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The existence of a mean-square continuous strong solution is established for vector-
valued Itô stochastic differential equations with a discontinuous drift coefficient, which
is an increasing function, and with a Lipschitz continuous diffusion coefficient. A scalar
stochastic differential equation with the Heaviside function as its drift coefficient is con-
sidered as an example. Upper and lower solutions are used in the proof.
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1. Introduction

Existence theorems [9–12] for Itô stochastic differential equations

dXt = f
(
t,Xt

)
dt+ g

(
t,Xt

)
dWt, t ∈ [0,T], (1.1)

usually require that the drift and diffusion coefficients, f and g, be at least continuous (in
x) as well as satisfying a growth condition to prevent explosions. An example of Tanaka
(e.g., [12, page 71]) with zero drift and a discontinuous diffusion coefficient is known
to have no strong solution with zero initial value that is a solution corresponding to a
specified Wiener process in contrast to a weak solution where some other Wiener process
could be used. Moreover, Barlow [2] shows that a strong solution need not exist when the
diffusion process is only continuous. Krylov [7] and Krylov and Liptser [8] (see also the
references cited therein) have investigated existence issues for SDE with discontinuous
coefficients.

In contrast, here we consider the existence of mean-square continuous strong solu-
tions with a Lipschitz continuous diffusion coefficient but a discontinuous drift coeffi-
cient, such as in the scalar SDE

dXt =H(Xt)dt+dWt, (1.2)
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2 SDEs with discontinuous drift

where H :R→R is the Heaviside function, which is defined by

H(x) :=
⎧
⎨

⎩
0, x < 0,

1, x ≥ 0.
(1.3)

Such equations arise, for example, when one considers the effects of background noise on
switching systems or other discontinuous ordinary differential equations [5].

Several possible methods could be used here. Following Krylov, one could approx-
imate the drift coefficient by a sequence of smooth functions (e.g., sigmoidal-shaped
functions in the case of the Heaviside function). Alternatively, one could reformulate the
equation as a stochastic differential inclusion. However, here we will use a method based
on upper and lower solutions of stochastic differential equations.

2. Upper and lower solutions

We consider an Itô stochastic differential equation

dXt = f
(
t,Xt

)
dt+ g

(
t,Xt

)
dWt, t ∈ [0,T], (2.1)

with coefficients f : [0,T]×Rd → Rd and g : [0,T]×Rd → Rd×k, where Wt is a given
k-dimensional Wiener process.

Let (Ω,�,P) be a complete probability space and let {�t}t≥0 be the smallest filtration
generated by the Wiener process Wt.

By a strong solution of the SDE (2.1) on an interval [0,T] we mean a stochastic process
Xt which is �t-measurable for each t ∈ [0,T] with E‖Xt‖2 <∞ for all t ∈ [0,T] such that

Xt = X0 +
∫ t

0
f
(
s,Xs

)
ds+

∫ t

0
g
(
s,Xs

)
dWs, t ∈ [0,T], w.p.1. (2.2)

(It is assumed implicitly that the integrals on the right-hand side exist w.p.1.) Such a
strong solution is sample-path continuous when the coefficients f and g are sufficiently
regular, for example, satisfy a global Lipschitz condition.

Upper and lower solutions of an SDE (2.1) have been considered previously under
other names in [1, 9]. Conditions ensuring their existence were given in [1] and they
were used in the context of comparison theorems in [9] (see also [3]).

Definition 2.1. A �t-measurable stochastic process Zt is an upper solution of the SDE
(2.1) on the interval [0,T] if the inequality (interpreted component wise)

Zt ≥ Z0 +
∫ t

0
f
(
s,Zs

)
ds+

∫ t

0
g
(
s,Zs

)
dWs, t ∈ [0,T], (2.3)

holds with probability 1. If Zt satisfies the reversed inequality (i.e., with ≤), then Zt is a
lower solution.

Upper and lower solutions provide useful bounds on strong solutions of an initial
value problem for an SDE (2.1) and are often easier to determine explicitly. In the fol-
lowing theorem we show that a strong solution lying between lower and upper solutions
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exists in a special case which suffices later to prove the existence of a strong solution of an
SDE with a discontinuous drift coefficient. (Analogous definitions of upper, lower, and
strong solutions hold if the drift or diffusion coefficient is nonanticipatively random.)

Our first theorem can be considered as a comparison result that we will need in our
main result, that is, Theorem 3.1.

Theorem 2.2. Suppose that the mapping f : [0,T]×Ω→Rd is measurable and nonantic-

ipative with
∫ T

0 E‖ f (t,·)‖2dt <∞, that g : [0,T]×Rd → Rd×k is Lipschitz continuous and
satisfies the linear growth bound

∥
∥g(t,x)

∥
∥≤ K +L‖x‖, t ∈ [0,T], x ∈Rd, (2.4)

and that Zt and Yt are upper and lower solutions of the SDE

dXt = f (t,ω)dt+ g
(
t,Xt

)
dWt, t ∈ [0,T], (2.5)

on [0,T] with E‖Yt‖2 <∞, E‖Zt‖2 <∞, and Yt ≤ Zt for t ∈ [0,T], w.p.1. In addition,
suppose that X0 is �0-measurable with E‖X0‖2 <∞ and Y0 ≤ X0 ≤ Z0.

Then there exists a unique pathwise continuous strong solution Xt which satisfies Yt ≤
Xt ≤ Zt for t ∈ [0,T], w.p.1.

Proof. We define the functions p, r : [0,T]×Rd ×Ω→Rd by

p(t,x,ω) :=max
{
Yt(ω),min

{
Zt(ω),x

}}
,

r(t,x,ω) := p(t,x,ω)− x

1 +‖x‖2
,

(2.6)

and consider the stochastic differential equation

dXt =
(
f (t,ω) + r

(
t,Xt,ω

))
dt+ g

(
p
(
t,Xt,ω

))
dWt, t ∈ [0,T], (2.7)

for the given initial condition X0. This SDE has nonanticipative random coefficients

f̃ (t,x,ω) := f (t,ω) + r(t,x,ω),

g̃(t,x,ω) := g
(
p(t,x,ω)

)
,

(2.8)

which are Lipschitz continuous in x and satisfy a growth bound of the form

∥
∥ f̃ (t,ω)

∥
∥+

∥
∥g̃(t,x,ω)

∥
∥≤ K

(
1 + max

{∥∥ f (t,ω)
∥
∥,
∥
∥Yt(ω)

∥
∥,
∥
∥Zt(ω)

∥
∥})=: K̃t(ω), (2.9)

where the K̃t is nonanticipative with
∫ T

0 EK̃
2
s ds <∞. Thus, from [6, Chapter 5, Theorem

2.9] the SDE (2.5) has a unique strong solution Xt, which is pathwise continuous. (The
solution is also mean-square continuous, which is shown within the proof and is what we
need in the sequel.)
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We will now show that Yt ≤ Xt ≤ Zt for t ∈ [0,T], w.p.1. Suppose that there exists an
interval (t1, t2)⊂ [0,T] such that Xt1 = Yt1 and Xt ≤ Yt for t ∈ (t1, t2). Then

Xt −Yt ≥
∫ t

t1
r
(
s,Xs,ω

)
ds+

∫ t

t1

(
g
(
p
(
s,Xs,ω

))− g
(
Ys
))
dWs =

∫ t

t1
r(s,Xs,ω)ds≥ 0

(2.10)

for all t ∈ (t1, t2), since p(t,Xt,ω)≡ Yt in (t1, t2), so r(t,Xt ,ω)= (Yt −Xt)/(1 +‖Xt‖2)≥ 0,
which gives a contradiction. Thus, Xt ≥ Yt for all t ∈ [0,T]. Using the same argument we
can also prove that Xt ≤ Zt. That is, Xt is in fact a strong solution of the original SDE
(2.5). �

3. SDEs with discontinuous drift coefficient

We now restrict attention to the autonomous SDE

dXt = f
(
Xt
)
dt+ g

(
Xt
)
dWt, t ∈ [0,T], (3.1)

and assume that the drift coefficient is increasing, that is, f (x) ≤ f (y) whenever x ≤ y
(where the inequalities are interpreted componentwise), but need not be continuous. In
addition, we assume that the diffusion coefficient is Lipschitz continuous. This applies in
particular to the scalar SDE (1.2) with the Heaviside drift coefficient. We show that the
SDE (3.1) has a strong solution whenever it has an upper and a lower solution.

Theorem 3.1. Suppose that f , g :Rd →Rd and g :Rd →Rd×k both satisfy the linear growth
bound (2.4) and, in addition, that f is increasing and g is Lipschitz continuous. Moreover,
suppose that the SDE (3.1) has mean-square continuous upper and lower solutions Zt and Yt

on [0,T] with
∫ T

0 E‖ f (Yt)‖2dt <∞,
∫ T

0 E‖ f (Zt)‖2dt <∞, and Yt ≤ Zt for t ∈ [0,T], w.p.1.
Then the SDE (3.1) has at least one mean-square continuous strong solutionXt. Moreover,

Yt ≤ Xt ≤ Zt for t ∈ [0,T], w.p.1.

Proof. We define by � the space of all d-dimensional nonanticipative mean-square con-
tinuous stochastic process X = {Xt, t ∈ [0,T]} satisfying sup0≤s≤T E‖Xs‖2 <∞ with the
norm ‖X‖ := (sup0≤s≤T E‖Xs‖2)1/2, which is a Banach space.

We denote by � the order interval [Y ,Z] in �, that is, consisting of all X in � with
Yt ≤ Xt ≤ Zt for t ∈ [0,T], w.p.1, which is closed and bounded in the above norm. Using
the Lebesgue dominated convergence theorem, one can prove that a monotone sequence
that belongs to � converges in �. Thus, �, with the above norm, is a regularly ordered
metric space (for the definition, see [4, page 117]).

For any process U ∈�, it is clear that Y and Z are also mean-square continuous lower
and upper solutions for the SDE

dXt = f
(
Ut(ω)

)
dt+ g

(
Xt
)
dWt, t ∈ [0,T]. (3.2)

Thus, by Theorem 2.2, for any �0-measurable X0 with E‖X0‖2 <∞ and Y0 ≤ X0 ≤ Z0, the
SDE (3.2) has a mean-square continuous (in fact, pathwise continuous) unique strong
solution Xt, which satisfies Yt ≤ Xt ≤ Zt for all t ∈ [0,T], w.p.1.
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We define an operator S : �→� where X = S(U) is the unique mean-square continu-
ous strong solution of the SDE (3.2) corresponding to the stochastic process U ∈�. We
will apply [4, Corollary 3.2] to show that S has a fixed point, which is then the desired
solution. For this we only have to prove that S is an increasing map.

We will prove that if U (1) and U (2) are stochastic processes in � with U (1)
t ≤ U (2)

t for
all t ∈ [0,T] and if X (1) = S(U (1)), X (2) = S(U (2)), then X (1)

t ≤ X (2)
t for all t ∈ [0,T].

Let us choose stochastic processes U (1), U (2) in � with U (1)
t ≤ U (2)

t for all t ∈ [0,T]
and define X (1) = S(U (1)). Since the drift coefficient f is an increasing function, X (1)

t is a
lower solution of the SDE

Xt = X0 +
∫ t

0
f
(
U (2)

s

)
ds+

∫ t

0
g
(
Xs
)
dWs. (3.3)

But this problem has an upper solution, namely, the stochastic process Zt. Thus, by

Theorem 2.2, the SDE (3.3) has a mean-square continuous strong solution X (2)
t , which

satisfies X (1)
t ≤ X (2)

t ≤ Zt. Now X (2) = S(U (2)), so S is an increasing map as required and
thus, by [4, Corollary 3.2], has a fixed point X∗ = S(X∗)∈�, that is,

X∗t = X0 +
∫ t

0
f
(
X∗s
)
ds+

∫ t

0
g
(
X∗s
)
dWs (3.4)

with Yt ≤ X∗t ≤ Zt for all t ∈ [0,T], w.p.1. In particular, X∗t is nonanticipative and mean-
square continuous. �

We can apply Theorem 3.1 to the scalar SDE (1.2) with the Heaviside drift coefficient
f (x) =H(x) and diffusion coefficient g(x) ≡ 1. First we note that H(x) is an increasing
function and then that

X0 +
∫ t

0
dWs ≤ X0 +

∫ t

0
H
(
Xs
)
ds+

∫ t

0
dWs ≤ X0 +

∫ t

0
1ds+

∫ t

0
dWs (3.5)

for any sample path continuous, nonanticipative stochastic process Xt. Hence Yt := X0 +
Wt and Zt := X0 + Wt + t are lower and upper solutions for the Heaviside SDE (1.2).
Thus the Heaviside SDE (1.2) has at least one mean-square continuous strong solution
X∗t taking values between those of these lower and upper solutions, specifically with

X0 +Wt ≤ X∗t ≤ X0 + 1 +Wt, t ∈ [0,T], w.p.1. (3.6)
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