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We consider a class of queueing processes represented by a Skorokhod problem coupled
with a controlled point process. Posing a discounted control problem for such processes,
we show that the optimal value functions converge, in the fluid limit, to the value of an
analogous deterministic control problem for fluid processes.
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1. Introduction

The design of control policies is a major issue for the study of queueing networks. One
general approach is to approximate the queueing process in continuous time and space
using some functional limit theorem, and consider the optimal control problem for this
(simpler) approximating process. Using functional central limit theorems leads to heavy
traffic analysis; see for instance Kushner [1]. Large deviations analysis is associated with
the so-called “risk-sensitive” approach; see Dupuis et al. [2]. We are concerned here with
strong law type limits, which produce what are called fluid approximations.

The study of fluid limit processes has long been a useful tool for the analysis of queue-
ing systems; see Chen and Yao [3]. Numerous papers have considered the use of optimal
controls for the limiting fluid processes as an approach to the design of controls for the
“prelimit” queueing system. Avram et al. [4] is one of the first studies of this type. This
approach was originally justified on heuristic grounds. Recent papers have looked more
carefully at the connection between the limiting control problem and the queueing con-
trol problem. See, for instance, Meyn [5, 6], and Bäuerle [7].

To be more specific, suppose X(t) is the original queueing process, which depends on
some (stochastic) control uω(·). Its fluid rescaling is Xn(t)= (1/n) X(nt). The associated
control is unω(t)= uω(nt) and initial condition xn0 = (1/n) x0. For each value of the scaling
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Figure 1.1. An elementary network.

parameter n, we pose the problem of minimizing a generic discounted cost

Jn
(
xn0 ,unω(·))= E

[∫∞

0
e−γtL

(
Xn(t),unω(t)

)
dt
]

, γ > 0, (1.1)

over all possible (stochastic) controls unω(·). In the limit as n→∞ we will connect this
to an analogous problem for a controlled (deterministic) fluid process x(t) (see (3.10)
below):

J
(
x0,u(·))=

∫∞

0
e−γtL

(
x(t),u(t)

)
dt. (1.2)

This is to be minimized over all (deterministic) control functions u(·). We will show
(Theorem 5.1) that the minimum of Jn converges to the minimum of J as n→∞. This
is essentially the same result as Bäuerle [7]. We are able to give a very efficient proof
by representing the processes Xn(·) and x(·) using a Skorokhod problem in conjunc-
tion with controlled point processes. By appealing to general martingale representation
results of Jacod [8] for jump processes, we can consider completely general stochastic
controls. Bäuerle concentrated on controls of a particular type, called “tracking policies.”
Compared to [7], our hypotheses are more general in some regards and more restric-
tive in others. The benefit of our approach is the mathematical clarity of exhibiting all
the results as some manifestation of weak convergence of probability measures, especially
of probability measures on the space � of relaxed controls. The principle ideas of this
approach can all be found in Kushner’s treatment of heavy traffic problems [1].

Section 2 will describe the representation of Xn(·) in terms of controlled point pro-
cesses and a Skorokhod problem. A discussion of fluid limits in terms of convergence of
relaxed controls is given in Section 3. Sections 2 and 3 will rely heavily on existing lit-
erature to bring us as quickly as possible to the control problems themselves. Section 4
develops some basic continuity properties of the discounted costs Jn and J with respect
to initial condition and control. Then, in Section 5, we prove the main result on con-
vergence of the minimal values, and a corollary which characterizes all asymptotically
optimal stochastic control sequences unω(·). Our technical hypotheses will be described as
we encounter them along the way.
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2. Process description

An elementary example of the kind of network we consider is pictured in Figure 1.1.
There is a finite set of queues, numbered i= 1, . . . ,d. New customers can arrive in a subset
A of them. (For the example of the figure, the appropriate subset is A= {1,2}.) Arrivals
occur according to (independent) Poisson processes with rates λaj , j ∈ A. Each queue
is assigned to one of several servers Sm. For notational purposes, we let Sm denote the
set of queues i associated with it. (S1 = {1,2}, S2 = {3} in the figure.) Each customer in
queue i ∈ Sm waits in line to receive the attention of server Sm. When reaching the head
of the line, it requires the server’s attention for an exponentially distributed amount of
time, with parameter λsi . When that service is completed, it moves on to join queue i′ and
awaits service by the server that queue i′ is assigned to. The value of i′ for a given i is
determined by the network’s specific routing. We use i′ = ∞ if type i customers exit the
system after service. (In the example, 2′ = 3 and 1′ = 3′ = ∞.) We insist that the queues
be numbered so that i < i′. This insures that each class of customer will exit the system
after a fixed finite number of services. Thus, there are no loops in the network and the
routing is predetermined.

Each server must distribute its effort among the queues assigned to it. This service
allocation is described by a control vector u = (u1, . . . ,ud) with ui ≥ 0, constrained by
∑

i∈Sm ui ≤ 1 for each m. Thus in one unit of time, the customer at the head of the line
in queue i will receive ui time units of service. The set of admissible control values is
therefore,

U =
{
u∈ [0,1]d :

∑

i∈Sm
ui ≤ 1 for each m

}
. (2.1)

In general, a control will be a U-valued stochastic process uω(t). (The (·)ω serves as a
reminder of dependence on ω ∈ Ω, the underlying probability space, to be identified
below.) We want to allow uω(t) to depend on all the service and arrival events that have
transpired up to time t. In other words, X(t) and uω(t) should be adapted to a common
filtration �t. However, the remaining amount of unserviced time for the customers is
unknown to the controller at time t; it only knows the distributions of the arrival and
service times and how much service time each customer has received so far.

Let X(s) = (X1(s), . . . ,Xd(s)) be the vector of numbers of customers in the queues at
time s. We can express X(s) as

X(s)= x0 +
∑

j∈A
δaj N̂

a
j (s) +

d∑

i=1

δsi N̂
s
i (s), (2.2)

where x0 = X(0) is the initial state, N̂a
j (s), N̂ s

i (s) are counting processes which give the
total numbers of arrivals and services of the various types which have occurred on the
time interval (0,s], and δaj , δ

s
i are event vectors which describe the discontinuity X(s)−

X(s−) for each of the different types of arrivals and services. For a new arrival in queue
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j, δaj = (···0,
j

1,0···), and for service of a class i customer,

δsi =
(
···0,

i−1,0···0,
i′

+1,0···
)
. (2.3)

(If i′ = ∞, then the +1 term is absent.) For a given scaling level n let t = s/n be the rescaled
time variable. Let N̂n,a

j (t) = N̂a
j (nt), N̂n,s

i (t) = N̂ s
i (nt) be the counting processes on this

time scale. Then, we have

Xn(t)= xn0 +
1
n

[
X(nt)− x0

]
,

Xn(t)= xn0 +
1
n

∑

j∈A
δaj N̂

n,a
j (t) +

1
n

d∑

i=1

δsi N̂
n,s
i (t).

(2.4)

The difficulty with the representation (2.4) is that the N̂n,·
i (t) depend on the control

process which specifies their rates or “intensity measures,” but additionally on the past
realization of the Ni because (regardless of the control) we need to “turn off” N̂n,s

i when
Xn
i (t)= 0 — it is not possible to serve a customer in an empty queue. This last feature is

responsible for much of the difficulty in analyzing queueing systems. It imposes discon-
tinuities in the dynamics as a function of the state. A Skorokhod problem formulation
frees us of this difficulty, however. We can use controlled point processes Na

j (t), Ns
i (t) to

build a “free” queueing process Yn(t) as in (2.4), but without regard to this concern about
serving an empty queue, and then follow it with the Skorokhod map Γ(·), which simply
suppresses those jumps in Ns

i which occur when Xn
i (t)= 0. (We will see in the next sub-

section that there is no reason for Na
j (t), Ns

i (t) to retain the n-dependence of N̂n,a
j and

N̂n,s
i , hence its absence from the notation.) This gives us the following representation:

Yn(t)= xn0 +
∑

j∈A

1
n
δaj N

a
j (t) +

d∑

i=1

1
n
δsiN

s
i (t),

Xn(·)= Γ
(
Yn(·)).

(2.5)

The next subsection will describe the controlled point processes, and the subsection fol-
lowing it will review the Skorokhod problem.

We should note that not all queueing networks can be described this way. For a stan-
dard Skorokhod representation to be applicable, the routing i→ i′ must be prescribed
and deterministic. Fluid limit analysis is also possible if the routing is random: i→ i′ with
i′ chosen according to prescribed probabilities pii′ ; see Chen and Mandelbaum [9] and
Mandelbaum and Pats [10]. The formulation of Bäuerle [7] allows the routing proba-
bilities to depend on the control as well. The loss of that generality is a tradeoff for our
otherwise more efficient approach. On the other hand, Skorokhod problem representa-
tions are possible for some problems with buffer capacity constraints, so our formulation
provides the opportunity of generalization in that direction.

In the discussion above, we have viewed the initial position and control as those result-
ing from a given original X(t) by means of the rescaling: xn0 = (1/n)x0 and unω(t)= uω(nt).
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But we are not really interested in following one original control uω through this sequence
of rescalings. We are interested in the convergence as n→∞ of the minimal costs after op-
timizing at each scaling level. The control unω(·) which is optimal for scaling level nwill not
in general be a rescaled version of the optimal control un+1

ω (·) at the next level. So from
this point forward, the reader should consider the unω(·) to be any sequence of stochastic
controls, with no assumption that they are rescaled versions of some common original
control. They will all be chosen from the same set of progressively measurable U-valaued
stochastic processes, so as we discuss below the construction of the processes (2.5), we
will just work with a generic uω(t). Then, as we consider convergence of the minial val-
ues, we will consider a sequence unω(t) of such controls, selected independently for each
n in accord with the optimization problem. As regards the initial states xn0 , the principal
convergence result, Theroem 5.1, assumes that the (optimizied) Xn all start at a common
initial point: xn0 = x (or convergent sequence of initial points: xn0 → x). This means that
we also want to discard the presumption that xn0 are rescaled versions of some original
initial point, and allow the xn0 to be selected individually at each scaling level.

2.1. Free queueing processes and martingale properties. For purposes of this section
there is no need to distinguish between arrival and service events. We drop the super-
scripts (·)a and (·)s on λi and Ni(t), and simply enlarge the range of i to include both
types of events: 1≤ i≤m, where m= d + |A|. (We must also replace U by U ×{1}|A| as
the control space.) Thus the first equation of (2.5) becomes simply

Yn(t)= xn0 +
m∑

1

1
n
δiNi(t). (2.6)

The central object here is the (multivariate) stochastic point process N(t) = (Ni(t)) ∈
Rm, with intensities nλiui(t) determined by a progressively measurable control process
uω(t)= (ui(t)). Each ui(t)∈ [0,1] is bounded. (We have omitted the stochastic reminder
“(·)ω” here to make room for the coordinate index “(·)i.”) The fluid scaling parameter n
belongs in the intensity because the time scale t for Xn(t) = (1/n)X(nt) is related to the
original time scale s by nt = s. Later in the section, we identify the underlying probability
space and state an existence result.

Bremaud’s treatment [11] describes the relationship between Ni(t) and the intensities
as a special case of marked point processes, using the mark space E = {1, . . . ,m}. Each
component Ni(t) is piecewise constant with increments of +1, characterized by the prop-
erty that

∫ t

0

∑
Ci(s)dNi(s)−

∫ t

0

∑
Ci(s)nλiui(s)ds (2.7)

is a martingale for each vector of (bounded) predictable processes Ci(s). (See [11, Chap-
ter VIII D2 and C4] with H(s,k) = Ck(s).) We note that this formulation precludes si-
multaneous jumps among the different Ni. The interpretation of a marked point process
is that each jump time τn is associated with exactly one of the marks k ∈ E and only that
component of the point process is incremented: Nk(τn)= 1 +Nk(τn−), while for i �= k we
have Ni(τn) = Ni(τn−). (To allow simultaneous jumps, one would use a different mark
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space, E = {0,1}m say, with an appropriately formulated transition measure.) This is con-
sistent with our understanding that the arrival and service distributions are such that two
such events occur simultaneously only with probability 0.

We will address the existence of such Ni(t) given a control process uω(t) at the end
of this section; but first we continue to describe the essential properties of the associated
free queueing process Yn(t), constructed from Ni(t) and prescribed event vectors δi as in
(2.6). It follows that

Mn(t)= Yn(t)− xn0 −
∫ t

0

1
n

∑

i

δi nλiui(s)ds= Yn(t)− xn0 −
∫ t

0
v
(
uω(s)

)
ds (2.8)

is a (vector) martingale, null at 0. Here, v :U →Rd is the velocity function

v(u)=
∑

i

λiδiui, (2.9)

which will play a prominent role in the fluid limit processes below. We note that v(u) is
continuous and bounded. We will call Mn the basic martingale for the free queueing pro-
cess Yn with control uω(t). We see that Mn is the difference between Yn and a continuous
fluid process

x0 +
∫ t

0
v
(
uω(s)

)
ds. (2.10)

It is significant that the factors of n cancel leaving no n-dependence in the
∫
v(u) term.

However,Mn does depend on the fluid scaling parameter n, as is apparent in the following
result on its quadratic variation.

Lemma 2.1. The quadratic covariations of the components of Mn are given by

〈
Mn

j ,M
n
k

〉
(t)=

∫ t

0

1
n

∑

i

λiδi, jδi,kui(s)ds, (2.11)

where δi, j is the jth component of δi: δi = (δi,1, . . . ,δi,d) and ui ∈U .

We have been careful to use angle brackets which, following the usual convention,
distinguish the previsible quadratic covariation from the standard quadratic covariation
[Mn

j ,M
n
k ](t). The later is discontinuous whereverMn(t) is; see [12, Theorem IV.36.6]. The

right-hand side of the expression in the lemma is obviously continuous, which makes it
previsible, and thus the angle bracket process. Lemma 2.1 can be established in several
ways; see Kushner [1, Section 2.4.2] for one development. Because keeping track of the
proper role of the scaling parameter n can be subtle, we offer a brief independent proof.

Proof. Pick a pair of indices j, k; our goal is to show that

Mn
i (t)Mn

j (t)−
∫ t

0

1
n

∑

i

λiδi, jδi,kui(s)ds (2.12)
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is a martingale. Since Mn(t) is a process of finite variation, its square bracket process is
simply the sum of the products of its jumps, see [12, IV (18.1)]:

[
Mn

j ,M
n
k

]
(t)=

∑

0<s≤t
ΔMn

j (s)ΔM
n
k (s), (2.13)

which makes the following a (local) martingale:

Mn
i (t)Mn

j (t)−
[
Mn

j ,M
n
k

]
(t). (2.14)

For us, ΔMn
j (s)= ΔYn

j (s), and because there are no simultaneous jumps, it follows from
our equation (2.6) for Yn that

[
Mn

j ,M
n
k

]
(t)=

∑

i

1
n2
δi, jδi,kNi(t); (2.15)

but this is the left-hand side of (2.7) with Ci(s)= (1/n2)δi, jδi,k. It follows then that

[
Mn

j ,Mn
]
(t)−

∫ t

0

∑

i

1
n2
δi, jδi,knλiui(s)ds (2.16)

is also martingale. Combining (2.16) with (2.14), we see that (2.12) is a local martingale.
From the boundedness of the integral term in (2.12), it is relatively easy to apply Fatou’s
lemma to remove the “local.” �

The importance of the quadratic variation is that it provides the key to passing to
the fluid limit Mn → 0 with respect to the uniform norm on compacts in probability as
n→∞.

Corollary 2.2. Let M∗n(T) = sup0≤t≤T |Mn(t)|. There is a constant Cq (independent of
the control), so that

E
[
M∗n(T)2]≤ 1

n
CqT. (2.17)

Consequently, P(M∗n(T) > a)≤ (1/n)(TCq/a2)→ 0 as n→∞.

(Here and throughout, | · | denotes the Euclidean norm on Rd.)

Proof. This is just Doob’s inequality [13, Theorem II.70.1]:

E
[
M∗n(T)2]≤ 4E

[ d∑

1

〈
Mn

i ,Mn
i

〉
(T)
]
≤ T

n
Cq, (2.18)

where the last inequality follows from Lemma 2.1 if we pick Cq, so that 4d
∑

i λiδ
2
i,kui ≤ Cq

for each k = 1, . . . ,d and all u∈U . �

We now return to the issue of existence. If we are given uω(t) defined on some filtered
probability space, one might imagine various ways to construct from it a point process
N(t) with the desired property (2.7). However, we want to allow the control uω(t) to
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depend on the history Yn(s), 0 ≤ s < t of the queueing process Xn = Γ(Yn). If we build
N(t), and then Xn, after having fixed uω, then we will have lost the dependence of u
on Yn which we intended. The resolution of this dilemma is to prescribe both N(t) and
uω(t) in advance and then choose the probability measure to achieve (2.7). This is the
martingale problem approach. We are fortunate that it has been adequately worked out
by Jacod [8]. The key is to take a rich enough underlying probability space. In particular,
we take Ω to be the canonical space of paths for multivariate point processes: the generic
ω ∈Ω is ω = (α1(·), . . . ,αm(·)), where each αi(t) is a right continuous, piecewise constant
function with αi(0)= 0 and unit jumps. Define N(t,ω) to be the simple point evaluation:

N(t)=N(t,ω)= (α1(t), . . . ,αm(t)
)
, (2.19)

and take �t to be the minimal or natural filtration:

�t = σ
(
N(s), 0≤ s≤ t), (2.20)

and � = �∞. The fundamental existence and uniqueness result of Jacod, [8, Theorem
(3.6)], applied in our context, is the following.

Theorem 2.3. Suppose uω : Ω× [0,∞)→ U is a progressively measurable process defined
on the canonical filtered space (Ω,{�t}) described above. There exists a unique probability
measure Pn,uω on (Ω,�∞) such that the martingale property (2.7) holds.

In other words, with both uω(t) and N(t) defined in advance on Ω (thus preserving
any desired dependence of uω(t) on Yn(s), s≤ t), we can choose the probability measure
(uniquely) so that the correct distributional relationship between N(t) and uω(t) (as ex-
pressed by (2.7)) does hold. Thus, uω controls the distribution of N(·) by controlling the
probability measure, not by changing the definition of the process itself.

We thus consider an admissible stochastic control to be any progressively measurable
uω(t) ∈ U defined on the canonical filtered probability space (Ω,{�t}) of the theorem.
Given a scaling parameter n ≥ 1, this determines a unique probability measure Pn,uω so
that the canonical N(t)=N(t,ω) is a stochastic point process with controlled intensities
nλiui(t) as defined by (2.7). The free queueing process Yn(t) is now constructed as in
(2.5).

We can now see the basis of our remark just above (2.5) that there was no need for n
dependence in the counting processes of (2.5): the counting processes are always defined
in the same canonical way (2.19) on Ω, regardless of n and regardless of the control. Only
the probability measure Pn,uω itself actually depends on n and uω.

2.2. The Skorokhod mapping. With Ni(t) in hand and Yn(t) constructed as in (2.6), we
need to produce Xn(t) by selectively repressing those jumps in the Ns

i (t) which would
correspond to serving empty queues. Reverting to separate indexing for arrivals j ∈ A

and services 1 ≤ i ≤ d, we replace Ns
i (t) in (2.5) by Ñ s

i (t) = Ns
i (t)−Ki(t), whereKi(t) is
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the cumulative number ofNs
i jumps that have been suppressed up to time t. This will give

us

Xn(t)= x0 +
∑

j∈A

1
n
δaj N

a
j (t) +

∑

i

1
n
δsi Ñ

s
i (t)

= Yn(t)−
d∑

i=1

δsi
1
n
Ki(t)

= Yn(t) +Kn(t)(I −Q),

(2.21)

where I −Q is the matrix whose rows are the−δsi , andKn(t)= (1/n)(Ki(t)). The problem,
given Yn(t), is to find Xn(t) and Kn(t) so that Xn

i (t)≥ 0 and the Kn
i (t) are nondecreasing

and increase only when Xn
i (t)= 0.

This is the Skorokhod problem in the nonnegative orthant Rd
+ as formulated by Har-

rison and Reiman [14]. Although Harrison and Reiman only considered this for con-
tinuous “input” Yn(t), Dupuis and Ishii [15] generalized the problem to right contin-
uous paths with left limits and more general convex domains G. We consider G = Rd

+

exclusively here, but describe the general Skorokhod problem in the notation of [15].
Given ψ(t) = Yn(t), we seek φ(t) = Xn(t) ∈ G and η(t) = Kn(t)(I −Q) with total varia-
tion |η|(t), satisfying the following properties:

(a) φ= ψ +η;
(b) φ(t)∈G for t ∈ [0,∞);
(c) |η|(T) <∞ for all T ;
(d) |η|(t)= ∫(0,t] 1∂G(φ(s))d|η|(s);
(e) there exists measurable γ : [0,∞)→Rk such that

η(t)=
∫

(0,t]
γ(s)d|η|(s), γ(s)∈ d(φ(s)) for d|η| almost all s. (2.22)

For x ∈ ∂Rd
+, d(x) is the set of all convex combinations of −δsi for those i with xi = 0.

Dupuis and Ishii show that the Skorokhod problem is well-posed and the solution map
ψ(·) 
→ φ(·) = Γ(ψ(·)) has nice continuity properties. (In general, this requires certain
technical hypotheses, [15, Assumptions 2.1 and 3.1]. But one can check using [15, The-
orems 2.1 and 3.1] that these are satisfied in our case of G=Rd

+ with −δsi .) The essential
well-posedness and continuity properties of the Skorokhod problem are summarized in
the following result, a compilation of results of [15]. DG denotes the space of all right
continuous functions in Rd

+ with left limits; see Section 3.

Theorem 2.4. The Skorokhod problem as stated above has a unique solution for each right
continuous ψ(·) with ψ(0)∈G bounded variation on each [0,T]. Moreover, the Skorokhod
map Γ is Lipschitz in the uniform topology. That is, there exists a constant CΓ so that for any
two solution pairs φi(·)= Γ(ψi(·)) and any 0 < T <∞,

sup
[0,T]

∣
∣φ2(t)−φ1(t)

∣
∣≤ CΓ sup

[0,T]

∣
∣ψ2(t)−ψ1(t)

∣
∣. (2.23)

Γ has a unique extension to all ψ ∈DG with ψ(0)∈Rd
+, which also satisfies (2.23).
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Observe that if φ(·), η(·) solve the Skorokhod problem for ψ(·) then φ(·∧ t0), η(·∧
t0) solve the Skorokhod problem for ψ(·∧ t0). As a consequence, we find that

sup
[t0,T]

∣
∣φ(t)−φ(t0)

∣
∣≤ CΓ sup

[t0,T]

∣
∣ψ(t)−ψ(t0)

∣
∣. (2.24)

Several additional properties of φ = Γ(ψ) follow from (2.24).
(i) If ψ(t) satisfies some growth estimate (linear for example), then so will φ(t), just

with an additional factor of CΓ in the coefficients.
(ii) If ψ(t) is right continuous with left limits, then so is φ(t).

(iii) If ψ(t) is absolutely continuous, then so is φ(t).
As noted, the Skorokhod problem can be posed for more general convex polygonsG in

place of G=Rd
+, subject to some technical properties [15]. The use of more complicated

G allows certain problems with finite buffer capacities to be modelled using (2.5). See
[16] for instance. Although we are only considering G = Rd

+ here, the point is that this
approach can be generalized in that direction.

3. Weak convergence, relaxed controls, and fluid limits

Now that the issues of existence and representation have been addressed, we can consider
convergence in the fluid limit n→∞. This involves the notion of weak convergence of
probability measures on a metric space at several levels. We appeal to Ethier and Kurtz
[17] for the general theory. In brief, if (S,�(S)) is a complete separable metric space with
its Borel σ-algebra, let �(S) be the set of all probability measures on S. A sequence Pn
converges weakly in �(S), Pn⇒ P if for all bounded continuous Φ : S→R,

EPn[Φ]→ EP[Φ]. (3.1)

This notion of convergence makes �(S) into another complete separable metric space.
A sequence Pn of such measures is relatively compact if and only if it is tight: for every
ε > 0 there is a compact K ⊆ S with Pn(K)≥ 1− ε for all n. In particular, if Pn is weakly
convergent, then it is tight. Moreover, if S itself is compact, then every sequence is tight,
and it follows that �(S) is also a compact metric space.

Our processes Yn(t) and Xn(t), 0 ≤ t are right continuous processes with left limits,
taking values in Rd and G, respectively. The space(s) of such paths are typically denoted
D. We will use the notations

DRd =D
(
[0,∞);Rd

)
, DG =D

(
[0,∞);G

)
(3.2)

to denote the Rd-valued and G-valued versions of this path space, respectively. The Sko-
rokhod topology makes both of these complete, separable metric spaces. We will use
ρ(·,·) to refer to the metric. It is important to note that ρ is bounded in terms of the
uniform norm on any [0,T]. Specifically, from [17, Chapter 5 (5.2)] (where d(·,·) is
used instead of our ρ(·,·)), we have that

ρ
(
x(·), y(·))≤ sup

0≤t≤T

∣
∣x(t)− y(t)

∣
∣+ e−T . (3.3)
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In other words, uniform convergence on compacts implies convergence in the Skorokhod
topology.

Weak convergence of Xn or Yn is understood as weak convergence as above using the
metric space DG or DRd , respectively. Thus, when we say that a queueing process Xn(·)
converges weakly to a fluid process x(·), Xn(·)⇒ x(·) (as we will in Theorem 3.4 below),
we mean that their distributions converge weakly as probability measures onDG, in other
words,

E
[
Φ
(
Xn(·))]−→ E

[
Φ
(
x(·))] (3.4)

for every bounded continuous Φ : DG → R. If these processes are obtained from the
Skorokhod map applied to some free processes Xn(·) = Γ(Yn(·)) and x(·) = Γ(y(·))
(see (2.5) and (3.10)), then it is sufficient to prove weak convergence of the free pro-
cesses: Yn(·) ⇒ y(·). This is because the Skorokhod map is itself continuous with re-
spect to the Skorokhod topology. In brief, the reason is as follows. The Skorokhod metric
ρ(ψ1(·),ψ2(·)) is obtained by applying a monotone, continuous time shift s= λ(t) to one
of the two functions, and then looking at the uniform norm of ψ1(·)−ψ2 ◦ λ(·). Such
monotone time shifts pass directly through the Skorokhod problem: if φ2 = Γ(ψ2), then
φ2 ◦ λ= Γ(ψ2 ◦ λ). By applying (2.23), we are led to

ρ
(
φ1,φ2

)≤ CL ρ
(
ψ1,ψ2

)
, (3.5)

whenever φi = Γ(ψi), ψi ∈DRd ∩BV, where BV is the set of functions in Rd of finite vari-
ation. Returning to (3.4), Φ◦Γ is continuous so (3.4) follows from

E
[
Ψ
(
Yn(·))]−→ E

[
Ψ
(
y(·))] (3.6)

for all bounded continuous Ψ :DRd →R.
Thus, to establish a weak limit for a sequence of Xn with representations (2.5), corre-

sponding to a sequence unω(·) of controls, it is enough to establish weak convergence of the
free processes Yn. The decomposition (2.8), and the result that Mn → 0 (Corollary 2.2)
means the convergence boils down to that of the fluid components

yn(t)= x0 +
∫ t

0
v
(
unω(s)

)
ds. (3.7)

So the remaining ingredient is an appropriate topology on the space of controls. The
above suggests that convergence of integrals of continuous functions again provides the
right idea. This leads us naturally to the space of relaxed controls.

An (individual) relaxed control is a measure ν defined on ([0,∞)×U ,�([0,∞)×U))
with the property that ν([0,T]×U) = T for all T . � will denote the space of all such
relaxed controls. A (deterministic) control function u(·) : [0,∞)→U (Borel measurable)
determines a relaxed control ν∈� according to

ν(A)=
∫

1A
(
s,u(s)

)
ds (3.8)
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for any measurable A⊂ [0,∞)×U . The ν that arise in this way, from some deterministic
u(t), will be called standard relaxed controls.

Each (1/T)ν is a probability measure when restricted to [0,T]×U , and so can be
considered with respect to the notion of weak convergence of such measures described
above. By summing the associated metrics (×2−N ) over T = N = 1, . . . , we obtain the
usual topology of weak convergence on �. (See Kushner and Dupuis [18] for a concise
discussion and further references to the literature.) This means that a sequence converges
νn→ ν in � if and only if for each continuous f : [0,∞)×U →R with compact support,
we have

∫
f dνn →

∫
f dν. Since ν({T}×U) = 0 ([0,T]×U is a a ν-continuity set in the

terminology of [17]), this is equivalent to
∫

[0,T]×U
f (t,u)dνn −→

∫

[0,T]×U
f (t,u)dν (3.9)

for each continuous f : [0,∞)×U → R and each 0 ≤ T <∞. With this topology, and
since our U is compact, � is a compact metric space. Even though the standard controls
do not account for all of �, they are a dense subset. This fact is sometimes called the
“chattering theorem.”

Theorem 3.1. The standard controls are dense in �.

At this stage, we can collect a simple consequence of our discussion, which will be
important for our fluid limit analysis. If x0 ∈G and ν∈�, define the fluid process xx0,ν(·)
by analogy with (2.5):

yx0,ν(t)= x0 +
∫

(0,t]×U
v(u)dν,

xx0,ν(·)= Γ
(
yx0,ν(·)).

(3.10)

Lemma 3.2. The map (x0,ν) 
→ xx0,ν(·) ∈ DG defined by (3.10) is jointly continuous with
respect to x0 ∈G and ν∈�.

Proof. Suppose xn0 → x0 in G and νn→ ν in �. We want to show that xxn0 ,νn(·)→ xx0,ν(·) in
DG. By our discussion above, it suffices to show that yxn0 ,νn → yx0,ν uniformly on any [0,T].
The convergence of νn in the � topology implies the convergence of yxn0 ,νn(t) to yx0,ν(t)
for every t; see (3.9) and (3.10) . Since v(u) is bounded, the yxn0 ,νn are equicontinuous.
This is enough to deduce uniform convergence of yxn0 ,νn(t) to yx0,ν(t) on [0,T]. �

Next, consider an admissible stochastic control uω(t). The relaxed representation (3.8)
produces an �-valued random variable (defined on (Ω,�,Pn,uω(·))), which we will de-
note νω. As an �-valued random variable, νω has a distribution Λ on �. Since � is a
compact metric space, every sequence Λn of probability measures on � is tight and thus
has a weakly convergent subsequence: Λn′ ⇒Λ. In other words, given any sequence νnω of
stochastic relaxed controls (associated with a sequence of admissible stochastic controls
unω), there is a subsequence n′ and a probability measure Λ on �, so that

E
[
Φ(νn

′
ω )
]−→

∫

�
Φ(ν)dΛ(ν), (3.11)

holds for all bounded continuous Φ : �→R. The following lemma will be useful.
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Lemma 3.3. Suppose xn0 → x0 in G and Λn⇒Λ in �(�). Then, δxn0 ×Λn⇒ δx0 ×Λ weakly
as probability measures on G×�.

This is well known; see Billingsley [19, Theorem 3.2]. These observations lead us to
the following basic fluid limit result, which will be the foundation of the convergence of
the value functions in the next section.

Theorem 3.4. Suppose that Xn is the sequence of queueing processes corresponding to se-
quences xn0 ∈G of initial conditions and unω(·) of admissible stochastic controls. Let νnω be the
stochastic relaxed controls determined by the unω(·) and Λn their distributions in �. Suppose
xn0 → x0 in G and Λn ⇒ Λ weakly in �. Then, Xn converges weakly in DG to the random
process defined on (�,�(�),Λ) by ν∈� 
→ xx0,ν according to (3.10).

Some clarification of notation is in order here. The process Xn = Γ(Yn) and its as-
sociated control process unω are defined on the probability space Ω of Theorem 2.3, and
ω ∈ Ω denotes the generic “sample point.” The associated probability measure on Ω is
Pn,unω . Thus, expressions such as E[Φ(Yn)] below and (4.3) of the next section are to be
understood as expectations with respect to Pn,unω of random variables defined on Ω. Like-
wise νnω is an �-valued random variable, still defined on Ω with distribution determined
by Pn,unω . Although we might have written EP

n,unω [·], we have followed the usual conven-
tion of using only E[·], considering it clear that the underlying probability space for Yn

or Xn must be what is intended. In the last line of the theorem the perspective changes,
however. There we are viewing xx0,ν = Γ(yx0,ν) as random processes with � itself as the
underlying probability space (not Ω) and ν∈� as the generic “sample point.” There no
longer remains any dependence of xx0,ν or ν on ω ∈Ω. If Λ is the probability measure on
�, we have used the notation EΛ[·] to emphasize this change in underlying probability
space.

Proof. As explained above, it is enough to show weak convergence inD([0,∞)) of the free
processes Yn to yx0,ν (with ν distributed according to Λ). Consider an arbitrary bounded
continuous Φ defined on DRd . We need to show that

E
[
Φ(Yn)

]−→ EΛ
[
Φ(yx0,ν)

]
. (3.12)

Our martingale representation of the free queueing process Yn can be written

Yn = yxn0 ,νnω +Mn. (3.13)

From Lemma 3.2, we know that Ψ :G×�→R defined by Ψ(x0,ν)=Φ(yx0,ν) is bounded
and continuous. It follows from Lemma 3.3 that δxn0 ×Λn⇒ δx0 ×Λ and therefore

E
[
Φ
(
yxn0 ,νnω

)]= Eδxn0×Λn

[Ψ]−→ Eδx0×Λ[Ψ]= EΛ[Φ
(
yx0,ν

)]
. (3.14)

In other words yxn0 ,νnω ⇒ yx0,ν, where ν is distributed over � according to Λ.
Because of Corollary 2.2 and the domination ρ by the uniform norm as in (3.3), we

know that Mn ⇒ 0 in D([0,∞)). It follows from this that Yn → yx0,ν; see [20, Lemma
VI.3.31]. �
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4. The control problem and continuity of J

So far we have just considered the processes themselves. As we turn our attention to the
control problem, we need to make some hypotheses on the running cost function L. We
assume that L :G×U →R is jointly continuous, and there exists a constant CL so that for
all x, y ∈G and all u∈U ,

∣
∣L(x,u)−L(y,u)

∣
∣≤ CL|x− y|. (4.1)

In contrast to [7], no convexity, monotonicity, or non-negativity are needed. Notice that
(4.1) makes {L(·,u) : u∈U} equicontinuous. Also, by fixing some reference y0 ∈G, the
Lipschitz property of L implies a linear bound for the x-dependence of L, uniformly over
u∈U :

|L(x,u)| ≤ CL(1 + |x|), x ∈G. (4.2)

Reference [7] allows more general polynomial growth. That could be accommodated in
our approach as well by extending Corollary 2.2 to higher order moments.

We now state formally the two control problems under consideration. The discount
rate γ > 0 is fixed throughout. First is the (fluid-scaled) stochastic control problem for scal-
ing level n and initial position xn0 ∈G: minimize the discounted cost

Jn
(
xn0 ,uω(·))= E

[∫∞

0
e−γtL

(
Xn(t),uω(t)

)
dt
]

(4.3)

over admissible stochastic controls uω(·). (As per the paragraph following Theorem 3.4,
expectation is understood to be with respect to Pn,uω .) The value function is

Vn(xn0 )= inf
uω(·)

Jn
(
xn0 ,uω(·)). (4.4)

Next is the fluid limit control problem. Here it is convenient to consider arbitrary relaxed
controls rather than just standard controls. Recall the definitions (3.10). The problem is
to minimize

J
(
x0,ν

)=
∫

[0,∞)×U
e−γtL

(
xx0,ν(t),u

)
dν(t,u) (4.5)

over all relaxed controls ν∈�. The value function for the fluid limit control problem is

V(x0)= inf
ν∈�

J(x0,ν). (4.6)

Although we are minimizing over all relaxed controls, the infimum is the same if lim-
ited to standard controls. This follows since the standard controls are dense in � and
Lemma 4.1 below will show that J is continuous with respect to ν.

4.1. Estimates. We will need some bounds to insure the finiteness of both Jn(xn0 ,uω(·))
and J(x0,ν). For a given stochastic control uω(·), with relaxed representation νω, let
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yxn0 ,νω(t) denote the “fluid component” of Yn(t):

yxn0 ,νω(t)= xn0 +
∫

[0,t]×U
v(u)dνω(s,u). (4.7)

(This is just the free fluid process of (3.10) using the randomized relaxed control νω.) By
(2.8),

Yn(t)= yxn0 ,νω(t) +Mn(t), (4.8)

whereMn is the basic martingale of Lemma 2.1. SinceU is compact, the velocity function
(2.9) is bounded:

∣
∣v(u)

∣
∣≤ Cv. (4.9)

Therefore, yxn0 ,νω grows at most linearly:

∣
∣yxn0 ,νω(t)− xn0

∣
∣≤ Cvt. (4.10)

Let M∗n(t)= sup0≤s≤t |Mn(t)| be the maximal process of Corollary 2.2. It follows that on
each [0,T], we have the uniform bound

∣
∣Yn(t)− xn0

∣
∣≤ CvT +M∗n(T). (4.11)

By (2.24) it follows that

∣
∣Xn(t)

∣
∣≤ ∣∣xn0

∣
∣+CΓ

(
Cvt+M∗n(t)

)
, (4.12)

and therefore,
∣
∣L(Xn(t),uω(t))

∣
∣≤ CL

(
1 +
∣
∣xn0

∣
∣+CΓ

(
Cvt+M∗n(t)

))

≤ C(1 +
∣
∣xn0

∣
∣+ t+M∗n(t)

) (4.13)

for a new constant C, independent of control and initial position. Using Corollary 2.2, we
deduce the bound

E
[∣∣L

(
Xn(t),uω(t)

)∣∣]≤ C
(

1 +
∣
∣xn0

∣
∣+ t+

(
t

n
Cq

)1/2
)

. (4.14)

This implies that Jn(xn0 ,uω(·)) is finite. Moreover, it follows from this bound that for any
bounded set B ⊆G and any ε > 0, there is a T <∞ so that

∣
∣
∣
∣J

n
(
xn0 ,uω(·))−E

[∫ T

0
e−γtL

(
t,Xn(t),uω(t)

)
dt
]∣∣
∣
∣ < ε, (4.15)

for all xn0 ∈ B and all controls. This uniform approximation will be useful below.
The same bounds apply to the controlled fluid processes (3.10):

∣
∣yx0,ν(t)− x0

∣
∣≤ Cvt+M∗n(t) (4.16)
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holds as above, and without the M∗n term, we are led to

∣
∣L
(
xx0,ν(t),u

)∣∣≤ C(1 +
∣
∣x0
∣
∣+ t

)
, (4.17)

holding for all u∈U . The finiteness of J(x0,ν) and analogue of (4.15) follow likewise.

4.2. Continuity results

Lemma 4.1. The map (x0,ν) 
→ J(x0,ν) is continuous on G×�.

Proof. Suppose xn0 → x0 in G and νn → ν in �. Due to (4.15) for J , continuity of J(·,·)
will follow if we show that for any T <∞,

∫

[0,T]×U
e−γtL

(
xxn0 ,νn(t),u

)
dνn −→

∫

[0,T]×U
e−γtL

(
xx0,ν(t),u

)
dν. (4.18)

Since e−γtL(xx0,ν(t),u) is a continuous function of (t,u), the convergence νn → ν in �
implies that

∫

[0,T]×U
e−γtL

(
xx0,ν(t),u

)
dνn −→

∫

[0,T]×U
e−γtL

(
xx0,ν(t),u

)
dν (4.19)

It remains to show that
∫

[0,T]×U
e−γtL

(
xxn0 ,νn(t),u

)
dνn

∫

[0,T]×U
e−γtL

(
xx0,ν(t),u

)
dνn −→ 0; (4.20)

but this follows from the equicontinuity of L(·,u) with respect to u and the convergence
of xxn0 ,νn(t)→ xx0,ν(t). �

Here is our key result on convergence of the costs.

Theorem 4.2. Suppose that Xn is the sequence of queueing processes corresponding to se-
quences xn0 ∈G of initial conditions and unω(·) of admissible stochastic controls. Let νnω be the
stochastic relaxed controls determined by the unω(·) and Λn their distributions in �. Suppose
xn0 → x0 in G and Λn⇒Λ weakly in �. Then,

Jn
(
xn0 ,unω(·))−→ EΛ

[
J
(
x0,ν

)]
. (4.21)

Proof. First, by Lemmas 3.3 and 4.1, we know that

E
[
J
(
xn0 ,νnω

)]−→ EΛ
[
J
(
x0,ν

)]
. (4.22)

Now,

E
[
J
(
xn0 ,νnω

)]= E
[∫∞

0
e−γtL

(
xxn0 ,νnω(t),unω(t)

)
dt
]
. (4.23)

So, to finish, we need to show that

E
[∫∞

0
e−γtL

(
Xn(t),unω(t)

)
dt
]
−E

[∫∞

0
e−γtL

(
xxn0 ,νnω(t),unω(t)

)
dt
]
−→ 0. (4.24)
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According to the estimate (4.15) of the preceding section, it is enough to prove this with
the integral truncated to

∫ T
0 ; but

sup
[0,T]

∣
∣Xn(t)− xxn0 ,νnω(t)

∣
∣≤ CΓM

∗n(T). (4.25)

Therefore, for 0≤ t ≤ T , we have

∣
∣L
(
Xn(t),unω(t)

)−L(xxn0 ,νnω(t),unω(t)
)∣∣≤ CLCΓM

∗n(T). (4.26)

The bound provided by Corollary 2.2 makes the rest of the proof simple. �

5. Convergence of values and asymptotic optimality

Now, we are ready to prove our main result.

Theorem 5.1. If xn0 → x0 is a convergent sequence of initial points in G, then

Vn(xn0 )−→V
(
x0
)
. (5.1)

Proof. The proof is in two parts. We first show that

V(x0)≤ liminf
n→∞ Vn(xn0 ), (5.2)

and then its counterpart (5.5). For each n, select a stochastic control unω(·) which is ap-
proximately optimal for Vn(xn0 ): Vn(xn0 ) ≤ Jn(xn0 ,unω(·)) ≤ (1/n) +Vn(xn0 ). By passing to
a subsequence n′, we can assume that

liminf
n→∞ Vn

(
xn0
)= lim

n→∞ J
n′(xn

′
0 ,un

′
ω

(·)). (5.3)

Again let νnω denote the stochastic relaxed controls determined by the unω(·) and Λn their
distributions on �. There is a weakly convergent subsubsequence (which we will also
index using n′): Λn′ ⇒Λ in �(�). Theorem 4.2 says that

Jn
′(
xn

′
0 ,un

′
ω (·))−→ EΛ

[
J
(
x0,ν

)]
. (5.4)

Clearly, V(x0)≤ EΛ[J(x0,ν)]. Thus, (5.2) follows.
The second half of the proof is to show that

limsup
n→∞

Vn
(
xn0
)≤V(x0

)
. (5.5)

Since, by Lemma 3.2, J(x0,ν) is a continuous function of ν ∈� and the standard con-
trols are dense in � (Theorem 3.1), for a prescribed ε > 0, we can select an (individual)
standard control ν with J(x0,ν) nearly optimal:

J
(
x0,ν

)≤ ε+V
(
x0
)
, (5.6)

Since ν is a standard control, it comes from a (deterministic) measurable u(t) ∈ U . As
a deterministic process this is progressive, hence admissible as a stochastic control. Let
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Yn be the free queueing process associated with this control u(t), initial position xn0 , fluid
scaling level n, andXn = Γ(Yn) the associated queueing process. Theorem 4.2 implies that

Jn
(
xn0 ,u(·))−→ J

(
x0,ν

)
. (5.7)

(All the distributions Λn on � are the same Dirac measure concentrated at ν.) Since
Vn(xn0 )≤ Jn(xn0 ,u(·)), it follows that

limsup
n→∞

Vn
(
xn0
)≤ lim

n→∞ J
n
(
xn0 ,u(·))= J(x0,ν

)≤ ε+V
(
x0
)
. (5.8)

Since ε > 0 was arbitrary, this shows (5.5) and completes the proof. �

We make the usual observation that since we have allowed xn0 → x0 in the theorem,
instead of a fixed xn0 = x0, we can conclude uniform convergence. The argument is ele-
mentary and omitted.

Corollary 5.2. Vn(·)→V(·) uniformly on compact subsets of G.

As a capstone, we have the following result which characterizes the asymptotically op-
timal policies for Jn.

Theorem 5.3. Let x0 ∈ G and suppose unω(·) is a sequence of admissible stochastic controls
whose relaxed representations νnω have distributions Λn on �. The following are equivalent.

(a) Jn(x0,unω(·))→V(x0).
(b) Jn(x0,unω(·))−Vn(x0)→ 0.
(c) Every weakly convergent subsequence Λn′ ⇒ Λ converges to a probability measure

Λ which is supported on the set of optimal relaxed controls for J(x0,ν): that is,
Λ(Ox0 )= 1, where

Ox0 =
{
ν∈� : J

(
x0,ν

)=V(x0
)}
. (5.9)

Proof. Theorem 5.1 implies the equivalence of (a) and (b). For any weakly convergent
subsequence Λn′ ⇒Λ, we know from Theorem 5.1 that

Jn
′(
x0,un

′
ω (·))−→ EΛ

[
J
(
x0,ν

)]
. (5.10)

Thus, (a) is equivalent to saying

EΛ
[
J
(
x0,ν

)]=V(x0
)

(5.11)

for all weak limits Λ; but this is equivalent to (c). �
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