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This paper investigates the lim inf behavior of the sojourn time process and the escape
rate process associated with the Cauchy process on the line. The monotone functions
associated with the lower asymptotic growth rate of the sojourn time are characterized
and the asymptotic size of the large values of the escape rate process is developed.
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1. Introduction

Let X(t)= {X(t,ω), t ≥ 0} be a Levy process on a probability space (Ω, f ,P) with values
in Rn. We are interested in the sample path properties of the function X(t)= X(t,ω) for
a fixed ω ∈Ω. Let X(t), t ≥ 0, denote a Levy process and define

T(r)=
∫ τ

0
I{|X(s)|≤r}ds, (1.1)

where

τ = inf
{
s > o :

∣∣X(s)
∣∣ > 1

}
. (1.2)

Let B(0,r) denote the ball inRn of radius r centered at zero, then, T(r) is the sojourn time
of X(t) in B(0,r) up to time τ.

It is well known (see [1, 2]) that the sojourn time forms a useful tool in studying the
local geometric properties of fractal sets determined by the sample paths of Levy processes
in Rn.

For example, the application of the density theorem of Taylor and Tricot [3] which
remains one of the main tools for establishing packing measure and packing dimension
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results relies on the lower growth rate of T1(r) +T2(r). Here T1 and T2 are independent
copies of T .

Results in [4] show that the lower growth rate of T1(r) +T2(r) is of higher order of
magnitude than that of T(r) for the symmetric stable processes of index α>1 inRn. Pruitt
and Taylor [5] further observed that they may differ by a factor | logr|(log| logr|)1/2.

The aim of this note is to investigate the lower asymptotic behaviour of T(r) for the
Cauchy process on the line. This may serve as a useful tool to characterize the geometric
structure of the random set determined by the symmetric Cauchy processes and also we
consider asymptotic result, which may be related to the sojourn time process.

2. Preliminaries

A symmetric Cauchy process on the line, which we will denote by X(t), is a Levy process
which is uniquely determined by its Fourier transform

∫∞
−∞

exp[ixz]g(t,x)dx = exp
[− t|z|], (2.1)

where g(t,x) = (1/π)(t/(t2 +x2)). t > 0, x ∈ R1 and satisfies the scaling property that
c−1X(ct) is a version of the same process X(t) for every c > 0. X(t) is recurrent, that
is, {t : X(t)∈G} is unbounded for an open interval G containing the origin. In this case,
T(r) is almost surely infinite as r →∞. Thus we instead consider the process

f (s)= f (s,ω)= inf
{∣∣X(t)

∣∣ : s≤ t ≤ τ} (2.2)

so that we have the relationship

{
ω : f (s) > r

}⊆ {ω : T(r)≤ s}. (2.3)

The first passage time is, as usual, defined by

P(a)= P(a,ω)= inf
{
t :
∣∣X(t)

∣∣ > a}, (2.4)

whose distribution is obtained from that of

M(t)=M(t,ω)= sup
0≤h≤t

∣∣X(h)
∣∣ (2.5)

by the means of an obvious relationship

{
ω : P(a) < r

}= {ω :M(r) > a
}

, a > 0, r > 0. (2.6)

We will need the estimates for the distribution of the following events which we state
as lemmas.

Lemma 2.1. For the symmetric Cauchy process on the line X(t),

P
{∣∣X(1)

∣∣ > s}∼ s−1 as s−→∞. (2.7)
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Write g1(s) ∼ g2(s) if g1 and g2 are asymptotic, that is,

lim
s→∞

g1(s)
g2(s)

= 1. (2.8)

Proof. This is the consequence of [6, Lemma 2.2]. �

Lemma 2.2 [7]. If τE = inf{t > 0 : X(t)∈ E},

Γ1 = S
(
δ1
)= {x ∈R1 : |x| ≤ δ1

}
, Γc2 =

{
S(δ2)

}2
, δ1 ≤ ρ≤ δ2, (2.9)

X(0)= x ∈R1 with |x| = ρ, then for the symmetric Cauchy process on the line

logρ/δ1

logδ2/δ1
≤ Px

{
τΓc2 < τΓ1

}≤ c1
logρ/δ1

logδ2/δ1
, (2.10)

where Px is the conditional probability under the condition X(0)= x. Assume X(0)= 0 with
probability one, and use the abbreviation P0 = P. The c1,c2, . . . will denote positive constants
whose values are not important.

Lemma 2.3 [8]. Let {En} be a sequence of events and suppose that
(i)
∑∞

k=1P(Ek)=∞ then
(ii) limn inf[

∑n
k=1

∑n
j=1P(Ek ∩ Ej)][

∑n
k=1

∑n
j=1P(Ek)P(Ej)]−1 ≤ c2 ⇒ P{En occur i,

o} ≥ c−1
2 .

Assume also that a version of the process is dealt with, which is strong Markov.

3. The lower asymptotic behaviour of the sojourn time for the symmetric
Cauchy process on the line

In [9], Ray obtained a function ψ for which

lim
r→0

sup
T(r)
ψ(r)

= c2, (3.1)

for the symmetric Cauchy process on the line. Here we consider the liminf behaviour of
T(r) and state the following.

Theorem 3.1. Suppose ψ(r)= rh(r), where h(r) is a monotone increasing function.
For a symmetric Cauchy process on the line

lim
r→0

inf
T(r)
ψ(r)

=
⎧⎪⎨
⎪⎩

0 if
∫

0+

h(x)
x ln(1/x)

dx =∞,

∞ otherwise.
(3.2)

Proof. Set ak = ρ−k, ρ > 1, it is easy to see that

∑ h
(
ρ−k

)
k

<∞ iff
∫

0+

h(x)
x ln(1/x)

dx <∞. (3.3)
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First suppose
∑

(h(ak)/k) <∞. For any fixed λ, defineGk = {T(ak+1) < λψ(ak)} andMk =
{P(ak+1) < λψ(ak)} so that Gk ⊂Mk.. Set Nk = number of returns of the process, started
at x with |x| = ρ̂, ak+1/2≤ ρ̂ ≤ ak+1, makes from S(ak+1) to S(ak+1/2) before {S(1)}c.

We set up sequences of stopping times:

σ1 =min
{
s > 0 :

ak+1

2
≤ ∣∣X(s)

∣∣≤ ak+1

}
,

σ2 =min
{
s > σ1 :

∣∣X(s)
∣∣≤ ak+1

2
or
∣∣X(s)

∣∣ > 1
}
.

(3.4)

This continues until the process enters {S(1)}c at σ2Nk+2. There exists contribution to
T(ak+1) from σ2i to σ2i+1 which is greater than the first passage time for X out of the
sphere of radius ak+1/2.

Each time the process returns to S(ak+1/2) from S(ak+1), since the process is recurrent,
the event

Mk/2 =
{
P
(
ak+1

2

)
< λψ

(
ak
)}

(3.5)

occurs for the restarted process a.s. Thus for j returns, Mk/2 happens j times a.s. so that

Gk ⊂
∞⋃
j=0

Mk

⋂{
Nk = j

}⋂{
Mk/2, j times

}
, (3.6)

since there exists c3 such that

P
{
M(1)≥ a}≤ c3P

{|X(1)
∣∣≥ a} (3.7)

(see [6, page 353]),

P
(
Mk
)≤ c2ρ̃λh(ak)= βh(ak), (3.8)

where β = c3ρ̃λ,

P
{
Nk = j

}≤ c4

[
1− c5

log1/ak+1

] j[ c6

log1/ak+1

]
by Lemma 2.2,

P
{
Mk

2
, j times

}
≤ c7

[
βh
(
ak
)] j

.

(3.9)

But

P
(
Gk
)≤ c8P

(
Mk
) ∞∑
j=0

P
{
Nk = j

}
P
{
Mk

2
, j times

}
(3.10)

so that

P
(
Gk
)≤ c9

h
(
ak
)

k

{
1

1−h(ak)[1− (c10/k
)]
}
≤ c11

h(a)
k

. (3.11)
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Thus

∑
P
(
Gk
)≤ c12

∑ h
(
ak
)

k
<∞ (3.12)

so P(Gk, i · 0)= 0 by Borel Cantelli lemma.
Hence a.s. Gk happens for at most a finite number of k for each λ, so that we can find

r ∈ [ak+1,ak] for which

lim
r→0

inf
T(r)
ψ(r)

=∞ a.s. (3.13)

if
∑

(h(ρ−k)/k) <∞.
In the opposite direction, set ak = ρ−k, ρ > 1 and for ∈=∈ (ω) > 0. Suppose

∑
(h(ak)/

k)=∞, then for any fixed λ, choose ρ large enough so that P(Bk) is close to 1 whenever

Bk =
∣∣X(λψ(ak+1

))∣∣ >∈ (ak), infkP
(
Bk
)
> 0,

Ck =
{
ak >

∣∣X(λψ(ak))−X(λψ(ak+1
))∣∣ > (1−∈)ak},

Dk =
{

the process X(t) started at X
(
λψ
(
ak)
)

enters
{
S(1)

}c
before S

(
(1− 3∈)ak

)}
.

(3.14)

Define Gk = {T(ak+1) < λψ(ak)} ⊃ { f (λψ(ak)) > ak+1} by (2.3) ⊃ Bk ∩Ck ∩Dk.
Then

ω ∈ Bk ∩Ck =⇒ (1− 2∈)ak <
∣∣X(λψ(ak))∣∣ < (1+∈)ak (3.15)

so that P(Dk | Bk ∩Ck) ∼ 1/k by Lemma 2.2.
Since Bk and Ck are independent, we have by Lemma 2.2,

P
(
Bk ∩Ck ∩D

)=P(Dk | Bk ∩Ck
)
P
(
Bk
)
P
(
Ck
)≥ C12P

(
Dk | Bk ∩Ck

)
P
(
Ck
)=C13λ

h
(
ak
)

k
,

(3.16)

where P(Ck) ∼ C14h(ak) by Lemma 2.1. Thus

∑
P
(
Gk
)≥ C15

∑ h
(
ak
)

k
=∞. (3.17)

If we set Ek = Bk ∩Ck ∩Dk, similar arguments as in [5, page 140] suffice to show that

P
(
Ek ∩Ej

)≤ P(Ck)P(Tk j)P(Cj
)
P
(
Dj
)
, (3.18)

where Tk j = {the process X(s) started at X(λψ(ak)) enters {S(aj)}c at a time t before
entering S((1− 3 ∈)ak)} and PTk j ≥ 1/(k − j) by Lemma 2.2 so that if k ≥ j + 1, con-
ditions of Lemma 2.3 are satisfied.

Thus P(Ek, i · o)≥ C−1
1 > 0. Therefore P(Ek, i · o)= 1 by Blumenthal zero-one law.

Hence for each λ, Ek and therefore Gk happen infinitely often a.s., which in turn im-
plies that limr→0 inf(T(r)/ψ(r))= 0 a.s. if

∑
(h(ρ−k)/k)=∞. �
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4. The asymptotic size of the large values of f (s) as s→ 0

The asymptotic size of the small values of f (s) as s→ 0 was obtained by Takeuchi and
Watanabe [10], where f (s) is as in (2.2).

In this section we obtain the asymptotic size of the large values of f (s) as s→ 0.
Our basic arguments will follow those in [11, Lemmas 3.3 and 3.4], although some

modifications are necessary.

Theorem 4.1. For the symmetric Cauchy process X(t) on the line,

lim
r→0

sup
f (s)
ϕ(s)

= 0 a.s. or∞ (4.1)

according as
∑

(1/g(ρ−k)[k+ | logg(ρ−k)|]) is finite or infinite, where ϕ(s)= sg(s) and g(s)
is a monotone decreasing function and f (s) is defined in (2.2).

Proof. Set ak = ρ−k, ρ > 1. Suppose

∑ 1
g
(
ak
)[
k+

∣∣ logg
(
ak
)∣∣] <∞. (4.2)

For any fixed λ, and some ∈> 0, define

Ek =
{
f
(
ak
)
> λϕ

(
ak
)}=⇒ {

f
(
ak
)
> λ(1−∈)ϕ

(
ak
)}=⇒ Ak =

{∣∣X(ak)∣∣ > λϕ(ak)}
(4.3)

so that when Bk = {X(s) does not enter S(λ(1−∈)ϕ(ak)) after ak before τ}, Ek ⊂Ak ∩Bk.
Thus

P
(
Ek
)≤ P(Ak ∩Bk)= P

(
Bk ∩

∞⋃
i=1

Aik

)
= P

( ∞⋃
i=1

(
Bk ∩Aik

))
, (4.4)

where Aik = {2iλϕ(ak)≥ |X(ak)| > 2i−1λϕ(ak)}, i= 1,2,3, . . . so that

P
(
Ek
)≤

n∑
i=1

P
(
Aik
)
P
(
Bk |Aik

)
, (4.5)

(where Bk ∩Aik = φ for i ≥ n). Hence P(Ek) ∼ c16/g(ak)[k + | logg(ak)|] by Lemmas 2.1
and 2.2. and

∑
P(Ek) <∞. Thus P(Ek, i · o)= 0 by Borel Cantelli lemma. Therefore there

exists k0 such that for k > k0, f (ak)≤ λϕ(ak) so that

lim
k→∞

sup
f
(
ak
)

ϕ
(
ak
) ≤ λ. (4.6)

But λ is any fixed number, hence as k→∞,

P
{

limsup
k→∞

f
(
ak
)

ϕ
(
ak
) = 0

}
> 0. (4.7)
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By the Blumenthal zero-one law, we have limk→0 sup( f (ak)/ϕ(ak))= 0 a.s. with

∑ 1
g
(
ak
)[
k+

∣∣ logg
(
ak
)∣∣] <∞. (4.8)

By monotonicity of f (s) and ϕ(s), we have

lim
r→0

sup
f (s)
ϕ(s)

= 0 a.s. (4.9)

if
∑

(1/g(ak)[k+ | logg(ak)|]) <∞.
In the opposite direction, set ak = ρ−k, ρ > 1 and suppose

∑ 1
g
(
ak
)[
k+

∣∣ logg
(
ak
)∣∣] =∞. (4.10)

For any fixed λ, and some ∈> 0, define

Ek =
{
f (s) > λϕ(s) for some s∈ (ak+1,ak

]}⊇ { f (ak) > λϕ(ak)}⊃Ak ∩Bk ∩ ck, (4.11)

where

Ak =
∣∣X(ak+1

)∣∣≤∈ ϕ(ak),
Bk =

{
ϕ
(
ak
)
>
∣∣X(ak)−X(ak+1

)∣∣ > (1−∈)ϕ
(
ak
)} (4.12)

and Ck = {X(t) started at X(ak) enters {S(1)}c before S((1− 3∈)ϕ(ak))}. Then

ω ∈ Ak ∩Bk =⇒
{

(1− 2∈)ϕ
(
ak
)
<
∣∣X(ak)∣∣ < (1+∈)ϕ

(
ak
)}

(4.13)

so that

P
(
Ck |Ak ∩Bk

)
∼

c15

k+
∣∣ logg

(
ak
)∣∣ by (Lemma 2.2),

P
(
Bk
)

∼

C19

g(a)
by (Lemma 2.1).

(4.14)

Set Dk = Ak ∩Bk ∩Ck. Since Ak and Bk are independent,

P
(
Dk
)= P(Ck | Ak ∩Bk)P(Ak)P(Bk). (4.15)

If ρ is chosen large enough so that P(Ak) is close to one, we have

P
(
Dki
)≥ C20

g(ak)
[
k+

∣∣ logg
(
ak
)∣∣] . (4.16)

Thus
∑
P(Dk)=∞. Similar arguments in [11, Lemma 3.5] suffice to show that

P
(
Dk ∩Dj

)≤ P(Bk)P(Tk j)P(Bj)P(Cj
)
, (4.17)
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where Tk j={X(s) started at X(ak) enters {S(∈ ϕ(aj))}c at time t before (1− 3 ∈)ϕ(ak)}
and for k ≥ j + 1,

P
(
Tk j

)
∼

C21

(k− j) + log
(
g
(
aj
)/
g
(
ak
)) by (Lemma 2.2) (4.18)

so that

lim
n

inf

[ n∑
k=1

n∑
j=1

p
(
Dk ∩Dj

)][ n∑
k=1

n∑
j=1

P
(
Dk
)
P
(
Dj
)]−1

< β, (4.19)

where 0 < β <∞. Thus by (Lemma 2.3),

P
(
Dk, i · o)≥ C−1 > 0. (4.20)

Therefore P(Dk, i · o)= 1 by Blumenthal zero-one law.
Therefore we can find s∈ (ak+1,ak] for which

lim
s→0

sup
f (s)
ϕ(s)

≥ lim
k→∞

sup
f
(
ak
)

ϕ
(
ak
) ≥ λ. (4.21)

Thus

lim
s→0

sup
f (s)
ϕ(s)

=∞ a.s. (4.22)

if

∑ 1
g
(
ak
)[
k+

∣∣ logg
(
ak
)∣∣] =∞. (4.23)
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