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1. Introduction

Certain problems of modern physics and technology can be effectively described in terms of
nonlocal problems with integral conditions for partial differential equations. These nonlocal
conditions arise mainly when the data on the boundary cannot be measured directly.
Motivated by this, we consider in the rectangular domain Ω = (0, 1) × (0, T), the following
nonclassical boundary value problem of finding a solution u(x, t) such that

Lu =
∂u

∂t
− a(t)

∂2u

∂x2
= f(x, t), (1.1)

where the function a(t) and its derivative are bounded on the interval [0, T] :

0 < c0 ≤ a(t) ≤ c1, 0 < c2 ≤ da(t)
dt

≤ c3, (1.2)
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lu = u(x, 0) = ϕ(x), x ∈ (0, 1), (1.3)

u(0, t) = u
(
β, t
)
= u
(
γ, t
)
= u(1, t), t ∈ (0, T), (1.4)

∫α

0
u(x, t)dx + 2

∫ γ

β

u(x, t)dx +
∫1

δ

u(x, t)dx = 0,

0 < α < β < γ < δ < 1, α = 1 − δ = γ − β, t ∈ (0, T).

(1.5)

Here, we assume that the known function ϕ satisfies the conditions given in (1.4) and (1.5),
that is,

ϕ(0) = ϕ
(
β
)
= ϕ
(
γ
)
= ϕ(1),

∫α

0
ϕ(x)dx + 2

∫ γ

β

ϕ(x)dx +
∫1

δ

ϕ(x)dx = 0. (1.6)

When considering the classical solution of the problem (1.1)–(1.5), along with (1.5), there
should be the fulfilled conditions:

a(0)
{
ϕ′′(0) + ϕ′′(β

) − ϕ′′(γ
) − ϕ′′(1)

}
= f(1, 0) + f

(
γ, 0
) − f

(
β, 0
) − f(0, 0),

a(0)

{∫α

0
ϕ′′(x)dx + 2

∫ γ

β

ϕ′′(x)dx +
∫1

δ

ϕ′′(x)dx

}

=
∫α

0
f(x, 0)dx + 2

∫ γ

β

f(x, 0)dx +
∫1

δ

f(x, 0)dx.

(1.7)

Mathematical modelling of different phenomena leads to problems with nonlocal or
integral boundary conditions. Such a condition occurs in the case when one measures an
averaged value of some parameter inside the domain. This amounts to the specification of
the energy or mass contained in a portion of the conductor or porous medium as a function
of time. This problems arise in plasma physics, heat conduction, biology and demography, as
well as modelling of technological process, see, for example, [1–5]. Boundary-value problems
for parabolic equations with integral boundary condition are investigated by Batten [6],
Bouziani and Benouar [7], Cannon [8, 9], Cannon, Perez Esteva and van der Hoek [10],
Ionkin [11], Kamynin [12], Shi and Shillor [13], Shi [4], Marhoune and Bouzit [14], Marhoune
and Hameida [15], Yurchuk [16], and many references therein. The problem with one-
variable (resp., two-variable) boundary integral type condition is studied in [5] and by
Marhoune and Latrous [17] (resp., in Marhoune [2]).

Mention that in the cited paper [16], the author proved the existence, uniqueness, and
continuous dependence of a stronge solution in weighted Sobolev spaces to the problem

∂u

∂t
=

∂

∂x

(
a(x, t)

∂u

∂x

)
+ f(x, t), (1.8)
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under the following conditions:

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, 0 < t ≤ T,

∫1

0
u(x, t)dx = 0.

(1.9)

This last integral condition in the form

∫1

0
u(x, t)dx = m(t), 0 < t ≤ T, (1.10)

arises, for example, in biochemistry in whichm is a constant, and in this case is known as the
conservation of protein [18]. Further, in [5], the author studied a similar problem with the
weak integral condition

∫α

0
u(x, t)dx = 0, 0 < α < 1. (1.11)

The same problem with the new integral condition

∫α

0
u(x, t)dx +

∫1

β

u(x, t)dx = 0, α + β = 1, (1.12)

was investigated in [2]. The present paper is an extension in the same direction. By
constructing a suitable multiplicator, we will try to establish existence and uniqueness of
solution of problem (1.1)–(1.5). Note that the multivariables integral type condition (1.5) is
considerably much weaker and better than that used in [2]. In fact, some physical problems
have motivated specialists to consider nonlocal integral condition (1.5), which tells us the
integral total effect of the solution u over several independent portions [0, α], [β, γ], and [δ, 1]
of interval I = (0, 1) at certain time t that give this effect over the entire or part of this interval.

We associate with (1.1)–(1.5) the operator L = (L, l), defined from E into F,where E is
the Banach space of functions u ∈ L2(Ω), satisfying (1.4) and (1.5), with the finite norm

‖u‖2E =
∫

Ω

p(x)
3

⎡

⎣
∣∣∣∣
∂u

∂t

∣∣∣∣

2

+

∣∣∣∣∣
∂2u

∂x2

∣∣∣∣∣

2
⎤

⎦dxdt + sup
0≤t≤T

∫1

0

p(x)
2

∣∣∣∣
∂u

∂x

∣∣∣∣

2

dx

+ sup
0≤t≤T

∫α

0
|u|2dx + sup

0≤t≤T

∫ γ

β

|u|2dx + sup
0≤t≤T

∫1

δ

|u|2dx,

(1.13)
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and F is the Hilbert space of vector-valued functions F = (f, ϕ) obtained by completion of
the space L2(Ω) ×W2

2 (0, 1) with respect to the norm

‖F‖2F =
∥
∥(f, ϕ)

∥
∥2
F =
∫

Ω

p(x)
3
∣
∣f
∣
∣2dxdt +

∫1

0

p(x)
2

∣
∣
∣
∣
dϕ

dx

∣
∣
∣
∣

2

dx +
∫α

0

∣
∣ϕ
∣
∣2dx +

∫ γ

β

∣
∣ϕ
∣
∣2dx +

∫1

δ

∣
∣ϕ
∣
∣2dx,

(1.14)

where

p(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x2, x ∈ ]0, α],
(
γ − β

)2
, x ∈ [α, β] ∪ [γ, δ],

(
γ − x

)2 +
(
x − β

)2
, x ∈ [β, γ],

(1 − x)2, x ∈ [δ, 1[.

(1.15)

Using the energy inequalities method proposed in [16], we establish two-sided a priori
estimates. Then, we prove that the operator L is a linear homeomorphism between the spaces
E and F.

2. Two-Sided A Priori Estimates

Theorem 2.1. For any function u ∈ E, one has the a priori estimate

‖Lu‖2F ≤ c4‖u‖2E, (2.1)

where the constant c4 is independent of u. In fact, c4 = 2max(1, c21).

Proof. Using (1.1) and initial condition (1.3), we obtain

∫

Ω

p(x)
3

|Lu|2dxdt ≤ 2
∫

Ω

p(x)
3

⎡

⎣
∣∣∣∣
∂u

∂t

∣∣∣∣

2

+ c21

∣∣∣∣∣
∂2u

∂x2

∣∣∣∣∣

2
⎤

⎦dxdt,

∫1

0

p(x)
2

∣∣∣∣
dϕ

dx

∣∣∣∣

2

dx ≤ sup
0≤t≤T

∫1

0

p(x)
2

∣∣∣∣
∂u

∂x

∣∣∣∣

2

dx,

∫α

0

∣∣ϕ
∣∣2dx ≤ sup

0≤t≤T

∫α

0
|u|2dx,

∫ γ

β

∣∣ϕ
∣∣2dx ≤ sup

0≤t≤T

∫ γ

β

|u|2dx,
∫1

δ

∣∣ϕ
∣∣2dx ≤ sup

0≤t≤T

∫1

δ

|u|2dx.

(2.2)

Combining the inequalities in (2.2), we obtain (2.1) for u ∈ E.
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Theorem 2.2. For any function u ∈ E, one has the a priori estimate

‖u‖2E ≤ c5‖Lu‖2F, (2.3)

with the constant

c5 =
exp(cT)max(49, 2c1)

min
(
13/32, c0, c20/2

) , (2.4)

and c is such that

cc0 ≥ c3. (2.5)

Before proving this theorem, we need the following lemma.

Lemma 2.3 (see [19]). For u ∈ E, one has

∫b

a

∣∣∣∣∣

∫b

x

∂u(ξ, t)
∂t

dξ

∣∣∣∣∣

2

dx ≤ 4
∫b

a

(x − a)2
∣∣∣∣
∂u

∂t

∣∣∣∣

2

dx,

∫b

a

∣∣∣∣

∫x

a

∂u(ξ, t)
∂t

dξ

∣∣∣∣

2

dx ≤ 4
∫b

a

(b − x)2
∣∣∣∣
∂u

∂t

∣∣∣∣

2

dx.

(2.6)

Proof of Theorem 2.2. Define

Mu =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 ∂u

∂t
+ 2x

∫α

x

∂u(ξ, t)
∂t

dξ, x ∈ ]0, α],

(
γ − β

)2 ∂u
∂t

, x ∈ [α, β] ∪ [γ, δ],
(
γ − x

)2 ∂u
∂t

+
(
x − β

)2 ∂u
∂t

+ 2
(
γ − x

)
∫x

β

∂u(ξ, t)
∂t

dξ

+2
(
x − β

)
∫ γ

x

∂u(ξ, t)
∂t

dξ, x ∈ [β, γ],

(1 − x)2
∂u

∂t
+ 2(1 − x)

∫x

δ

∂u(ξ, t)
∂t

dξ, x ∈ [δ, 1[.

(2.7)

We consider for u ∈ E the quadratic formula

Re
∫ τ

0

∫1

0
exp(−ct)LuMudxdt, (2.8)
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with the constant c satisfying (2.5), obtained by multiplying (1.1) by exp(−ct)Mu, by
integrating over Ωτ , where Ωτ = (0, 1) × (0, τ), with 0 ≤ τ ≤ T , and by taking the real part.
Integrating by parts in (2.8) by report to x with the use of boundary conditions (1.4) and
(1.5), we obtain

Re
∫ τ

0

∫1

0
exp(−ct)LuMudxdt

=
∫ τ

0

∫1

0
p(x) exp(−ct)

∣
∣
∣∣
∂u

∂t

∣
∣
∣∣

2

dxdt +
∫ τ

0

∫α

0
exp(−ct)

∣
∣
∣∣

∫α

x

∂u(ξ, t)
∂t

dξ

∣
∣
∣∣

2

dxdt

+
∫ τ

0

∫ γ

β

exp(−ct)
⎡

⎣

∣
∣
∣∣∣

∫x

β

∂u(ξ, t)
∂t

dξ

∣
∣
∣∣∣

2

+
∣
∣∣∣

∫ γ

x

∂u(ξ, t)
∂t

dξ

∣
∣∣∣

2
⎤

⎦dxdt

+
∫ τ

0

∫1

δ

exp(−ct)
∣∣∣∣

∫x

δ

∂u(ξ, t)
∂t

dξ

∣∣∣∣

2

dxdt + Re
∫ τ

0

∫1

0
exp(−ct)p(x)a∂u

∂x

∂2u

∂x∂t
dxdt

+ 2Re
∫ τ

0

∫α

0
exp(−ct)au∂u

∂t
dxdt + 4Re

∫ τ

0

∫ γ

β

exp(−ct)au∂u
∂t

dxdt

+ 2Re
∫ τ

0

∫1

δ

exp(−ct)au∂u
∂t

dxdt.

(2.9)

On the other hand, by using the elementary inequalities we get

Re
∫ τ

0

∫1

0
exp(−ct)LuMudxdt

≥
∫ τ

0

∫1

0
p(x) exp(−ct)

∣∣∣∣
∂u

∂t

∣∣∣∣

2

dxdt + Re
∫ τ

0

∫1

0
exp(−ct)p(x)a∂u

∂x

∂2u

∂x∂t
dxdt

+ 2Re
∫ τ

0

∫α

0
exp(−ct)au∂u

∂t
dxdt + 4Re

∫ τ

0

∫ γ

β

exp(−ct)au∂u
∂t

dxdt

+ 2Re
∫ τ

0

∫1

δ

exp(−ct)au∂u
∂t

dxdt.

(2.10)
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Again, integrating by parts the second, third, fourth, and fifth terms of the right-hand
side of the inequality (2.10) by report to t and taking into account the initial condition
(1.3) and (2.5) gives

Re
∫ τ

0

∫1

0
exp(−ct)p(x)a∂u

∂x

∂2u

∂x∂t
dxdt ≥

∫1

0

exp(−cτ)
2

p(x)a(τ)
∣
∣
∣
∣
∂u(x, τ)

∂x

∣
∣
∣
∣

2

dx

− 1
2

∫1

0
p(x)a(0)

∣
∣
∣
∣
dlu

dx

∣
∣
∣
∣

2

dx,

Re
∫ τ

0

∫α

0
exp(−ct)au∂u

∂t
dxdt ≥

∫α

0

exp(−cτ)
2

a(τ)|u(x, τ)|2dx −
∫α

0

a(0)
2

|lu|2dx;

Re
∫ τ

0

∫ γ

β

exp(−ct)au∂u
∂t

dxdt ≥
∫ γ

β

exp(−cτ)
2

a(τ)|u(x, τ)|2dx −
∫ γ

β

a(0)
2

|lu|2dx,

Re
∫ τ

0

∫1

δ

exp(−ct)au∂u
∂t

dxdt ≥
∫1

δ

exp(−cτ)
2

a(τ)|u(x, τ)|2dx −
∫1

δ

a(0)
2

|lu|2dx.
(2.11)

Using (2.11) in (2.10), we get

Re
∫ τ

0

∫1

0
exp(−ct)LuMudxdt +

∫α

0
a(0)|lu|2dx + 2

∫ γ

β

a(0)|lu|2dx

+
∫1

δ

a(0)|lu|2dx +
1
2

∫1

0
p(x)a(0)

∣∣∣∣
dlu

dx

∣∣∣∣

2

dx

≥
∫ τ

0

∫1

0
p(x) exp(−ct)

∣∣∣∣
∂u

∂t

∣∣∣∣

2

dxdt

+
1
2

∫1

0
exp(−cτ)p(x)a(τ)

∣∣∣∣
∂u(x, τ)

∂x

∣∣∣∣

2

dx +
∫α

0
exp(−cτ)a(τ)|u(x, τ)|2dx

+ 2
∫ γ

β

exp(−cτ)a(τ)|u(x, τ)|2dx +
∫1

δ

exp(−cτ)a(τ)|u(x, τ)|2dx.

(2.12)
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By using the ε-inequalities on the first integral in the left-hand side of (2.12) and Lemma 2.3,
we obtain

15
32

∫ τ

0

∫1

0
p(x) exp(−ct)

∣
∣
∣
∣
∂u

∂t

∣
∣
∣
∣

2

dxdt +
1
2

∫1

0
exp(−cτ)p(x)a(τ)

∣
∣
∣
∣
∂u(x, τ)

∂x

∣
∣
∣
∣

2

dx

+
∫α

0
exp(−cτ)a(τ)|u(x, τ)|2dx + 2

∫ γ

β

exp(−cτ)a(τ)|u(x, τ)|2dx

+
∫1

δ

exp(−cτ)a(τ)|u(x, τ)|2dx

≤ 16
∫ τ

0

∫1

0
p(x) exp(−ct)|Lu|2dxdt

+
∫α

0
a(0)|lu|2dx +

1
2

∫1

0
p(x)a(0)

∣∣∣∣
dlu

dx

∣∣∣∣

2

dx + 2
∫ γ

β

a(0)|lu|2dx +
∫1

δ

a(0)|lu|2dx.

(2.13)

Now, from (1.1), we have

c20
6

∫ τ

0

∫1

0
p(x) exp(−ct)

∣∣∣∣∣
∂2u

∂x2

∣∣∣∣∣

2

dxdt

≤
∫ τ

0

∫1

0

p(x)
3

exp(−ct)|Lu|2dxdt +
∫ τ

0

∫1

0

p(x)
3

exp(−ct)
∣∣∣∣
∂u

∂t

∣∣∣∣

2

dxdt.

(2.14)

Combining inequalities (2.13) and (2.14), we get

exp(−cT)
(

13
32

∫ τ

0

∫1

0

p(x)
3

∣∣∣∣
∂u

∂t

∣∣∣∣

2

dxdt + c0

∫1

0

p(x)
2

∣∣∣∣
∂u(x, τ)

∂x

∣∣∣∣

2

dx + c0

∫α

0
|u(x, τ)|2dx

+2c0

∫ γ

β

|u(x, τ)|2dx + c0

∫1

δ

|u(x, τ)|2dx +
c20
6

∫ τ

0

∫1

0

p(x)
3

∣∣∣∣∣
∂2u

∂x2

∣∣∣∣∣

2

dxdt

⎞

⎠

≤ 49
∫

Ω

p(x)
3

|Lu|2dxdt + c1

∫1

0

p(x)
2

∣∣∣∣
dlu

dx

∣∣∣∣

2

dx + c1

∫α

0
|lu|2dx + 2c1

∫ γ

β

|lu|2dx + c1

∫1

δ

|lu|2dx.

(2.15)

As the right-hand side of (2.15) is independent of τ , by replacing the left-hand side by its
upper bound with respect to τ in the interval [0, T], we obtain the desired inequality.
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3. Solvability of the Problem

From estimates (2.1) and (2.3), it follows that the operator L : E → F is continuous and its
range is closed in F. Therefore, the inverse operator L−1 exists and is continuous from the
closed subspace R(L) onto E, which means that L is an homeomorphism from E onto R(L).
To obtain the uniqueness of solution, it remains to show that R(L) = F. The proof is based on
the following lemma.

Lemma 3.1. Let

D0(L) = {u ∈ E : lu = 0}. (3.1)

If for u ∈ D0(L) and some w ∈ L2(Ω), one has

∫

Ω
q(x)Luwdxdt = 0, (3.2)

where

q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x, x ∈ ]0, α],

γ − β, x ∈ [α, δ],

1 − x, x ∈ [δ, 1[,

(3.3)

then w = 0.

Proof. From (3.2)we have

∫

Ω
q(x)

∂u

∂t
wdxdt =

∫

Ω
q(x)a(t)

∂2u

∂x2
wdxdt. (3.4)

Now, for given w(x, t), we introduce the function

v(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

w(x, t) −
∫α

x

w(ξ, t)
ξ

dξ, x ∈ ]0, α],

w(x, t), x ∈ [α, δ],

w(x, t) −
∫x

δ

w(ξ, t)
ξ

dξ, x ∈ [δ, 1[.

(3.5)
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Integrating by parts with respect to ξ, we obtain

q(x)w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xv +
∫α

x

v(ξ, t)dξ, x ∈ ]0, α],

(
γ − β

)
v, x ∈ [α, β] ∪ [γ, δ],

(
γ − β

)
v +
∫ γ

β

v(ξ, t)dξ, x ∈ [β, γ],

(1 − x)v +
∫x

δ

v(ξ, t)dξ, x ∈ [δ, 1[,

(3.6)

which implies that

∫α

0
v(ξ, t)dξ + 2

∫ γ

β

v(ξ, t)dξ +
∫1

δ

v(ξ, t)dξ = 0. (3.7)

Then, from (3.4), we obtain

−
∫

Ω

∂u

∂t
Nvdxdt =

∫

Ω
A(t)uvdxdt, (3.8)

where

Nv = q(x)v, A(t)u = − ∂

∂x

(
q(x)a(t)

∂u

∂x

)
. (3.9)

If we introduce the smoothing operators with respect to t [16], I−1
ε = (I + ε∂/∂t)−1 and (I−1

ε )∗,
then these operators provide the solutions of the respective problems:

ε
dgε(t)
dt

+ gε(t) = g(t), gε(t)t=0 = 0, (3.10)

−εdg
∗
ε (t)
dt

+ g∗
ε (t) = g(t), g∗

ε (t)t=T = 0, (3.11)

and also have the following properties: for any g ∈ L2(0, T), the functions gε = (I−1
ε )g and

g∗
ε = (I−1

ε )∗g are in W1
2 (0, T) such that gε(t)t=0 = 0 and g∗

ε (t)t=T = 0. Morever, I−1
ε commutes

with ∂/∂t, so
∫T
0 |gε − g|2dt → 0 and

∫T
0 |g∗

ε − g|2dt → 0 for ε → 0.
Putting u =

∫ t
0 exp(cτ)v

∗
ε(x, τ)dτ in (3.8), where the constant c satisfies cc0 − c3 −

εc23/c0 ≥ 0, and using (3.11), we obtain

−
∫

Ω
exp(ct)v∗

εNvdxdt =
∫

Ω
A(t)u exp(−ct)∂u

∂t
dxdt − ε

∫

Ω
A(t)u

∂v∗
ε

∂t
dxdt. (3.12)
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Integrating by parts each term in the right-hand side of (3.12) and taking the real parts
yield

2Re
∫

Ω
A(t)u exp(−ct)∂u

∂t
dxdt =

∫1

0
a(T)q(x) exp(−cT)

∣
∣
∣
∣
∂u(x, T)

∂t

∣
∣
∣
∣

2

dx

+
∫

Ω
q(x) exp(−ct)

(
ca(t) − da(t)

dt

)∣∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

dxdt;

(3.13)

Re

(

−ε
∫

Ω
A(t)u

∂v∗
ε

∂t
dxdt

)

= Re

(

ε

∫

Ω

da(t)
dt

q(x)
∂u

∂x

∂v∗
ε

∂x
dxdt

)

+ ε

∫

Ω
a(t) exp(ct)q(x)

∂v∗
ε

∂x
dxdt.

(3.14)

Using ε-inequalities, we obtain

Re

(

−ε
∫

Ω
A(t)u

∂v∗
ε

∂t
dxdt

)

≥ −εc
2
3

2c0

∫

Ω
q(x) exp(−ct)

∣∣∣∣
∂u

∂x

∣∣∣∣

2

dxdt. (3.15)

Combining (3.13) and (3.15), we get

Re
(∫

Ω
exp(ct)v∗

εNvdxdt

)
≤ −
∫

Ω
q(x) exp(−ct)

(

cc0 − c3 −
εc23
c0

)∣∣∣∣
∂u

∂x

∣∣∣∣

2

dxdt ≤ 0. (3.16)

From (3.16), we deduce that

Re
(∫

Ω
exp(ct)v∗

εNvdxdt

)
≤ 0. (3.17)

Then, for ε → 0, we obtain

Re
∫

Ω
exp(ct)vNvdxdt =

∫

Ω
q(x) exp(ct)|v|2dxdt ≤ 0. (3.18)

We conclude that v = 0, hence w = 0, which ends the proof of the the lemma.

Theorem 3.2. The range R(L) of L coincides with F.

Proof. Since F is a Hilbert space, we have R(L) = F if and only if the relation

∫

Ω

p(x)
3

Lufdxdt +
∫1

0

p(x)
2

dlu

dx

dϕ

dx
dx +

∫α

0
luϕdx +

∫ γ

β

luϕdx +
∫1

δ

luϕdx = 0, (3.19)

for arbitrary u ∈ E and (f, ϕ) ∈ F, implies that f = 0 and ϕ = 0.
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Putting u ∈ D0(L) in (3.19), we conclude from Lemma 3.1 that θf = 0, where

θf =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xf, x ∈ ]0, α],
(
γ − β

)
f, x ∈ [α, δ],

(1 − x)f, x ∈ [δ, 1[,

(3.20)

then f = 0.
Taking u ∈ E in (3.19) yields

∫1

0

p(x)
2

dlu

dx

dϕ

dx
dx +

∫α

0
luϕdx +

∫ γ

β

luϕdx +
∫1

δ

luϕdx = 0. (3.21)

The range of the operator l is everywhere dense in Hilbert space with the norm

[∫1

0

p(x)
2

∣∣∣∣
dϕ

dx

∣∣∣∣

2

dx +
∫α

0

∣∣ϕ
∣∣2dx +

∫ γ

β

∣∣ϕ
∣∣2dx +

∫1

δ

∣∣ϕ
∣∣2dx

]1/2
, (3.22)

hence, ϕ = 0.
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