
set �+(x0) = { f n(x0) : n ≥ 0}. If f is invertible, then the backward trajectory is the set
�−(x0) = { f n(x0) : n ≤ 0}, in this case, we define the full trajectory of x0 under f to be
the set �(x0)= { f n(x0) : n∈ Z}. Similarly, a finite trajectory of the discrete-time dynam-
ical system generated by a map f is a finite sequence {xn} ⊂ E satisfying xn+1 = f (xn),
for n = −N−, . . . ,−1,0,1, . . . ,N+ where 0 ≤ N−,N+ <∞. A sequence {yn} ⊂ E is said to
be γ-pseudotrajectory, for γ > 0 if ‖yn+1 − f (yn)‖E ≤ γ, for n = −N−, . . . ,−1,0,1, . . . ,N+

where 0≤N−,N+ <∞. A trajectory {xn} is said to ε-shadow a γ-pseudotrajectory {yn} if
‖xn− yn‖E ≤ ε.

2.1. Condensing operators. The Hausdorff measure of noncompactness ψ(M) of a non-
empty bounded subset M of E is defined by

ψ(M)= inf{r > 0 :M can be covered by finitely many balls of radius r}. (2.1)

Note that ψ(M) = 0 if and only if M is relatively compact. Some properties of ψ are,
see [5]:

(1) if M1 ⊆M2, then ψ(M1)≤ ψ(M2);
(2) ψ(M1 +M2)≤ ψ(M1) +ψ(M2);
(3) ψ(kM)= |k|ψ(M), k ∈R.

Let X ⊂ E and f : X → E be continuous, then f is called ψ-condensing on X if ψ( f (M)) <
ψ(M) whenever M ⊂ X is bounded and not relatively compact. A condensing map f is
said to be χ-ψ-contracting for some 0 ≤ χ < 1 if ψ( f (M)) ≤ χψ(M). We will call a map
f : E→ E δ-locally χ-ψ-contracting on K ⊂ E if it is χ-ψ-contracting on each ball B[x,δ]
of radius δ centered at x ∈ K with B[ f (x),δ]∩K �= ∅. The δ-locally ψ-condensing map is
defined in the same way. A continuous map f : E→ E is completely continuous if it maps
bounded sets into a relatively compact sets.

For the following result, see [3].

Lemma 2.1. Let A : E→ E be a continuous linear operator which is χ-ψ-contracting on E
with 0≤ χ < 1. Then each λ∈ σ(A) with |λ| > χ is an eigenvalue ofAwith finite dimensional
eigenspace.

2.2. Semihyperbolic mappings. A subset K ⊂ E is said to be positively invariant with
respect to a continuous map f : E→ E provided that f (K)⊂ K and is said to be invariant
with respect to f if f (K)= K .

The definition of hyperbolicity for diffeomorphisms consists of strong conditions that
are very difficult to satisfy in many certain applications. Many generalizations of hyper-
bolicity were proposed, see, for example [12]. In [7], Diamond et al. gave a new gener-
alization of hyperbolicity called semihyperbolicity. Let s = (λs,λu,μs,μu) be a split, that
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is satisfy λs < 1 < λu and (1− λs)(λu − 1) > μsμu and K a subset of E. A Lipschitz map
f : E→ E is said to be s-semihyperbolic on the set K if there exist positive real numbers k,
δ and an equivalent norm ‖ · ‖ such that for each x ∈ K there exists a splitting E = Esx ⊕Eux
with corresponding projectors Psx and Pux satisfying the following properties:
(SH0) the space Eux is finite dimensional for all x and dim(Eux)= dim(Euf (x)) if x, f (x)∈

K ;
(SH1) supx∈K{‖Psx‖,‖Pux‖} ≤ k;
(SH2) the inequalities

∥
∥Psf (x)

(

f (x+u+ v)− f (x+ ũ+ v)
)∥
∥≤ λs‖u− ũ‖,

∥
∥Psf (x)

(

f (x+u+ v)− f (x+u+ ṽ)
)∥
∥≤ μs‖v− ṽ‖,

∥
∥Puf (x)

(

f (x+u+ v)− f (x+ ũ+ v)
)∥
∥≤ μu‖u− ũ‖,

∥
∥Puf (x)

(

f (x+u+ v)− f (x+u+ ṽ)
)∥
∥≥ λu‖v− ṽ‖

(2.2)

hold for all x ∈ K with f (x) ∈ K and all u, ũ ∈ Esx, v, ṽ ∈ Eux such that ‖u‖,‖ũ‖,
‖v‖,‖ṽ‖ ≤ δ.

Let

A
(

r1,r2
)= {z ∈ C : r1 ≤ |z| ≤ r2

}

, A0
(

r1,r2
)= {z ∈ C : r1 < |z| < r2

}

(2.3)

denote the closed annulus and the open annulus in the complex plane centered at the ori-
gin with interior and exterior radii r1 and r2, respectively. The following is a useful char-
acterization of continuous linear semihyperbolic operators A : E→ E, which was given in
[4].

Theorem 2.2. Let A : E→ E be a continuous linear operator. If
(1) A is χ-ψ-contracting and has no eigenvalues in the annulus A(w−,w+), where χ ≤

w− < 1 < w+, then A is semihyperbolic on all of E with a split (w−,w+,0,0);
(2) A is s-semihyperbolic on the singleton set {0} with a split s = (λs,λu,μs,μu), then A

is λs-ψ-contracting and has no spectral value in the open annulus A0(w−,w+), where
w± are defined by

w± = 1±min
{

1,
1
2

(

λu− λs−
√
(

λu− λs
)2− 4

(

1− λs
)(

λu− 1
)

+ 4μsμu

)}

. (2.4)

2.3. Shadowing properties. Shadowing properties are usually used to compare true tra-
jectories of the system with those obtained by numerical methods. The classical Shadow-
ing lemma says that, under certain assumptions on f , such as hyperbolicity, for every ε >
0 there exists a γ > 0 such that each γ-pseudotrajectory is ε-shadowed by a true trajectory.
This kind of shadowing is sometimes called direct shadowing. On the other hand, indi-
rect shadowing is motivated by the question whether every true trajectory can be approx-
imated by some γ-pseudotrajectory, see [13]. Diamond et al. [8] introduced a composite
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of the two concepts of shadowing in Rd, called bishadowing. Let Tr( f ,K ,γ) denote the
set of all finite or infinite γ-pseudo-trajectories of f that belong to a subset K ⊆ X. Since
a true trajectory is also a γ = 0 pseudotrajectory, the set of all finite or infinite trajectories
which belong to K will be denoted by Tr( f ,K ,0). Note that Tr( f ,K ,0)⊂ Tr( f ,K ,γ). We
use the seminorm

‖ϕ− f ‖∞ = sup
x∈E

∥
∥ϕ(x)− f (x)

∥
∥
E (2.5)

to measure the proximity of functions on E. We now state the definition of bishadowing
in the context of Banach spaces rather than in Rd with comparison maps is δ-locally
ψ-condensing maps, see [4].

Definition 2.3 [4]. A map f : E → E is said to be ψ-bishadowing on a subset K of E
with positive parameters α, β, and δ if for any given finite pseudotrajectory y = {yn} ∈
Tr( f ,K ,γ) with 0≤ γ ≤ β and any δ-locally ψ-condensing map ϕ : E→ E satisfying

γ+‖ϕ− f ‖∞ ≤ β, (2.6)

there exists a trajectory x = {xn} ∈ Tr(ϕ,E,0) such that

∥
∥xn− yn

∥
∥
E ≤ α

(

γ+‖ϕ− f ‖∞
)

(2.7)

for all n for which y is defined.

Theorem 2.4 [4]. Let f : E→ E be a Lipschitz map which is semihyperbolic on a subset K
of E with a split s= (λs,λu,μs,μu) and positive constants k and δ. Then it is ψ-bishadowing
on K for δ-locally ψ-condensing comparison map with bishadowing parameters

α(s,k)= k λu− λs +μs +μu
(

1− λs
)(

λu− 1
)−μsμu ,

β(s,k,δ)= δk−1

(

1− λs
)(

λu− 1
)−μsμu

max
{

λu− 1 +μs,1− λs +μu
} .

(2.8)

A restriction of the concept of ψ-bishadowing that uses χ-ψ-contracting comparison
maps is given in [4].

Definition 2.5 ((α,β,χ)-bishadowing). A map f : E→ E is said to be (α,β,χ)-bishadowing
on a subset K of E if for any finite pseudotrajectory y = {yn} ∈ Tr( f ,K ,γ) with 0≤ γ ≤ β
and any χ-ψ-contracting map D : E→ E satisfying

γ+‖D‖∞ ≤ β (2.9)
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there exists a trajectory x = {xn} ∈ Tr( f +D,E,0) such that
∥
∥xn− yn

∥
∥
E ≤ α

(

γ+‖D‖∞
)

(2.10)

for all n for which y is defined, where ‖D‖∞ = supx∈E ‖D(x)‖E.

3. Main results

Consider the linear delay differential equation with infinite delay

x′(t)=Ax(t) +Bx(t− r), (3.1)

where x(t) ∈ Rd, A and B are d× d matrices, and r is the time delay, 0 ≤ r ≤∞. To set
up the initial value problem for this equation, an initial function ϕ taken from a specified
initial state space needs to be specified on the interval [−r,0], where [−r,0]= (−∞,0] in
case r =∞.

In this paper, we consider the phase space Cγ, γ > 0, see [10, 11], as the state space for
(3.1). For any real number γ > 0, define

Cγ =
{

ϕ∈ C((−∞,0],Rd
)

: lim
θ→−∞

eγθϕ(θ) exists in Rd
}

(3.2)

with

‖ϕ‖Cγ = sup
{

eγθ
∣
∣ϕ(θ)

∣
∣ :−∞ < θ ≤ 0

}

, ϕ∈ Cγ. (3.3)

We will also consider the nonlinear perturbation of (3.1) of the form

y′(t)= Ay(t) +By(t− r) +G
(

y(t), y(t− r)), (3.4)

where y(t)∈Rd andG(·,·) : Cγ ×Cγ →Rd is continuous, uniformly bounded and locally
Lipschitz in its first variable. For each ϕ ∈ Cγ, (3.4) has a unique solution denoted by
y(t,ϕ,G) for t ≥−r that satisfies (3.4) for all t ≥ 0 and the condition y(t,ϕ,G)= ϕ(t) for
t ∈ [−r,0]. Let L(G) denote the set of all such solutions and L(0) the corresponding set of
solutions x(·,ϕ) of the linear equation (3.1). We will also use the notation x(t) and y(t)
to denote the solutions in L(0) and L(G), respectively.

Define the solution operator T(t) : Cγ → Cγ, t ≥ 0 of (3.1) by T(t)ϕ = xt(·,ϕ) and
that TG : Cγ → Cγ of (3.4) by TG(t)ϕ= yt(·,ϕ,G), where the function xt : [−r,0]→Rd is
defined by xt(θ)= x(t+ θ), for −r ≤ θ ≤ 0, and yt defined similarly. It is well known that
T(t) and TG(t), t ≥ 0, are semigroups of continuous operators. For ϕ∈ Cγ, let ϕ̂= {ψ ∈
Cγ : ‖ψ − ϕ‖Cγ = 0} be the equivalence class generated by ϕ and Ĉγ = {ϕ̂ : ϕ ∈ Cγ} the

quotient space. With the norm ‖ϕ̂‖Ĉγ = ‖ϕ‖Cγ , the space (Ĉγ,‖ · ‖Ĉγ) is a Banach space,

see [11]. Define operators T̂(t) and T̂G(t) on Ĉγ induced by T(t) and TG(t), respectively

by the formula T̂(t)ϕ̂= T(t)ϕ and T̂G(t)ϕ̂= TG(t)ϕ for ϕ∈ ϕ̂. Clearly, T̂(t) and T̂G(t) are
semigroups of continuous operators on Ĉγ.

Let S(t) : Cγ → Cγ, t > 0, and S(0)= I be the solution operator of the equation x′ = 0,
regarded as a delay equation. It is continuous and linear for each t ≥ 0. The following
representation of the solution operator T(t) can be found in [10].
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Lemma 3.1. The solution operator T(t) of (3.1) can be written as T(t)ϕ = S(t)ϕ+U(t)ϕ,
t ≥ 0, where U(t) : Cγ → Cγ is completely continuous.

Similar representation can be given for the operators TG(t), T̂(t), and T̂G(t) with the
corresponding component operators.

Define the characteristic matrix for (3.1) as�λ= λI −A−Be−λr and the characteristic
equation as

det�(λ)= 0. (3.5)

We will say that (3.1) has the saddle point property, see [11], if the space Ĉγ can be de-
composed as

Ĉγ = �̂s⊕ �̂u, (3.6)

where �̂u is finite dimensional and the semigroup T̂(t) can be defined on �̂u for all
t ∈ (−∞,∞) and satisfies

∥
∥T̂(t)ϕ̂

∥
∥
Ĉγ
≤ ceνt

∥
∥ϕ̂
∥
∥
Ĉγ

, t ≤ 0, ϕ̂∈ �̂u,
∥
∥T̂(t)ψ̂

∥
∥
Ĉγ
≤ ce−νt‖ψ̂‖Ĉγ , t ≥ 0, ψ̂ ∈ �̂s,

(3.7)

for some constants c > 0 and ν > 0.

Theorem 3.2 [11]. Suppose the characteristic equation det�(λ) = 0 has no roots on the
imaginary axis of the complex plane. Then (3.1) has a saddle point property.

Let T := T(r) : Cγ → Cγ and TG := TG(r) : Cγ → Cγ be the solution operators of (3.1)
and (3.4), respectively, defined by (Tϕ)(t)= x(t+ r,ϕ) and (TGϕ)(t)= y(t+ r,ϕ,G). Note
that by Lemma 3.1, we have the following decomposition of T :

Tϕ= Sϕ+Uϕ, (3.8)

where S := S(r), U := U(r), and U : Cγ → Cγ is completely continuous. The operators S
and U have the following representations, see [10],

(Sϕ)(t)=
⎧

⎨

⎩

ϕ(t+ r)−ϕ(0) if t+ r < 0,

0 if t+ r ≥ 0,

(Uϕ)(t)=
⎧

⎪⎨

⎪⎩

ϕ(0) if t+ r < 0,
∫ t+r

0

[

Aϕ(s) +Bϕ(s− r)]ds if t+ r ≥ 0.

(3.9)

The main result of the paper is then the following theorem.
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Theorem 3.3. Let the linear equation (3.1) has the saddle point property on Cγ with γ > 0
and let G(u,v) be locally Lipschitz in u. Then there exists a constant ζ > 0 with the following
properties:

(a) for each x(·) ∈ L(0) and for each uniformly bounded G(u,v) there exists a function
y(·)∈ L(G), satisfying the inequality

∣
∣y(t)− x(t)

∣
∣ < ζ sup

u,v

∣
∣G(u,v)

∣
∣, t ≥−r; (3.10)

(b) letG(u,v) be uniformly bounded and y(·)∈ L(G). Then there exists a function x(·)∈
L(0) satisfying (3.10).

This theorem demonstrates robustness of solutions of the linear equation (3.1) with
respect to solutions of the nonlinear equation (3.4), provided that G is “small.”

The following lemma is a slight modification of [1, Lemma 3.2], a proof is given in
[14], see also [4, 10].

Lemma 3.4. A nonzero complex number λ is in the point spectrum Pσ(T̂) of T̂ : Ĉγ → Ĉγ,
γ > 0, if and only if λ= ewr , where w is a solution of det�(λ)= 0.

Consider the closed subspace C0
γ of Cγ defined by

C0
γ =

{

ϕ∈ Cγ : ϕ(0)= 0
}

. (3.11)

Lemma 3.5. The solution operator T̂ : Ĉ0
γ → Ĉ0

γ of (3.1) is linear, bounded, and e−γr-ψ-
contracting.

Proof. The linearity of (3.1) implies that of T . For ϕ∈ C0
γ there exists x(·) := x(·,ϕ)∈ C0

γ

such that Tϕ= xr(·). By the decomposition (3.8), Tϕ= Sϕ+Uϕ. Since x(t) is a solution
of (3.1), then

x′(t+ r)eγ(t+r) = Ax(t+ r)eγ(t+r) +Bx(t)eγ(t+r), −r ≤ t ≤ 0. (3.12)

Integrating over the interval [−r, t], where −r ≤ t ≤ 0, we obtain

x(t+ r)eγ(t+r) = x(0) +
∫ t

−r
γx(s+ r)eγ(s+r)ds+

∫ t

−r
Ax(s+ r)eγ(s+r)ds+

∫ t

−r
Bx(s)eγ(s+r)ds.

(3.13)
Since x(0)= ϕ(0), we get

∣
∣x(t+ r)

∣
∣eγ(t+r) ≤ ‖ϕ‖C0

γ
+
(

γ+ |A|)
∫ t

−r

∣
∣x(s+ r)

∣
∣eγ(s+r)ds+ r|B|eγr‖ϕ‖C0

γ
. (3.14)

By Grownwall’s inequality

∣
∣x(t+ r)

∣
∣eγ(t+r) ≤ (1 + r|B|eγr)e(γ+|A|)r‖ϕ‖C0

γ
, (3.15)
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that is

‖Uϕ‖C0
γ
= ∥∥xr

∥
∥
C0
γ
≤ (1 + r|B|eγr)e(γ+|A|)r‖ϕ‖C0

γ
= K1‖ϕ‖C0

γ
, (3.16)

where K1 = (1 + r|B|eγr)e|A|r .
On the other hand, since ‖Sϕ‖C0

γ
= supt≤−r |ϕ(t+ r)|eγt and putting τ = t+ r we have

‖Sϕ‖C0
γ
= sup

τ≤0

∣
∣ϕ(τ)

∣
∣eγ(τ−r) = e−γr‖ϕ‖C0

γ
. (3.17)

Combining (3.16) and (3.17) we obtain

‖Tϕ‖C0
γ
≤ (K1 + e−γr

)‖ϕ‖C0
γ
, (3.18)

which shows that T is bounded. It remains to show that T is e−γr-ψ-contracting.
From (3.1), we have

∣
∣x′(t+ r)

∣
∣eγ(t+r) ≤ |A|∣∣x(t+ r)

∣
∣eγ(t+r) + |B|∣∣x(t)

∣
∣eγ(t+r)

+ |A|∣∣x(0)
∣
∣eγ(t+r) + |B|∣∣x(−r)∣∣eγ(t+r).

(3.19)

Since x(t)= ϕ(t), t ∈ [−r,0], we obtain

∣
∣x′(t+ r)

∣
∣eγ(t+r) = |A|eγr sup

−r≤t≤0

∣
∣xr(t)

∣
∣eγt + |B|eγr sup

−r≤t≤0

∣
∣ϕ(t)

∣
∣eγt

+ |A|eγr sup
−r≤t≤0

∣
∣ϕ(0)

∣
∣eγt + |B|eγr sup

−r≤t≤0

∣
∣ϕ(−r)∣∣eγt

≤ |A|eγr∥∥xr
∥
∥
C0
γ

+ |B|eγr‖ϕ‖C0
γ

+ |A|eγr‖ϕ‖C0
γ

+ |B|eγr‖ϕ‖C0
γ

≤ (|A|K1 + |A|+ 2|B|)eγr‖ϕ‖C0
γ
.

(3.20)

Thus

‖U ′ϕ‖C0
γ
= sup
−r≤t≤0

∣
∣(U ′ϕ)(t)

∣
∣eγt = sup

−r≤t≤0

∣
∣x′r(t)

∣
∣eγt ≤ K2‖ϕ‖C0

γ
, (3.21)

where K2 = |A|K1 + |A|+ 2|B|.
Let � = {ϕ∈ C0

γ : ‖ϕ‖C0
γ
≤ 1}. For each ϕ∈� and by virtue of the relations (3.16) and

(3.21), the functions U ′ϕ and Uϕ are uniformly bounded. The Arzelà theorem implies
that the set U� is precompact, and hence ψ(U�)= 0. Finally, by the relation (3.17),

ψ(T�)≤ ψ(S�) +ψ(U�)≤ e−γr . (3.22)

This shows that T is e−γr-ψ-contracting. �

Lemma 3.6. If (3.1) has the saddle point property, then the solution operator T̂ : Ĉ0
γ → Ĉ0

γ is
semihyperbolic.
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Proof. Since the solution operator T̂ : Ĉ0
γ → Ĉ0

γ of (3.1) is linear, bounded, and e−γr-
contracting operator, then each λ ∈ σ(T̂) with |λ| > e−γr is an eigenvalue of T̂ , that is,
belongs to the point spectrum Pσ(T̂) of T̂ , with finite dimensional eigenspace, see [3].
Define the sets E1 and E2 by

E1 =
{

λ∈ Pσ(T̂) : e−γr < |λ| < 1
}

, E2 =
{

λ∈ Pσ(T̂) : |λ| > 1
}

, (3.23)

which are finite sets. Let w− = max{|λ| : λ ∈ E1} and w+ = min{|λ| : λ ∈ E2}. There-
fore, there are no eigenvalues in the annulus A(w−,w+). Since, by Lemma 3.4, the set
of nonzero eigenvalues of the linear operator T̂ coincides with the set of complex num-
bers λ= ewr , where w is a solution of the characteristic equation, then, by Theorem 2.2,
T̂ is semihyperbolic on Ĉ0

γ with the split (w−,w+,0,0). �

The following lemma follows from Theorem 2.2.

Lemma 3.7. If (3.1) has the saddle point property, then the solution operator T̂ : Ĉ0
γ → Ĉ0

γ is

(α,β,χ)-bishadowing on Ĉ0
γ with α and β given by the relations (2.8) and for any χ < 1−w−.

In particular, if

γ >
1
r

ln
(

1
1−w−

)

, (3.24)

then the solution operator T̂ is (α,β,e−γr)-bishadowing on Ĉ0
γ with α and β given by (2.8).

Lemma 3.8. The solution operator T̂G : Ĉ0
γ → Ĉ0

γ of the nonlinear equation (3.4) is continu-
ous and e−γr-ψ-contracting.

Proof. By (3.8), write the operator TG as TGϕ = UGϕ + SGϕ, for ϕ ∈ C0
γ , where UG :=

UG(r) and SG := SG(r). Let ϕ, φ ∈ C0
γ and consider Y(t) = y(t,ϕ+ φ,G)− y(t,φ,G), t ≥

0, where y(t,ϕ + φ,G) and y(t,φ,G) are the solutions of the nonlinear equation (3.4)
through the initial functions ϕ+φ and φ, respectively. Note that Y(t) satisfies the equa-
tion

Y(t)= AY(t) +BY(t− r) +G
(

y(t,ϕ+φ,G), y(t− r,ϕ+φ,G)
)

−G(y(t,φ,G), y(t− r,φ,G)
) (3.25)

with initial condition Y(t) = ϕ(t), t ∈ [−r,0]. Calculations proceed in a similar way as
in the proof of Theorem 3.3, so we only give the main steps. Denote by LG the Lipschitz
constant of G in its first variable, then

∣
∣Y(t+ r)

∣
∣eγ(t+r) ≤ (1 + r|B|eγr + rLGeγr

)‖ϕ‖C0
γ

+
(

γ+ |A|)
∫ t

−r

∣
∣Y(s+ r)

∣
∣eγ(s+r)ds.

(3.26)

Using Grownwall’s inequality, |Y(t+ r)|eγ(t+r) ≤ (1 + r|B|eγr + rLGeγr)e(γ+|A|)r‖ϕ‖C0
γ
, and

hence

∥
∥UG

∥
∥
C0
γ
= ∥∥Yr

∥
∥
C0
γ
= sup
−r≤t≤0

∣
∣Yr(t)

∣
∣eγt ≤ K3‖ϕ‖C0

γ
, (3.27)
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where K3 = (1 + r|B|eγr + rLGeγr)e|A|r . On the other hand, for t ≥−r, we have
∣
∣(Uϕ)′(t)

∣
∣≤ |A|∣∣Y(t+ r)

∣
∣+ |B|∣∣Y(t)

∣
∣+ |A|∣∣Y(0)

∣
∣+ |B|∣∣Y(−r)∣∣

+
∣
∣G
(

y(t+ r,ϕ+φ,G), y(t,ϕ+φ,G)
)−G(y(t+ r,φ,G), y(t,φ,G)

)∣
∣

≤ |A|∣∣Y(t+ r)
∣
∣+ |B|∣∣ϕ(t)

∣
∣+ |A|∣∣ϕ(0)

∣
∣+ |B|∣∣ϕ(−r)∣∣+LG

∣
∣ϕ(t)

∣
∣.
(3.28)

So

∥
∥
(

UGϕ
)′∥
∥
C0
γ
= ∥∥Y ′r

∥
∥
C0
γ
= sup
−r≤t≤0

∣
∣Y ′r (t)

∣
∣eγt ≤ (|A|K3 + 2|B|+ |A|+LG

)‖ϕ‖C0
γ
. (3.29)

From the estimations (3.27) and (3.29), the functions (UGϕ)′ and UGϕ are uniformly
bounded. By Arzelà theorem, UG� is precompact, where � = {ϕ∈ C0

γ : ‖ϕ‖C0
γ
≤ 1}, and

hence ψ(UG�)= 0. Since ψ(SG�)= ψ(S�)≤ e−γr , we get

ψ
(

TG�
)≤ ψ(SG�

)

+ψ
(

UG�
)≤ e−γr . (3.30)

This proves that TG is e−γr-ψ-contracting, which ends the proof of the lemma. �

Lemma 3.9. There exists a positive constant c1 such that

∥
∥T̂Gϕ̂− T̂ϕ̂

∥
∥
Ĉ0
γ
≤ c1 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣ (3.31)

for ϕ̂∈ Ĉ0
γ , t ≥−r.

Proof. From (3.1) and (3.4) and for t ≥−r, we have

∣
∣
(

TGϕ
)

(t)− (Tϕ)(t)
∣
∣= ∣∣(UGϕ

)

(t)− (Uϕ)(t)
∣
∣

≤ |A|
∫ t

−r

∣
∣yr(s)− xr(s)

∣
∣ds+ |B|

∫ t

−r

∣
∣y(s)− x(s)

∣
∣ds

+
∫ t

−r

∣
∣G(u,v)

∣
∣ds

≤ |A|
∫ t

−r

∣
∣
(

TGϕ
)

(s)− (Tϕ)(s)
∣
∣ds+ r sup

u,v∈Rd

∣
∣G(u,v)

∣
∣.

(3.32)

Thus, by Grownwall’s inequality

∣
∣
(

TGϕ
)

(t)− (Tϕ)(t)
∣
∣≤ re|A|r sup

u,v∈Rd

∣
∣G(u,v)

∣
∣. (3.33)

That is

∥
∥TGϕ−Tϕ

∥
∥
C0
γ
≤ c1 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣, (3.34)

where c1 = re|A|r . Relation (3.31) then follows from relation (3.34), and the lemma is
proved. �
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Theorem 3.10. Let (3.1) have the saddle point property and let the function G be uniformly
bounded and satisfying

sup
u,v∈Rd

∣
∣G(u,v)

∣
∣≤ 1

r
e−(|A|+γ)r . (3.35)

Then there exists a constant c2 > 0 with the following properties:
(a) for each trajectory

x = {x0,x1, . . .
}

(3.36)

of the solution operator T̂ , there exists a trajectory

yG = {yG0 , yG1 , . . .
}

(3.37)

of the solution operator T̂G with

∥
∥xn− yGn

∥
∥
C0
γ
≤ c2 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣, n= 0,1, . . . ,N ; (3.38)

(b) for each trajectory (3.37) of the solution operator T̂G and for each positive integer N ,
there exists a trajectory (3.36) of the solution operator T̂ satisfying the relation (3.38).

Proof. Note that by Lemmas 3.5 and 3.8, the solution operators T̂ and T̂G are both con-
tinuous and e−γr-ψ-contracting operators. By Lemma 3.6, the operator T̂ is semihyper-
bolic with λs = w−, λu = w+, and μs = μu = 0 and hence by Lemma 3.7 is (α,β,e−γr)-
bishadowing with the corresponding values of α and β. By Lemma 3.9 there exists a con-
stant c1 > 0 such that

∥
∥T̂Gϕ− T̂ϕ

∥
∥
C0
γ
≤ c1 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣. (3.39)

It follows from the condition (3.35) that the operator T̂G − T̂ is e−γr-ψ-contracting on
Ĉ0
γ . We now apply Lemma 3.6 with f = T̂ and D = T̂G− T̂ . For any finite initial segment

of the given trajectory x = {x0,x1, . . .} of T̂ , that is, x ∈ Tr(T̂ , Ĉ0
γ ,γ1) with γ1 = 0 and if

sup
ϕ̂∈Ĉ0

γ

∥
∥T̂Gϕ̂− T̂ϕ̂

∥
∥
Ĉ0
γ
≤ β, (3.40)

there exists a finite initial segment of the trajectory y = {yG0 , yG1 , . . .} ∈ Tr(T̂G, Ĉ0
γ ,0) such

that

∥
∥xn− yGn

∥
∥
Ĉ0
γ
≤ α

(

γ1 + sup
u,v∈Rd

∥
∥T̂Gϕ̂− T̂ϕ̂

∥
∥
Ĉ0
γ

)

≤ αc1 sup
u,v∈Rd

∣
∣G(u,v)

∣
∣= c2 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣,

(3.41)
where c2 = αc1.
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Conversely, let x = {x0,x1, . . . ,xN} ∈ Tr(T̂G, Ĉ0
γ ,0) be a true trajectory of T̂G, then, for

n= 0,1, . . . ,N ,

∥
∥xn+1− T̂xn

∥
∥
Ĉ0
γ
≤ ∥∥xn+1− T̂Gxn

∥
∥
Ĉ0
γ

+
∥
∥T̂Gxn− T̂xn

∥
∥
Ĉ0
γ

= ∥∥T̂Gxn− T̂xn
∥
∥
Ĉ0
γ
≤ c1 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣.

(3.42)

This means that x ∈ Tr(T ,C0
γ ,γ2), where γ2 = c1 supu,v∈Rd |G(u,v)|. Now by takingD = f ,

there exists a trajectory yG = {yG0 , yG1 , . . . , yGN} ∈ Tr(T̂ , Ĉ0
γ ,γ1) such that

∥
∥xn− yn

∥
∥
Ĉ0
γ
≤ α

(

γ1 +‖T̂ − T̂‖Ĉ0
γ

)

= αγ1 = αc1 sup
u,v∈Rd

∣
∣G(u,v)

∣
∣= c2 sup

u,v∈Rd

∣
∣G(u,v)

∣
∣.

(3.43)
The proof is completed. �

Proof of Theorem 3.3. Recall that the iterates of the linear solution operator T̂ are given
by

(

T̂nϕ̂
)= x(t+nr, ϕ̂

)

, (3.44)

for −r ≤ t ≤ 0 and n= 0,1, . . . . So the proof of Theorem 3.3 is a consequence of Theorem
3.10. �

Remark 3.11. The bishadowing result of Theorem 2.4 is valid only for finite trajectories
and was extended for infinite trajectories in [2]. Consequently, the result of Theorem 3.10
is also valid for infinite trajectories. Thus by Theorem 3.3 we obtain the robustness of
solutions of (3.1) with respect to solutions of the nonlinear equation (3.4).
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