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The study of the multidimensional stochastic processes involves complex computations in
intricate functional spaces. In particular, the diffusion processes, which include the practically
important Gauss-Markov processes, are ordinarily defined through the theory of stochastic
integration. Here, inspired by the Lévy-Ciesielski construction of the Wiener process, we propose
an alternative representation of multidimensional Gauss-Markov processes as expansions on well-
chosen Schauder bases, with independent random coefficients of normal law with zero mean
and unit variance. We thereby offer a natural multiresolution description of the Gauss-Markov
processes as limits of finite-dimensional partial sums of the expansion, that are strongly almost-
surely convergent. Moreover, such finite-dimensional random processes constitute an optimal
approximation of the process, in the sense of minimizing the associated Dirichlet energy under
interpolating constraints. This approach allows for a simpler treatment of problems in many
applied and theoretical fields, and we provide a short overview of applications we are currently
developing.

1. Introduction

Intuitively, multidimensional continuous stochastic processes are easily conceived as sol-
utions to randomly perturbed differential equations of the form

X = f(Xi,1,8)), (L.1)
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where the perturbative term ¢, implicitly defines a probability space and f satisfies some
ad hoc regularity conditions. If the existence of such processes is well established for a
wide range of equations through the standard It6 integration theory (see, e.g., [1]), studying
their properties proves surprisingly challenging, even for the simplest multidimensional
processes. Indeed, the high dimensionality of the ambient space and the nowhere differ-
entiability of the sample paths conspire to heighten the intricacy of the sample paths spaces.
In this regard, such spaces have been chiefly studied for multidimensional diffusion processes
[2], and more recently, the development of rough paths theory has attracted renewed interest
in the field (see [3-7]). However, aside from these remarkable theoretical works, little em-
phasis is put on the sample paths since most of the available results only make sense in
distribution. This is particularly true in the It6 integration theory, where the sample path is
completely neglected for the It6 map being defined up to null sets of paths.

To overcome the difficulty of working in complex multidimensional spaces, it would
be advantageous to have a discrete construction of a continuous stochastic process as finite-
dimensional distributions. Since we put emphasis on the description of the sample paths
space, at stake is to write a process X as an almost surely pathwise convergent series of random
functions

N
X = annwgi with X[V = D£,(t) - E,, (1.2)
n=0

where f,, is a deterministic function and Z, is a given random variable.

The Lévy-Ciesielski construction of the d-dimensional Brownian motion W (also
referred to as Wiener process) provides us with an example of discrete representation for
a continuous stochastic process. Noticing the simple form of the probability density of a
Brownian bridge, it is based on completing sample paths by interpolation according to the
conditional probabilities of the Wiener process [8]. More specifically, the coefficients Z,, are
Gaussian independent and the elements f,,, called the Schauder elements and denoted by
s,,, are obtained by time-dependent integration of the Haar basis elements: sgo(t) = tI; and
Snk(t) = spi(#)Ly, with foralln > 0

2D2(F 1 1), k2 <t < (2k +1)277,
Suk(t) = 2072 (i~ 1), (2k+ 127 <t < (k+ 127, (1.3)

0, otherwise.

This latter point is of relevance since, for being a Hilbert system, the introduction of the
Haar basis greatly simplifies the demonstration of the existence of the Wiener process [9].
From another perspective, fundamental among discrete representations is the Karhunen-
Loéve decomposition giving a representation of stochastic processes by expanding it on
a basis of orthogonal functions [10, 11]. The definition of the basis elements f, depends
only on the second-order statistics of the considered process and the coefficients ¢, are
pairwise uncorrelated random variables. Incidentally, such a decomposition is especially
suited to study the Gaussian processes because the coefficients of the representation are
Gaussian and independent. For these reasons, the Karhunen-Loeve decomposition is of
primary importance in exploratory data analysis, leading to methods referred to as “principal
component analysis,” “Hotelling transform” [12] or “proper orthogonal decomposition” [13]
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according to the field of application. In particular, it was directly applied to the study of the
stationary Gaussian Markov processes in the theory of random noise in radio receivers [14].

It is also important for our purpose to realize that the Schauder elements s, have
compact supports that exhibit a nested structure: this fact entails that the finite sums Wy
are processes that interpolate the limit process W on the endpoints of the supports, that is, on
the dyadic points k2N, 0 < k < 2V. One of the specific goal of our construction is to maintain
such a property in the construction of all multidimensional the Gauss-Markov processes X
(i.e., processes that are both Gaussian and satisfy the Markov property) of the form:

t
X; = g(t) fo £(s) - AW, (1.4)

(covering all 1-dimensional Gauss-Markov processes thanks to Doob’s representation of
Gauss-Markov processes), being successively approximated by finite-dimensional processes
XN that interpolates X at ever finer resolution. In that respect, it is only in that sense
that we refer to our framework as a multiresolution approach as opposed to the wavelet
multiresolution theory [15]. Other multiresolution approaches have been developed for
certain Gaussian processes, most notably for the fractional Brownian motion [16].

In view of this, we propose a construction of the multidimensional Gaussian Markov
processes using a multiresolution Schauder basis of functions. As for the Lévy-Ciesielski
construction, and in contrast with Karhunen-Loeve decomposition, our basis is not made
of orthogonal functions but the elements are of nested compact support and the random
coefficients E, are always independent and Gaussian (for convenience with law /(0,1,),
i.e., with zero mean and unitary variance). We first develop a heuristic approach for the
construction of stochastic processes reminiscent of the midpoint displacement technique
[8, 9], before rigorously deriving the multiresolution basis that we will be using the paper.
This set of functions is then studied as a multiresolution Schauder basis of functions: in
particular, we derive explicitly from the multiresolution basis an Haar-like Hilbert basis,
which is the underlying structure explaining the dual relationship between basis elements
and coefficients. Based on these results, we study the construction application and its
inverse, the coefficient applications, that relate coefficients on the Schauder basis to sample
paths. We follow up by proving the almost-sure and strong convergence of the process
having independent standard normal coefficients on the Schauder basis to a Gauss-Markov
process. We also show that our decomposition is optimal in some sense that is strongly
evocative of spline interpolation theory [17]: the construction yields successive interpolations
of the process at the interval endpoints that minimize the Dirichlet energy induced by the
differential operator associated with the Gauss-Markov process [18, 19]. We also provide a
series of examples for which the proposed Schauder framework yields bases of functions
that have simple closed form formulae: in addition to the simple one-dimensional Markov
processes, we explicit our framework for two classes of multidimensional processes, the
Gauss-Markov rotations and the iteratively integrated Wiener processes (see, e.g., [20-22]).

The ideas underlying this work can be directly traced back to the original work of
Lévy. Here, we intend to develop a self-contained Schauder dual framework to further the
description of multidimensional Gauss-Markov processes, and, in doing so, we extend some
well-known results of interpolation theory in signal processing [23-25]. To our knowledge,
such an approach is yet to be proposed. By restraining our attention to the Gauss-Markov
processes, we obviously do not assume generality. However, we hope our construction



4 International Journal of Stochastic Analysis

proves of interest for a number of points, which we tentatively list in the following. First,
the almost-sure pathwise convergence of our construction together with the interpolation
property of the finite sums allows to reformulate results of the stochastic integration in term
of the geometry of finite-dimensional sample paths. In this regard, we found it appropriate
to illustrate how in our framework, the Girsanov theorem for the Gauss-Markov processes
appears as a direct consequence of the finite-dimensional change of variable formula. Second,
the characterization of our Schauder elements as the minimizer of a Dirichlet form paves the
way to the construction of infinite-dimensional Gauss-Markov processes, that is, processes
whose sample points themselves are infinite-dimensional [26, 27]. Third, our construction
shows that approximating a Gaussian process by a sequence of interpolating processes relies
entirely on the existence of a regular triangularization of the covariance operator, suggesting
to further investigate this property for non-Markov Gaussian processes [28]. Finally, there
is a number of practical applications where applying the Schauder basis framework clearly
provides an advantage compared to standard stochastic calculus methods, among which
first-hitting times of stochastic processes, pricing of multidimensional path-dependant
options [29-32], regularization technique for support vector machine learning [33], and more
theoretical work on uncovering the differential geometry structure of the space of the Gauss-
Markov stochastic processes [34]. We conclude our exposition by developing in more detail
some of these direct implications which will be the subjects of forthcoming papers.

2. Heuristic Approach to the Construction

In order to provide a discrete multiresolution description of the Gauss-Markov processes, we
first establish basic results about the law of the Gauss-Markov bridges in the multidimension-
al setting. We then use them to infer the candidate expressions for our desired bases of func-
tions, while imposing its elements to be compactly supported on nested sequence segments.
Throughout this paper, we are working in a complete probability space (Q, ¥, P).

2.1. Multidimensional Gauss-Markov Processes

After recalling the definition of the multidimensional Gauss-Markov processes in terms of
stochastic integral, we use the well-known conditioning formula for the Gaussian vectors to
characterize the law of the Gauss-Markov bridge processes.

2.1.1. Notations and Definitions

Let (W, ¥4,t € [0,1]) be an m-dimensional Wiener process, consider the continuous functions
a:[0,1] —» R™4 \T:[0,1] — R¥™ and define the positive bounded continuous function

r=+VII [0,1] — R%4, The d-dimensional Ornstein-Uhlenbeck process associated with
these parameters is solution of the equation

dX, = a(t) - Xdt +\[T() - dW,, (2.1)

and with initial condition Xy, in fo, it reads

X, = F(to, £) - Xy + F(to, ) - f F(s, ) - \/T(s) - AW, (22)

fo
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where F(t, t) is the flow of the equation, namely, the solution in R%*4 of the linear equation:

OF(to, 1) _

=a(t)F(t
o - “WFD, (2.3)
F(to, to) = 1a.
Note that the flow F(ty, t) enjoys the chain rule property:
F(to,t) = F(t1,t) - F(to, t1). (24)
For all t, s such that ty < s, t, the vectors X; and Xy admit the covariance
tAs
C;, (s, t) = F(to,t) (I F(w, to)T (w)F(w, ty)" dw>F(t0, s)T
to (25)
= F(to, )hy, (s, t)F(to, s)",
where we further defined h, (s, t) the function
t
hy (s, t) = f F(w,u) - T(w) - F(w,u)" dw, (2.6)
S

which will be of particular interest in the sequel. Note that because of the chain rule property
of the flow, we have

hy(s,t) = F(v, u)hy (s, )F(v,u)’. (2.7)

We suppose that the process X is never degenerated, that is, for all { < u < v, all the
components of the vector X, taking into account X,, are nondeterministic random variables,
which is equivalent to saying that the covariance matrix of X, taking into account X,,, denoted
by C,(v,v) is symmetric positive definite for any u#wv. Therefore, assuming the initial
condition Xy = 0, the multidimensional centered process X has a representation (similar to
Doob’s representation for one-dimensional processes, see [35]) of form

t
Xﬁgwkﬂﬁdwy 28)

with g(t) = F(0,t) and £(t) = F(t,0) - \/I'(t).

Note that the processes considered in this paper are defined on the time interval [0, 1].
However, because of the time-rescaling property of these processes, considering the processes
on this time interval is equivalent to considering the process on any other bounded interval
without loss of generality.
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2.1.2. Conditional Law and Gauss-Markov Bridges

As stated in the introduction, we aim at defining a multiresolution description of Gauss-
Markov processes. Such a description can be seen as a multiresolution interpolation of the
process that is getting increasingly finer. This principle, in addition to the Markov property,
prescribes to characterize the law of the corresponding Gauss-Markov bridge, that is, the
Gauss-Markov process under consideration, conditioned on its initial and final values. The
bridge process of the Gauss process is still a Gauss process and, for a Markov process, its law
can be computed as follows.

Proposition 2.1. Let t, < t, two times in the interval [0,1]. For any t € [ty,t.], the random variable
X; conditioned on Xy, = x and Xy, = z is a Gaussian variable with covariance matrix X(t) and mean
vector u(t) given by

(t; by, tz) = he(ty, t) (he(ty, tz))_lht(t, t2),

(2.9)
I’l(t) = l’ll(t; tx/ tz) X+ I’lr(t; txr tz) *z,
where the continuous matrix functions p!(;ty, t.) and ' (-; ty, t.) of R4 are given by
P (e t2) = F(be Dby, (4 £2) (B, (b, 1)) 7,
(2.10)

W (E b, t2) = Btz Dhy (b, £) (hy, (b, £2)) 7

Note that the functions /1’ and p" have the property that yl (st tz) = p (b ty, b2) = 1g
and ;11 (tz; tx, tz) = p' (ty; ty, t2) = 0 ensuring that the process is indeed equal to x at time ¢, and
z at time t,.

Proof. Let ty,t, be two times of the interval [0,1] such that t, < t,, and let t € [t,,t,]. We
consider the Gaussian random variable ¢ = (X;, X,) conditioned on the fact that X;, = x. Its
mean can be easily computed from expression (2.2) and reads

(mt/mtz) = (F(tx/t)x/F(tx/tz)x) = (g(t) g_l(tx) X/g(tz) g_l(tx) X)/ (2~11)

and its covariance matrix, from (2.5), reads

Cii Cip F(ty, )hy, (e, F (e, 1) F(ty, )y, (b, F(ty, )"
|:Ctz,t Ctz,tz] ) I:F(tx,tz)htx(tx,f)F(tx,t)T F(tx,tz)htx(tx,tz)F(tx,tz)T]
hy (b, 1) hy (ke t)F(E )"

i [F(t, EDhy(Ee ) F(E £y (b, £2)F(, tz)T]'

(2.12)

From there, we apply the conditioning formula for the Gaussian vectors (see, e.g., [36]) to
infer the law of X; conditioned on X;, = x and X;, = z, that is the law WV (u(t), Z(t; tx, t.)) of By
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where B denotes the bridge process obtained by pinning X in t, and ¢.. The covariance matrix
is given by
E(t by, tz) = Cyy — Cy2CLC2y
= hy(tr, ) — hy (b, 1) (B (tr, 1)) hy(ty, ) (2.13)

= hy(ty, 1) (hy (b, 1)) Ty (4, 1),

and the mean reads

pu(t) =m, + Cy,zC;,lZ (z - my;)

= F(t, t) (L = hy, (b £) (b, (b, £2)) 7 )x + Bk, )by, (£, ) (B (£ £2)) 7'z, (2.14)
_ F(tx, t) htx (t/ tz) (htx (tx/ tz))_i X+ F(tZI t)htz(tx, t)(htz (tx/ tz))_i - Z,

TV '
(Bt tz) W (ttxtz)

where we have used the fact that hy (ty,t;) = h (ty,t) + he (t,t;). The regularity of the
thus-defined functions p, and p, directly stems from the regularity of the flow operator F.
Moreover, since for any 0 < t,u < 1, we observe that F(t,t) = I; and h,(t,t) = 0; we clearly
have pu_(t)) = ‘uy(t) =Igand p (t) = yy(tx) =0. O

Remark 2.2. Note that these laws can also be computed using the expression of the density
of the processes but involve more intricate calculations. An alternative approach also
provides a representation of Gauss-Markov bridges with the use of integral and anticipative
representation [37]. These approaches allow to compute the probability distribution of the
Gauss-Markov bridge as a process (i.e., allows to compute the covariances), but since this
will be of no use in the sequel, we do not provide the expressions.

2.2. The Multiresolution Description of Gauss-Markov Processes

Recognizing the Gauss property and the Markov property as the two crucial elements for a
stochastic process to be expanded to Lévy-Cesielski, our approach first proposes to exhibit
bases of deterministic functions that would play the role of the Schauder bases for the
Wiener process. In this regard, we first expect such functions to be continuous and compactly
supported on increasingly finer supports (i.e., subintervals of the definition interval [0,1])
in a similar nested binary tree structure. Then, as in the Lévy-Ciesielski construction, we
envision that, at each resolution (i.e., on each support), the partially constructed process (up
to the resolution of the support) has the same conditional expectation as the Gauss-Markov
process when conditioned on the endpoints of the supports. The partial sums obtained
with independent Gaussian coefficients of law (0, 1) will thus approximate the targeted
Gauss-Markov process in a multiresolution fashion, in the sense that, at every resolution,
considering these two processes on the interval endpoints yields finite-dimensional Gaussian
vectors of the same law.
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2.2.1. Nested Structure of the Sequence of Supports

Here, we define the nested sequence of segments that constitute the supports of the multi-
resolution basis. We construct such a sequence by recursively partitioning the interval [0, 1].

More precisely, starting from Sio = [l10,110] with l1o = 0 and 119 = 1, we iteratively
apply the following operation. Suppose that, at the nth step, the interval [0, 1] is decomposed
into 2! intervals S, x = [lyx, Tux], called supports, such that [, 11 = rpx for 0 < k < on-1,
Each of these intervals is then subdivided into two child intervals, a left-child S,41 2« and a
right-child Sy+1,2k+1, and the subdivision point #y,.1x = ly+1,2k+1 is denoted by m,, k. Therefore,
we have defined three sequences of real [, x, 1, k, and 1, x forn > 0and 0 < k < on-1 satisfying
loo=0<lyx <mpx <1y <190 =1and

Lnviok = luk, Mpke = Tnel 2k = lna 241, Tnal2k+l = Tk (2.15)

with the convention lyy = 0 and 1y = 1 and Spo = [0, 1]. The resulting sequence of supports
{Su;n<0, 0<k <21} clearly has a binary tree structure.
For the sake of compactness of notations, we define 2 the set of indices

9= J2, with Oy = {(n,k) eN?|0<n<N, 0§k<2"‘1}, (2.16)
n<N

and for N > 0, we define Dy = {muk, (n,k) € On-1} U {0,1}, the set of endpoints of the
intervals Sy k. We additionally require that there exists p € (0,1) such that for all (n,k) €
Imax(ruk — My k, My k — lnik) < p(rui — Iy k) which in particular implies that

lim suptyx — Ik =0 (2.17)

n—oo k

and ensures that the set of endpoints UnenDn is everywhere dense in [0, 1]. The simplest
case of such partitions is the dyadic partition of [0, 1], where the endpoints for (n, k) € J read

L =k 271, My = (2k +1)27", Tuk = (k+1)271, (2.18)

in which case the endpoints are simply the dyadic points UyDy = (k27N |0 < k < 2NV},
Figure 1 represents the global architecture of the nested sequence of intervals.

The nested structure of the supports, together with the constraint of continuity of the
bases elements, implies that only a finite number of coefficients are needed to construct the
exact value of the process at a given endpoint, thus providing us with an exact schema to
simulate the sample values of the process on the endpoint up to an arbitrary resolution, as
we will further explore.

2.2.2. Innovation Processes for Gauss-Markov Processes

For X;, a multidimensional Gauss-Markov process, we call the multiresolution description
of a process the sequence of conditional expectations on the nested sets of endpoints D,,.
In detail, if we denote by ¥x the filtration generated by {X;;t € Dy}given the values of
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Figure 1: A sequence of nested intervals.

the process at the endpoints Dy of the partition, we introduce the sequence of the Gaussian
processes (ZY) ys; defined by:

ZN =E[X; | ¥n] = En[X:]. (2.19)

These processes ZN can be naturally viewed as an interpolation of the process X sampled at
the increasingly finer times Dy since for all € Dy we have ZY = X!. The innovation process
(61, F:,t € [0,1]) is defined as the update transforming the process ZY into ZN*!, that is,

6 =zZN*1 7N, (2.20)

It corresponds to the difference the additional knowledge of the process at the points my x
make on the conditional expectation of the process. This process satisfies the following
important properties that found our multiresolution construction.

Proposition 2.3. The innovation process 6, is a centered Gaussian process independent of the
processes Z! for any n < N. For s € Snx and t € Sy, with k,p € O, the covariance of the
innovation process reads

= (2.21)

)T] g (®) - Ene i) ik =p,
0 ifk#p,

EN{ay-(af
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where

Wt Ink, mnk), tE [Ink, MmNkl
B (E) = (2.22)

it muk, TNk), tE [mNk TNkl

with ﬂl, u"and XN = X(mnk; Ik, TN k) as defined in Proposition 2.1.

Proof. Because of the Markovian property of the process X, the law of the process ZN can be
computed from the bridge formula derived in Proposition 2.1 and we have

ZY = (t; Ing, i) Xine + (6 Inge TNE) - Xonss

ZN+1 { Kt Ing, mng) - Xige + W (6 Ing, MNg) - Xy, for t € [Ing, myi],  (2.23)
t =

w(E mag TNE) - Xinae + (5 Mg TNk - Xey,,  for t € [Ing, ma].
Therefore, the innovation process can be written for t € Sy k as

8 = pN (1) - Xy, + ¥V (1) - QY (2.24)

where Qf\f is a Fn measurable process ¥V (t) a deterministic matrix function and

I’lr(t/ ZN,k/ mN,k)/ te [ZN,k/ mN,k]/
pni(t) = (2.25)

Wt mak, TNK), tE [mai TNk
The expressions of ¥ and Q are quite complex but are highly simplified when noting that

E[6) | Fn| = B[z | #0] -2
= E[E[Z | Fna] | Fn]-2ZN (2.26)
=0

directly implying that »(t) - QN = uN(t) - ZI

v and yielding the remarkably compact ex-
pression

8 = ) - (X = Z0,,,)- (2.27)

This process is a centered Gaussian process. Moreover, observing that it is ¥ x-measurable, it
can be written as

6?] = ”N,k(t) ’ <{me,k | ?N} - Zgw,k)’ (2'28)
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and the process {X,,, | ¥n} appears as the Gauss-Markov bridge conditioned at times Ix
and 7 x, and whose covariance is given by Proposition 2.1 and that has the expression

Enk = Z(mN i INK TNK)
L (2.29)
= hmmk (ln,k/ mn,k) (hmn,k (ln,k/ rn,k)) hm,,,k (mn,k/ rn,k)'

Let (s,t) € [0, 1]2, and assume that s € Sy x and t € Sy . If k #p, then, because of the Markov
property of the process X, the two bridges are independent and therefore the covariance

En [5,{\] . (Gf)T] is zero. If k = p, we have
T
N [5? - (8Y) ] = i) - Eni - B () (230)

Eventually, the independence property stems from the simple properties of the conditional
expectation. Indeed, let n < N. We have

E[Zf : (af)T] =E [z;i (Z - zﬁ“)T]

“E[EDX | Fal - (E[XT | Fra| ~E[XT | 78]

- ]E[E[Xt | Ful .E[xgr | gtNH” —]E[IE[Xt | ] -E[xg | %’H (2.31)
= E[zp 2] - E|zpz)]

=0

and the fact that a zero covariance between two Gaussian processes implies the independence
of these processes concludes the proof. O

2.2.3. Derivation of the Candidate Multiresolution Bases of Functions
We deduce from the previous proposition the following fundamental theorem of this paper.

Theorem 2.4. For all N € N, there exists a collection of ¢, : [0,1] — R that are zero outside
the subinterval SN  such that in distribution one has:

5?[ = Z ¢ni(t) SNk, (2.32)
kedn

where 2 i are independent d-dimensional standard normal random variables (i.e., of law N(0,14)).
This basis of functions is unique up to an orthogonal transformation.

Proof. The two processes &;° and dN &« Dikeoy Pk (t) - Enk are two Gaussian processes
of mean zero. Therefore, we are searching for functions YNk vanishing outside Sy and
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ensuring that the two processes have the same probability distribution. A necessary and
sufficient condition for the two processes to have the same probability distribution is to have
the same covariance function (see, e.g., [36]). We therefore need to show the existence of a
collection of functions ¢y, () functions that vanish outside the subinterval Sy and that
ensure that the covariance of the process d" is equal to the covariance of 6N . Let (s,t) € [0,1]
such that s € Sy, and t € Snp. If k #p, the assumption fact that the functions ¢ vanish
outside Sy x implies that

T
Eldf\’ : (dy ) ] - 0. (2.33)
If k = p, the covariance reads

E [di“ (ay )T] " [wN,ku) Bk Zhy (mk“))T]

(2.34)
T
=N i(t) - (qu,k(s)> ,
which needs to be equal to the covariance of 6", namely,
T T
Oni® - (#ni(®) = aa® - Zni (i) (2.35)
Therefore, since BNk (mnk) =14, we have
T
¢k (mNk) - (‘lfN,k(mN,k)> = INk- (2.36)

We can hence now define ¢ , (mnx) as a square root on x of the symmetric positive matrix
INk, by fixing s = my i in (2.35)

@) O = H(E) - Ong - ON (2.37)

Eventually, since by assumption we have that Xy is invertible, so is o n k, and the functions
¢ Nk can be written as

@i (E) = P (E) - ONk (2.38)

with onk being a square root of Znx. Square roots of positive symmetric matrices are
uniquely defined up to an orthogonal transformation. Therefore, all square roots of Xy x are
related by orthogonal transformations O"N,k = OoN k- On i, where O N,k-OTN,k = I4. This property
immediately extends to the functions ¢y, we are studying: two different functions ¢,
and ¢, satisfying the theorem differ from an orthogonal transformation O . We proved

that, for ¢y (f) - Enk to have the same law as 6" (t) in the interval Sy, the functions ¢ Nk
with support in Sy k are necessarily of the form py ; (f) - On k. It is straightforward to show
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the sufficient condition that provided such a set of functions, the processes 6;' and dN are
equal in law, which ends the proof of the theorem. O

Using the expressions obtained in Proposition 2.1, we can make completely explicit
the form of the basis in terms of the functions f, g, and h:

g8 (M )N, (ks ) N, (i, M i) " Ok, fOX Lyg < £ <y,
@, (t) = L (2.39)
(g™ (Mui) N, (8, Trie) Moy (M, Trie))” Onie, for myp <t <tyi,

and o, satisfies
Onk - O-Z,k = hm,,,k (ln,k/ mn,k) (hm,,,k (ln,k/ rn,k))71 hmnlk (mn,k/ 7"n,k)- (240)

Note that 0, can be defined uniquely as the symmetric positive square root, or as the lower
triangular matrix resulting from the Cholesky decomposition of X, .

Let us now define the function ¢, : [0,1] — R%4 guch that the process @oot) - Sop
has the same covariance as Z, which is computed using exactly the same technique as that
developed in the proof of Theorem 2.4 and that has the expression

@oo(t) = g(H)ho(loo, t) (ho(loo, 700)) '8 (r00) 00,0, (241)

for o0, a square root of C,, the covariance matrix of X;,, which from (2.5) reads

F(0,1)ho(1,1)F(0,1)T = g(1)ho(1,1)(g(1))". (2.42)

We are now in position to show the following corollary of Theorem 2.4.

Corollary 2.5. The Gauss-Markov process Z\N is equal in law to the process

N-1
XN =3 g, (D) Bk, (2.43)

n=0ked,

where E,, i are independent standard normal random variables N(0,1,).

Proof. We have

zY = (zN-z)) + (2M -2 )+ (-2} + 2
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N-1
= Z ok (t) - Enk + oo (t) - Eop
n=1ked,
N-1
= ‘p‘nlk (t) : E‘n,k-
n=0 ked,
(2.44)
]

We therefore identified a collection of functions {¢, ;}, e, that allows a simple
construction of the Gauss-Markov process iteratively conditioned on increasingly finer
partitions of the interval [0, 1]. We will show that this sequence ZN converges almost surely
towards the Gauss-Markov process X; used to construct the basis, proving that these finite-
dimensional continuous functions ZN form an asymptotically accurate description of the
initial process. Beforehand, we rigorously study the Hilbertian properties of the collection
of functions we just defined.

3. The Multiresolution Schauder Basis Framework

The above analysis motivates the introduction of a set of functions {¢, ;} ¢, xep We now
study in details. In particular, we enlighten the structure of the collection of functions ¢, ,
as a Schauder basis in a certain space A of continuous functions from [0,1] to R. The
Schauder structure was defined in [38, 39], and its essential characterization is the unique
decomposition property: namely that every element x in X can be written as a well-formed
linear combination

X = Z Wk Snir (3.1)

(nk)eo
and that the coefficients satisfying the previous relation are unique.

3.1. System of Dual Bases

To complete this program, we need to introduce some quantities that will play a crucial role
in expressing the family ¢, | as a Schauder basis for some given space. In (2.39), two constant
matrices R4 appear that will have a particular importance in the sequel for (n, k) in 2 with
n#0:

Ln,k = gT (mn,k) (hmn/k (ln,k/ My, k ) ) - Ok
= (h(ln,k/ mn,k))_l g_l (mn,k)o'n,k/
(3.2)

-1
Rn,k = gT (mn,k) (hmn,k (mn,kr Tn,k)) Ok

= (h(Muk, k)" 8 (M) Ok,
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where h stands for hy. We further define the matrix
4T
M, = g' (ma )0} (3.3)

and we recall that o,k is a square root of X, , the covariance matrix of X,,,,, conditionally
to Xj,, and X;,,, given in (2.29). We stress that the matrices L, x, Ry x, My, and X\ are all
invertible and satisfy the important following properties.

Proposition 3.1. For all (n, k) in 9, n#0, one has:
(i) Mn,k = Ln,k + Rn,k

(ii) Z;,lk = (hmn/k (ln,kr mn,k))_l + (hmn,k (mn,k/ rn,k))_l'
To prove this proposition, we first establish the following simple lemma of linear algebra.

Lemma 3.2. Given two invertible matrices A and B in GL,(R) such that C = A+ B is also invertible,
if one defines D = AC™'B, one has the following properties:

(i) D= AC'B=BC'A
(i) D' = A1 + BL.

Proof.

(i) D= AC'B=(C-B)C'B=B-BC'B=B(I-C"'B)=BC(C-B) =BCA.

(i) (A'+B1)D=A"'"D+B'D=A"1AC'B+B'BC'A=C1(B+A)=C'C=1.
O

Proof of Proposition 3.1.

(ii) Directly stems from Lemma 3.2, item (ii) by posing A = hy,,, (Lix, muk), B =
h,,  (mux, i), and C = A+ B =h,, (L, x, k). Indeed, the lemma implies that

D'=A"'CB!
= hm,,,k (ln,k/ 77111,k)_1hm,,,;< (ln,k/ rn,k)hm,,,k (ln,k/ 771n,k)_1 (34)
-1
= Zn,k‘

(i) We have

L+ Ryie = 80m)T (Wl 1007+ Wi, 100) ™ )0

= g(mu ) T, 0" (3.5)
T
= g(mn,k)T (0;,11() ’

which ends the demonstration of the proposition. O
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Let us define Loy = (h(lo,, rolo))f1 g 1(r00) 000. With this notations we define the func-
tions in a compact form as follows.

Definition 3.3. For every (n, k) in 9 with n#0, the continuous functions ¢, , are defined on
their support S,, x as

g(t)h(ln,k/ t) : Ln,k/ ln,k <t<myk,
@) = (3.6)
g(t)h(t/ rn,k) : Rn,k/ Mpk <t Tk,
and the basis element g, is given on [0, 1] by
@oo(t) = g(H)h(loo, t) - Loo. (3.7)

The definition implies that ¢, , are continuous functions in the space of piecewise
derivable functions with piecewise continuous derivative which takes value zero at zero. We
denote such a space by C(l)([O, 1], Rxd),

Before studying the property of the functions ¢, ,, it is worth remembering that their
definitions include the choice of a square root o,k of X, k. Properly speaking, there is thus a
class of bases ¢, , and all the points we develop in the sequel are valid for this class. However,
for the sake of simplicity, we consider from now on that the basis under scrutiny results from
choosing the unique square root o, that is lower triangular with positive diagonal entries
(the Cholesky decomposition).

3.1.1. Underlying System of Orthonormal Functions

We first introduce a family of functions ¢, x and show that it constitutes an orthogonal basis
on a certain Hilbert space. The choice of this basis can seem arbitrary at first sight, but the
definition of these function will appear natural for its relationship with the functions ¢, |
and @, ; that is made explicit in the sequel, and the mathematical rigor of the argument lead
us to choose this apparently artificial introduction.

Definition 3.4. For every (n, k) in 2 with n #0, we define a continuous function ¢, : [0,1] —
R™4 which is zero outside its support S, x and has the expressions:

f(t)T : Ln,k if ln,k <t< My k,
FOER S (38)
f(i’) . Rn,k if My k <t< Tnk-
The basis element ¢ is defined on [0, 1] by
Poo(t) = £(1)" - Loo. (3.9)

Remark that the definitions make apparent the fact that these two families of functions
are linked for all (n, k) in J through the simple relation

W= g, + VT (3.10)
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Moreover, this collection of functions ¢, constitutes an orthogonal basis of functions, in the
following sense.

Proposition 3.5. Let L? be the closure of
{u; [0,1] — R™ | aveLZ([o,l],Rd>,u=fT-v}, (3.11)

equipped with the natural norm of L*([0,1], R™). It is a Hilbert space, and moreover, for all 0 < j < d,
the family of functions c;(¢py k) defined as the columns of ¢nk, namely

¢j (¢n,k) = [((i)n,k)i/]-] (3.12)

. 7
0<i<m

: 2
forms a complete orthonormal basis of L.

Proof. The space L7 is clearly a Hilbert space as a closed subspace of the larger Hilbert space
L2([0,1],R™) is equipped with the standard scalar product:

1
Yu,v e L2<[O,1],Rd>, (u,v) = J' u(®)T - v(t)dt. (3.13)
0

We now proceed to demonstrate that the columns of ¢, x form an orthonormal family which
generates a dense subspace of L?. To this end, we define M([0,1],R™9) as the space of
functions

{A [0,1] — R™9|Vj: 0<j<dtr [Ay;(B)],.. € L2([O,1],R”‘)}, (3.14)

0<i<m

that is, the space of functions that take values in the set of m x d-matrices whose columns are
in L2([0,1],R™). This definition allows us to define the bilinear function ) : M([0,1], R"™9) x
M([0,1], R"™*d) — Rxd a5

1
P(A,B) = j A(t)" -B(t)dt satisfying P(B,A) = P(A,B)T, (3.15)
0
and we observe that the columns of ¢, form an orthonormal system if and only if

1
V((p,q), (k) €9%x0,  D($uk Ppg) = f i Gui (D) - Ppq(t)dt = 6y 1o, (3.16)

where 6;‘,’5 is the Kronecker delta function, whose value is 1 if n = p and k = g, and 0
otherwise.

First of all, since the functions ¢,k are zero outside the interval S,k, the matrix
P($ni,¢pq) is nonzero only if S,k N Sy, #0. In such cases, assuming that n#p and, for
example, that n < p, we necessarily have S, strictly included in S, ;: more precisely, S,k
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is either included in the left-child support S;,124 or in the right-child support S,,12441 of Sp 4.
In both cases, writing the matrix (¢« (t), ¢p,4) shows that it is expressed as a matrix product
whose factors include D (¢ k, 7). We then show that

D(pui ") = f: Pui(DT - £(1)

Mk Tk
17 . AT _RrRT . T
=L, J‘lnk f(u) - £ (u)du-R, J f(u) - £ (u)du, (3.17)

My k

= L;]r:,k : h(ln,k/ mn,k) - Rz,k . h(mn,k, rn,k)

T -1 T T -1 T
= O'n,k g (mn,k) _O'n,k g (mn,k) ’

which entails that D(¢,k, fT) = 0if n < p.If n > p, we remark that (¢, x, Pp.q) = P(Ppq, (j)n,k)T,
and we conclude that O (¢, k, ¢p,4) = 0 from the preceding case. For n = p, we directly compute
for n > 0 the only nonzero term

n,

My k k
p(¢n,k,¢n,k)=L£,k-f £(10) - € ()it - Loy + R:,k-j £(u) - € (w)du - Ry,

Ly k My

_ 1 3.18
= 67 g (1101) (Nl 1101)) 87 (1101 O (3.18)

+07 g7 () (W, Ti)) " 87 (1) Ok

Using the passage relationship between the symmetric functions h and h,,,, given in (2.7),
we can then write

p (¢n,k1 ¢n,k) = O'z;,k (hmn,k (ln,k/ 77111,1())71 Ok
(3.19)

-1
+ O'Z;,k (hmn,k (mn,kl rn,k)) Oy k-

Proposition 3.1 implies that hmn,k(ln,k,mn,k)_1 + hmn’k(mn,k,rn,k)_1 = Z;/lk = (a;k)TO';/lk which
directly implies that (¢, x, Z,k) =1,4. For n = 0, a computation of the exact same flavor yields
that D (¢o.0, ¢oo) = Is. Hence, we have proved that the collection of columns of ¢, x forms an
orthonormal family of functions in L? (the definition of ¢« clearly states that its columns can
be written in the form of elements of L?).

The proof now amounts showing the density of the family of functions we consider.
Before showing this density property, we introduce for all (n,k) in O the functions P, :
[0,1] — R%4 with support on S, x defined by

Ln,k if ln,k <t< My k,
Py (t) = n#0, Poo(t) = Loo. (3.20)
_Rn,k if My k <t< Tnk,

Showing that the family of columns of ¢, is dense in L is equivalent to show that the
column vectors of the matrices P, x seen as a function of t are dense in L2([0,1],R%). It is
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enough to show that the span of such functions contains the family of piecewise continuous
R4-valued functions that are to be constant on S, k, (n, k) in 2 (the density of the endpoints
of the partition UnenDy entails that the latter family generates L2([0, 1], R%)).

In fact, we show that the span of functions

Vn =span{t — ¢;j(P,x)(t) |0<j <d,(n k) € In} (3.21)

is exactly equal to the space Ky of piecewise continuous functions from [0,1] to R that are
constant on the supports Sy, for any (IN + 1, k) in 9. The fact that Vy is included in K is
clear from the fact that the matrix-valued functions Py« are defined constant on the support
SNk, for (N, k) in I.

We prove that Ky is included in Vi by induction on N < 0. The property is clearly
true at rank N = 0 since Py is then equal to the constant invertible matrix Loy. Assuming that
the proposition true at rank N — 1 for a given N > 0, let us consider a piecewise continuous
function ¢ : [0,1] — R? in Kx_;. Remark that, for every (N, k) in 9, the function ¢ can only
take two values on Sy and can have discontinuity jump in my k: let us denote these jumps
as

dni = c<mR,,k> - c<m]"\]’k>. (3.22)

Now, remark that for every (NN, k) in 9, the matrix-valued functions Py x take only two matrix
values on Sy, namely, Ly x and —Rp k. From Proposition 3.1, we know that Ly + Ry x =
Mpn k is invertible. This fact directly entails that there exist vectors an, for any (N, k) in
0, such that dyx = (Lnk + Rnk)(—ank). We then necessarily have that the function ¢’ =
¢+ P,k -,k is piecewise constant on the supports Sy k, (IN, k) in 9. By recurrence hypothesis,
¢’ belongs to Vy_1, so that ¢ belongs to Vi, and we have proved that Ky C V. Therefore, the
space generated by the column vectors P, is dense in L?[0,1], which completes the proof
that the functions ¢ — [(¢n,k(t))i,]~] Ocicm form a complete orthonormal family of L2[0,1]. O

The fact that the column functions of ¢, x form a complete orthonormal system of L?
directly entails the following decomposition of the identity on L.

Corollary 3.6. If 6 is the real delta Dirac function, one has

D Puk(t) -y (s) = 6(t — s)Idp. (3.23)

(n,k)ed

Proof. Indeed it easy to verify that, for all v in L%, we have forall N >0

DN CRCRNE) REF S W SORICHN)

(n,k)e0N (n,k)€0N
(3.24)

= > ECP(¢",k)<Cp(¢n,k)/V),

(n,k)e0n p=0
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where (c,(¢nk),v) denotes the inner product in L? between v and the p-column of ¢ ;.
Therefore, by the Parseval identity, we have in the L? sense

f S ($uk(®) - @Li())v(s)ds = v(). (3.25)
U (n,k)ed -

From now on, abusing language, we will say that the family of R"*“-valued functions
¢ i is an orthonormal family of functions to refer to the fact that the columns of such matrices
form orthonormal set of L7. We now make explicit the relationship between this orthonormal
basis and our functions (¢, ;) derived in our analysis of the multidimensional Gauss-Markov
processes.

3.1.2. Generalized Dual Operators
The Integral Operator X

The basis ¢,k is of great interest in this paper for its relationship to the functions ¢, , that
naturally arise in the decomposition of the Gauss-Markov processes. Indeed, the collection
¢, can be generated from the orthonormal basis ¢, through the action of the integral
operator X defined on L?([0,1], R™) into L([0, 1], R) by

u— Ku] = {t — g(t) - Ju Lo (s)f(s)u(s)ds}, (3.26)

where U D [0, 1] is an open set and, for any set E C U, 1g(-) denotes the indicator function of
E.Indeed, realizing that X acts on M([0,1], R"*4) into M([0, 1], R4*9) through

vA e M([0,1, R™4),  K[A] = [K[co(A)],..., Klca1(A)]], (3.27)

where ¢;(A) denotes the jth R™-valued column function of A, we easily see that for all (n, k)
in),0<t<1,

t
v, () = gt) fo £(5) - P (8)dls = K [Pi] D). (3.28)

It is worth noticing that the introduction of the operator X can be considered natural since it
characterizes the centered Gauss-Markov process X through loosely writing X = X[dW].

In order to exhibit a dual family of functions to the basis ¢, ,, we further investigate
the property of the integral operator X. In particular, we study the existence of an inverse
operator ®, whose action on the orthonormal basis ¢, x will conveniently provide us with
a dual basis to ¢, ,. Such an operator does not always exist; nevertheless, under special
assumptions, it can be straightforwardly expressed as a generalized differential operator.
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The Differential Operator D

Here, we make the assumptions that m = d, that, for all ¢, f(¢) is invertible in R%*?, and that
f and f! have continuous derivatives, which especially implies that L? = L*(R%). In this
setting, we define the space Do(U,R?) of functions in Cg°(U, RY) that are zero at zero and
denote by D (U, RY) its dual in the space of distributions (or generalized functions). Under
the assumptions just made, the operator X : Dy(U, R4) — Dy (U, R?) admits the differential
operator ® : Do(U, R%) — Dy(U, RY) defined by

ue D0<ll, Rd> — Dlu] = {t — f‘l(t)% (g‘l(t)u(t)> } (3.29)

as its inverse, that is, when restricted to Dy (U, R?), we have Do X = LoD = Id on Dy(U, RY).
The dual operators of X and D are expressed, for any u in Do(U, R9), as

o ul = {r—-(g70) 5 ((£70) wt) .

(3.30)
K[u] = {t — —f(1)T .[u Lo (s)gT(s)u(s)ds}.

They satisfy (from the properties of X and ®) D* o X* = K* 0 D* = Id on Do(U, R?). By dual
pairing, we extend the definition of the operators X, ® as well as their dual operators, to the
space of generalized function Dy(U, R9). In details, for any distribution T in Dy (U, R4) and
test function u in Dy (U, R?), define X and X* by

@[T],w) =(T,9[u]),  (K[T],u) = (T, L [u]), (3.31)
and reciprocally for the dual operators ®* and X*.

Candidate Dual Basis

We are now in a position to use the orthonormality of ¢, « to infer a dual family of the basis
@, - For any function u in L*(U,R?), the generalized function X[u] belongs to Co(U,R?),
the space of continuous functions that are zero at zero. We equip this space with the uniform
norm and denote its topological dual Ry(U, RY), the set of d-dimensional Radon measures
with Ro(U,RY) Dy(U, R9). Consequently, operating in the Gelfand triple

Co (u, Rd> cI? (u, Rd> C Ry (u, Rd>, (3.32)
we can write, for any function u, v in L2(U,RY) ¢ Ry(U,RY),
(w,v) = ((D o K)[u],v) = (K[u], D*[v]). (3.33)

The first equality stems from the fact that, when X and D are seen as generalized functions,
they are still inverse of each other, so that in particular ® o X = Id on L?(U,R?). The dual
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pairing associated with the Gelfand triple (3.32) entails the second equality where ®* is the
generalized operator defined on Djj(U, R?) and where ®*[v] is in Ro(U, R%).

As a consequence, defining the functions 8, in Ro(U,R%*4), the d x d-dimensional
space of Radon measures, by

O = D" (Pni) = [B[ci(Pni)], - D [ci(Pni)]] (3:34)

provides us with a family of d x d-generalized functions which are dual to the family ¢, , in
the sense that, for all ((n, k), (p,q)) in J x 9, we have

p(5n,k, qu,q> =5k 1y, (3.35)

where the definition of /) has been extended through dual pairing: given any A in Ry(U, R™*9)
and any B in Co(U, R"™*4), we have

p(A/ B) = [(Ci(A)/ Cj (B))]Ogi, j<d (336)

with (c;(A), cj(B)) denoting the dual pairing between the ith column of A taking value in
Ro(U,R%) and the jth column of B taking value in Co(U, R?). Under the favorable hypothesis
of this section, the d x d-generalized functions 6, can actually be easily computed since
considering the definition of ¢, x shows that the functions (f’l)T - Pk have support S, x and
are constant on Sy.12c and Sy.1 k41 in Réxd, Only the discontinuous jumps in Ik, 1, , and
Ty k intervene, leading to expressing for (n, k) in 0, n#0

8,k (0) = (80)7") + (M 6~ i) — (Lug 5t~ 1ys) + Ry 5t -10)))  (337)

and 6 (t) = (g(t)_l)T -Lop, where 6(-) denotes the standard delta Dirac function (centered in
0). These functions can be extended to the general setting of the paper since its expressions
do not involve the assumptions made on the invertibility and smoothness of f(t). We now
show that these functions, when defined in the general setting, still provide a dual basis of
the functions ¢, ;..

3.1.3. Dual Basis of Generalized Functions

The expression of the basis 6, « that has been found under favorable assumptions makes no
explicit reference to these assumptions. It suggests defining functions 6, x formally as linear
combination of Dirac functions acting by duality on Co(U,R9*%).

Definition 3.7. For (n, k) in J, the family of generalized functions 6, x in Ro(U, R3*4) is given
by (n#0)

81k (0) = (8()71) - (M 6t = ms) ~ Lk 5t~ L) + Ry 6t —r0))),  (339)

and 6g(t) = (g(t)_l)T - Lo o, where 6 is the standard Dirac distribution.
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Notice that the basis 6,k is defined for the open set U. For the sake of consistency, we
extend the definition of the families ok and ¢, on U by setting them to zero on U \ [0,1],
except for ¢, which is continued for ¢t > 1 by a continuous function c that is compactly
supported in [1, a) for a given a in U, a > 1 and satisfies ¢(1) = ¢ ,(1).
We can now formulate the following.
Proposition 3.8. Given the dual pairing in Co(U) C L>*(U) C R(U) where U is a bounded open set
of R containing [0,1], the family of continuous functions g, in Co(U) admits, for dual family in
R(U), the set of distributions &,.

Proof. We have to demonstrate that, for all ((n, k), (p,q)) in 9 x 9,
D(8pa/Wx) = S5 L. (3.39)

Suppose first that n,p > 0. If p < n, D(buk, ¢,,) can only be nonzero if the support Sy, is
strictly included in S,, x. We then have

P <6P,qr ¥ n,k) =M, g7 (myg) @, (myp,q)

(3.40)
- (L;Tz,q g (la)y wk(pa) + R;,q g (rpq) 9 wk (Tp.a) > :

Assume that S, ; is to the left of m,, k, that is, S, ; is a left child of S, x in the nested binary tree
of supports and write

D(8p0Wui) = (Mb g (0(lusmpq) = 1h i (luse hog) ) = R h (b Tpg) JLnie (341)

Using the fact that M, ; = L, 4 + R4 and that the function h(x, y), as any integral between x
and vy, satisfies the chain rule h(x,y) = h(x, z) + h(z, y) for all (x, y, z), we obtain

D<6M, ‘l’n,k) = <_LrTz,q (h(lk, mp,q) - h(ln,k/lp,q))
+R£,q (h(Luje, Mpg) = h(luk, Tpq)) ) Lk
= <_L;€,q h(lp.q M) + Ry h(rprq'mplq))Ln,k

. R (3.42)
= <_arTw<g_l<mm>) (h(lp/quprq) ) “h(lpq,mpq)

+Opq (g‘1 (mf"‘?)>T (h(m”"?’ TP"?)_1>T “h(mpq, r,,,q)> Lk

=0.
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The same result is true if Sy, ; is a right child of S, in the nested binary tree of supports. If
p = n, necessarily the only nonzero term is for g = p, that is,

b <6PW ‘I’n,k) = Mﬂ,k g~ (mux) @(muk)
= MZ; h(ln,k/ mn,k) Ln,k
! (3.43)
= 031 g(m )Rk, M)Wl M) 7 87 (M) G g
=1.
Ifp>n, P(6uk, v, q) can only be nonzero if the support S, x is included in S, 4, but then (7

is zero in I, 4, my 4, 7,4 O that D(O,k, qrp,q) =0.
Otherwise, if n = 0 and p > 0, we directly have

p <6P/'1’ ‘I’o,o> =My.8" (1,0) @00 (mp,q)

- (L;Tw,q g (lp/q) Poo (p.q) + R;zTa,qg1 (7p,9) Poo (7p,9) > ,

Lz;,qh (lp,q, mr’rq) + R;,qh (mp,q/ rp,q) > Lo,o, (3.44)

- T - T
<_0'Z;,q g (Mpq) +0p,87" (1my,4) )Ln,k/
0.

Finally, if p = 0, given the simple form of 6 with a single Dirac function centered in g, we
clearly have D(6¢,, (p‘n/k) =0,andifn>0

/9<50,0, ‘I’o,o>f = L{,h(loo, r00) Loy,

T
=0}, <g_1(7’0,0)> Lo,
(3.45)

T
=0} (g_l(fo,o)> (h(lop, 70,0)Loo )" g7 (r00)G0,0,
= O.OT,O C;Ul,oo-oro’

and using the fact that (by definition of o) we have oy - O'(];O = C,,,, this last expression is
equal to

P (800, 90,) = 555 (%) (000) o0 = I, (3.46)

which completes the proof. O

This proposition directly implies the main result of the section.
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Theorem 3.9. The collection of functions (¢, ,; (n, k) € I) constitutes a Schauder basis of functions
on Co(U, R%), that is, any element of Co(U, R?) can be written in a unique way as a sum of coefficients
an ke multiplied by ¢, .

This theorem provides us with a complementary view of stochastic processes: in
addition to the standard sample paths view, this structure allows to see the Gauss-Markov
processes as coefficients on the computed basis. This duality is developed in the sequel.

3.2. The Sample Paths Space
3.2.1. The Construction Application

The Schauder basis of functions with compact supports constructed allows to define
functions by considering the coefficients on this basis, which constitute sequences of real
numbers in the space

Q= {2= &) V0 K) €08, €RY) = <Rd>9. (3.47)

We equip ;Q with the uniform norm |[|¢[l = sup(n/k)69|§n,k|, where we write [§, | =
supy.;.4l(&,x):l- We denote by B(;£2) the Borelian sets of the topology induced by the uniform
norm and we recall that C(;Q), the cylinder sets of ;Q, form a generative family of Borelian
sets. Remark that not any sequence of coefficients provides a continuous function, and
one needs to assume a certain decrease in the coefficients to get convergence. A sufficient
condition to obtain convergent sequences is to consider coefficients in the space

2 ={26,Q136€(0,1), IN€EN, ¥(n,k) €9\ Dy,

il <2977} (348)

This set is clearly a Borelian set of ;Q since it can be written as a countable intersection and
union of cylinder, namely, by denoting by 2 the set of finite subset of Nand 6, = 1-1/p,
p>1,

Q=UU N {é € Q| max Ién,k|<2"6”/2}- (3.49)

n-1
p>1 JeD neN\J Ogk<2

It is also easy to verify that it forms a vectorial subspace of ;.
After these definitions, we are in position to introduce the following useful function.

Definition 3.10. One denotes by WY the partial construction application:

Q, — Co([0,1],RY),

N _
e P P I TR (3.50)
(ﬂ,k)EON

where the Cy([0,1],R) is the d-dimensional Wiener space, which is complete under the
uniform norm [|x||e; = sup,;[x(£)]-
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This sequence of partial construction applications is shown to converge to the con-
struction application in the following.

Proposition 3.11. For every ¢ in ;Q', WN (&) converges uniformly toward a continuous function in
Co([0,1], R%). One will denote this function W(¢&), defined as

Q' — Co([0,1],RY),
& = D k(D) &k

(n,k)ed

¥ . (3.51)

and this application will be referred to as the construction application.

This proposition is proved in Appendix D. The image of this function constitutes a
subset of the Wiener space continuous functions Cy([0, 1], R?). Let us now define the vectorial
subspace Q' = ¥(;Q') of Co([0,1],R9) so that ¥ appears as a bijection.

It is important to realize that, in the multidimensional case, the space £’ depends on T
and « in a nontrivial way. For instance, assuming that a = 0, the space Q' depends obviously
crucially on the rank of I'. To fix the idea, for a given constant 1/I'(t) = [0,0- - 117 in R>! we
expect the space Q' to only include sample paths of Cy([0,1],R%) for which the n — 1 first
components are constant. Obviously, a process with such sample paths is degenerated in the
sense that its covariance matrix is not invertible.

Yet, if we additionally relax the hypothesis that & # 0, the space Q' can be dramatically
altered: if we take

aty=| , (3.52)

the space Q' will represent the sample space of the d — l-integrated Wiener process, a
nondegenerate d-dimensional process we fully develop in the example section.

However, the situation is much simpler in the one-dimensional case: because the
uniform convergence of the sample paths is preserved as long as a is continuous and I’
is nonzero through (D.8), the definition ,Q' does not depend on a or I'. Moreover, in this
case, the space ,Q' is large enough to contain reasonably regular functions as proved in
Appendix D, Proposition 3.

In the case of the d — 1-integrated Wiener process, the space Q' clearly contains the
functions {f = (f4_1,..., fo) | fo € H, f] = fi-1,0 <i < d}.

This remark does not hold that the space Q' does not depend on a as long as a is
continuous because the uniform convergence of the sample paths is preserved through the
change of basis of expansion ¢, through (D.8).

We equip the space Q' with the topology induced by the uniform norm on
Co([0,1],R%). As usual, we denote B(,Q') the corresponding Borelian sets. We prove in
Appendix D the following.
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Proposition 3.12. The function ¥ : (;Q',B(:Q')) — (+Q',B(xQ")) is a bounded continuous bi-
jection.

We therefore conclude that we dispose of a continuous bijection mapping the coef-
ficients onto the sample paths, ¥. We now turn to study its inverse, the coefficient application,
mapping sample paths on coefficients over the Schauder basis.

3.2.2. The Coefficient Application
In this section, we introduce and study the properties of the following function.

Definition 3.13. One calls coefficient application and denotes by Z the function defined by

{CO([Ofl],IR%d) — = RY)7,
= (3.53)

| — AK) = (A0} uper With [AM) ), = DBk, ).

Should a function x admit a uniformly convergent decomposition in terms of the basis
of elements ¢, ,, the function A gives its coefficients in such a representation. More precisely,
we have the following.

Theorem 3.14. The function A : (', B(:Q')) — (:Q',B(:Q")) is a measurable linear bijection
whose inverse is ¥ = A1,

The proof of this theorem is provided in Appendix D.

4. Representation of Gauss-Markov Processes
4.1. Inductive Construction of Gauss-Markov Processes

Up to this point, we have rigorously defined the dual spaces of sample paths Q' and
coefficients ;€. Through the use of the Schauder basis ¢, , and its dual family of generalized
functions 6,,x, we have defined the inverse measurable bijections ¥ and A transforming
one space into the other. In doing so, we have unraveled the fundamental role played by
the underlying orthonormal basis ¢, . We now turn to use this framework to formulate a
pathwise construction of the Gauss-Markov processes in the exact same flavor as the Lévy-
Ciesielski construction of the Wiener process.

4.1.1. Finite-Dimensional Approximations
Considering the infinite-dimensional subspace Q' of Co([0,1],R9), let us introduce the

equivalence relation ~x as

x~Ny &=Vt € Dy, x(t) =y(f). (4.1)
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We can use the functions ¥ to carry through the structure of ~y on the infinite-dimensional
space of coefficients ;Q":

s~n1 &= W) ~nW() = V(n, k) €IN,  Suk = My (4.2)

which clearly entails that x ~n y if and only if A(x) ~n A(y). We denote the sets of equivalence
classes of ,Q'/~n = »Qn and ;:Q'/~n = :Q,, which are both clearly isomorphic ,Qxn =

(R4 )9 = Q). Forevery N > 0, we define the finite-dimensional operators ¥ = rinoW¥o Py
and Ay = iy © A o Py, with the help of the canonical projections ;pn : Q' — :Qp,
xPN Q' — xQn and the inclusion map ;i @ ¢Qy — Q) xin: QN — Q.

The results of the preceding sections straightforwardly extend on the equivalence
classes, and in particular we see that the functions ¥ : :Qy — xQn and Ay : ;Qn —
¢Qy are linear finite-dimensional bijections satisfying ¥n = An~". We write e = {epalpger
(resp., f = {fp/q}(p,q)eo), the canonical basis of ;:Qn (resp., xQx) when listed in the recursive
dyadic order. In these bases, the matrices ¥n and Ay are lower block triangular. Indeed,
denoting ¥ in the natural bases e = {e, 4}, 5co and £ = {£, 5}, 5)c0 by

Wy = [, )] = [w7], (4.3)

where ‘I’ij is a d x d matrix, the structure of the nested support S, entails the block-
triangular structure (where only possibly nonzero coefficients are written):

¥oo
Woo | W10
woo | Wi | ¥

T 2T 7T
Poo P10 Yo
N = | w0 |90 | w0 vy . (4.4)
woo |0 | 930 ¥

woo | s w51 vy
w0 ¥ ¢

Similarly, for the matrix representation of Ay in the natural bases e, x and f;;

An = [Arf] (4.5)
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proves to have the following triangular form:

[ g7 (to0) Moy
—g (too) " Rug | g7 (t10) My

An = —g 1 (to0) Roo [ g7 (t1,0) Mg . (4.6)
—g (to0) Ray | —g (t10) Loy g (t1) Moy

The duality property, Proposition 3.8, simply reads for all 0 < n < N and 0 < k < 2",
0<p<Nand0<p<29!

_ P qsid _ gPA
b (51%/ ‘I’n,k) = Z N 4.7)
(n,k)€DN

thatis, AN -¥n = Id,q,. But because we are now in a finite-dimensional setting, we also have
IPN . AN = IdeNI

iy, — iLj  APA
O la = Z W Al (4.8)
(p.g)EIN

Realizing that 6;(’11151 represents the class of functions x in Q' whose values are zero on every

dyadic point of Dy except for x(12F) = 1, {Azf} clearly appear as the coefficients of

(P/q)EDN
the decomposition of such functions in the bases [ for (p,q) in JN.

Denoting 2 = {Z,,x} , k)e1, @ set of independent Gaussian variables of law _(0,14) on
(Q,,P), and for all N > 0, we form the finite dimensional Gauss-Markov vector [XN ]

1] i,j)en
as

Xf\,] = Z Pk (mi;) - Eni, (4.9)
(,k)e0N

which, from Corollary 2.5, has the same law as [X];cp, , the finite-dimensional random vector
obtained from sampling X on Dy (modulo a permutation on the indices). We then prove the
following lemma that sheds light on the meaning of the construction.

Lemma 4.1. The Cholesky decomposition of the finite-dimensional covariance block matrix Xy is
given by 3N = 1PN . IPNT.

Proof. For every 0 < t,s < 1, we compute the covariance of the finite-dimensional process XV
as

T N T
N R C B D YR () (4.10)

n=0 0<k<2n-!
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From there, we write the finite-dimensional covariance block matrix Xy in the recursively
ordered basis f;; for0<i < N,0<j <27, as

N
G
[EN]Y) = Cn(mijmi) = >, D) ¥ e (4.11)
n=0 0<k<2n-1

We already established that the matrix ¥ was triangular with positive diagonal coefficient,
which entails that the preceding equality provides us with the Cholesky decomposition of
z. O

In the finite-dimensional case, the inverse covariance or potential matrix is a well-
defined quantity and we straightforwardly have the following corollary.

Corollary 4.2. The Cholesky decomposition of the finite-dimensional inverse covariance matrix Xy
is given by £y = ANT - An.

Proof. The result stems for the equalities Z;\} = (PN -‘PNT)_1 = (‘PI_\})T P =ANT AN, O

4.1.2. The Lévy-Ciesielski Expansion

We now show that, asymptotically, the bases ¢, , allow us to faithfully build the Gauss-
Markov process from which we have derived its expression. In this perspective we consider
E = {Enk}mieos a set of independent Gaussian variables of law (0,14) on (Q, ¥, P), and,
for all N > 0, we form the finite-dimensional continuous Gaussian process Z", defined for
0<t<1lby

XY= 3 @) Bk, (4.12)
(n,k)EDN

which, from the result of Theorem 2.4, has the same law ZfV = E[X; | ¥n]. We prove the
following lemma.

Lemma 4.3. The sequence of processes XN almost surely converges towards a continuous Gaussian
process denoted by X*.

Proof. For all fixed N > 0 and for any w in Q, we know that t — XN (w) is continuous.
Moreover, we have established, that, for every ¢ in ¢Q', XV (¢) converges uniformly in f toward
a continuous limit denoted by XN (¢). Therefore, in order to prove that limy _, . X defines
almost surely a process X with continuous paths, it is sufficient to show that P;(;:Q') = 1,
where P; = Pz is the Z-induced measure on ;Q, which stems from a classical Borel-Cantelli
argument. For ¢ a random variable of normal law (0,1), and a > 0, we have

e 0 7’12/2
P(i¢| > a) = VEJ e/ du < VEI Boer2 gy = \/36 . (4.13)
T Ja Ja ), a a a
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Then, for any 6 > 0

2
Pg( max &, ] > 2”6/2> < d2"P<|§| > d2”6/2> = \/;2(1’6/2)” exp<—2"6’1>. (4.14)

0<k<2n-1

Since the series

i % 20-6/21 g <_2ms_1> (4.15)
n=0

is convergent, the Borel-Cantelli argument implies that P;(;:€2') = 1. Eventually, the contin-
uous almost-sure limit process X° is Gaussian as a countable sum of Gaussian processes. [

Now that these preliminary remarks have been made, we can evaluate, for any t and
s in [0, 1], the covariance of X as the limit of the covariance of X .

Lemma 4.4. Forany 0 <t,s <1, the covariance of X* = {X{® = W;0E; 0 <t <1}is
C(t,5) =E[X7 - (x2)"] = g(Oh(t A 5)g(s)". (4.16)

Proof. As Z, are independent Gaussian random variables of normal law U(0,1;), we see
that the covariance of XV is given by

N N N\T T

V) =EPY- () | = X 0,0 (w,.0)

(n,k)edn

(4.17)

To compute the limit of the right-hand side, we need to remember that the element of the
bases ¢, , and the functions ¢y« are linked by the following relation:

@, () = K[bus] = 50 f ()5S, (4.18)

from which we deduce

T
N(t,s) = f(u) b, (u)d s1(0)f Lk (0)d T
N (L) g<t>< 3 (juﬂ[o,w) (s ) (fuﬂ[o,mv) (®) dnix(o)do ) >g<s>

(n,k)eIN
(4.19)

Defining the auxiliary R*“-valued function

g (£) = fu 1100 (W E(0) b (W), (4.20)
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we observe that the (i, j)-coefficient function reads

(Kn,k)i,]'(t) = ]1[0,t] (u) ll(f(u))T -¢j ((l’n,k(u)) du
u
= fu (11[0,t] (u)c; <fT(u)>T . C;‘(sbn,k(u)))du,

(4.21)

where 1[4 is the real function that is one if 0 < u < t and zero otherwise. As we can write

Log e @) = £ - (10000 | — i, (422)

we see that the function fi; = Ljgsc¢; (fT) belongs to [2?, so that we can write (Kn,k)i,j(t) as a
scalar product in the Hilbert space LZ:

06080350 = [ €00 (e 00t = (51,61 (B01): (423)
We then specify the (i, j)-coefficient of g1 (£)CN (t,s) (g™ (s))" writing

d-1
S (w6 = X 3 (Fin (i) (B i (Bni)), (4.24)

(n,k)edn ’ (n,k)eIN p=0

and, remembering that the family of functions c;(¢; ) forms a complete orthonormal system
of Lf, we can use the Parseval identity, which reads

> (xt)-x()")

= (fir £j)
(nk)eo ]

i

_ Ju Lo (1)ci <fT(u)>T Ao e (£ () ) du (4.25)

_ Jms @ fT>i,j(u)du.

0

Thanks to this relation, we can conclude the evaluation of the covariance since

lim CN(t,5) = g(t) <IMS (f : fT)(u)du>g(s)T = g(Hh(tAs)g(s) . (4.26)
N—oo 0
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We stress the fact that the relation

Cts) = 3 gl (,4(5) =W(W) oW (s) 427)
(nk)ed

provides us with a continuous version of the Cholesky decomposition of the covariance
kernel C. Indeed, if we chose o, as the Cholesky square root of X, s, we remark that the
operators @ are triangular in the following sense: consider the chain of nested vectorial spaces

{Fui} (n,k)ed

Fo,o C Fl,O C (leo - F2,1) - C (Fn,() Cc---C Fn,2"71) e C gQ, (428)

with Fyx = span{f;; | 0 <i < n, 0 < j < k}; then, for every (n, k) in J, the operator ¥
transforms the chain {F, « } (nk)ep INtO the chain

E00CE10C (€20 Cén1) - C(€poCrr-Céppn1) - Ce & (4.29)

with &, = span{W¥;; |0<i<n,0<j <k}
The fact that this covariance is equal to the covariance of the process X, solution of
(2.1) implies that we have the following fundamental result.

Theorem 4.5. The process X* is equal in law to the initial Gauss-Markov process X used to construct
the basis of functions.

Remark 4.6. Our multiresolution representation of the Gauss-Markov processes appears to
be the direct consequence of the fact that, because of the Markov property, the Cholesky
decomposition of the finite-dimensional covariance admits a simple inductive continuous
limit. More generally, triangularization of the kernel operators has been studied in depth
[28, 40—-42], and it would be interesting to investigate if these results make possible a similar
multiresolution approach for non-Markov Gaussian processes. In this regard, we naturally
expect to lose the compactness of the supports of a putative basis.

Remark 4.7. We eventually underline the fact that large deviations related to this convergence
can be derived through the use of the Baldi and Caramellino good rate function related to the
Gaussian pinned processes [43, 44].

4.2. Optimality Criterion of the Decomposition

In the following, we draw from the theory of interpolating splines to further characterize
the nature of our proposed basis for the construction of the Gauss-Markov processes.
Essentially adapting the results from the previous works [45, 46], we first show that
the finite-dimensional sample paths of our construction induce a nested sequence &y of
the reproducing Hilbert kernel space (RKHS). In turn, the finite-dimensional process XN
naturally appears as the orthogonal projection of the infinite-dimensional process X onto &n.
We then show that such an RKHS structure allows us to define a unicity criterion for the
finite-dimensional sample path as the only functions of £ that minimize a functional, called
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Dirichlet energy, under constraint of interpolation on Dy (equivalent to conditioning on the
times Dy). In this respect, we point out that the close relation between the Markov processes
and the Dirichlet forms is the subject of a vast literature, largely beyond the scope of the
present paper (see, e.g., [18]).

4.2.1. Sample Paths Space as a Reproducing Hilbert Kernel Space

In order to define the finite-dimensional sample paths as a nested sequence of RKHSs, let us
first define the infinite-dimensional operator

2 (gQ) — L%,

s — @[g] = {t'—> > Pk 'gn,k}‘
)

(nk)e

D: (4.30)

Since we know that the column functions of ¢, form a complete orthonormal system of
L2, the operator @ is an isometry and its inverse satisfies ®' = ®', which reads for all
vin L?

f

o7V, = f 900 VOt =D, v). (4.31)

Equipped with this infinite-dimensional isometry, we then consider the linear operator .£ =
@ o A suitably defined on the set

&= {u e C0<U,Rd> | £[u] € L%} - {u e C0<U,]Rd> | A[u] € 12(,;9)} (4.32)

with [|&]|.% = Dinked 1énk ,?, the 2 norm of :Q. The set & form an infinite-dimensional vectorial
space that is naturally equipped with the inner product

Y(u,v) € €2, (u,v)= juﬁ[u] " - 2[v](t)dt = (L[u], Z[v]). (4.33)

Moreover since u(0) = v(0) = 0, such an inner product is definite positive and, consequently,
¢ forms an Hilbert space.

Remark 4.8. Two straightforward remarks are worth making. First, the space & is strictly
included in the infinite-dimensional sample paths space ,Q'. Second, notice that, in the
favorable case m = d, if f is everywhere invertible with continuously differentiable inverse,
we have £ = @ = X1. More relevantly, the operator £ can actually consider a first-order
differential operator from & to L7 as a general left inverse of the integral operator X. Indeed,
realizing that on L2, X can be expressed as X = ¥ o @', we clearly have

ﬁoJCZG)vo‘Poq)_lzldL?. (4.34)
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We know motivate the introduction of the Hilbert space & by the following claim.

Proposition 4.9. The Hilbert space (,{, )) is a reproducing kernel Hilbert space (RKHS) with R¥*d-
valued reproducing kernel C, the covariance function of the process X.

Proof. Consider the problem of finding all elements u of & solution of the equation £[u] = v
for vin LZ. The operator X provides us with a continuous R?*™-valued kernel function k:

V(t,s) €U, K(t,s) = 1o (s)g(t) - £(s), (4.35)

which is clearly the Green function for our differential equation. This entails that the
following equalitiy holds for every u in &:

u(t) = fu k(t,s)L[u](s)ds. (4.36)

Moreover, we can decompose the kernel k in the L sense as

k(t,s)= > @, () r(s) (4.37)

(n,k)ed

since we have

K(t,s) = Jc[asldL?] (t)

- JC[ S k- ¢,E,k(s)] (1) (4.38)

(n,k)ed

= > K[pux](t) - ¢}, (5),

(n,k)ed

with 6; = 6(- — s). Then, we clearly have

C<t,s>=f Kt u) k(s w)Tdu= 3 g0 g7 (s), (4.39)
u (n,k)ed

where we recognize the covariance function of X, which implies

k(t;s)= >, ¢t - L[gur] (5) = LIC(E )] (4.40)

(n,k)ed

Eventually, for all u in L?, we have

u(t) = fuﬁ[C(t,-)](S) - L[u](s)ds = P(C(t,-),u), (4.41)
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where we have introduced the p-operator associated with the inner product (, ): for all R%*-
valued functions A and B defined on U such that the columns ¢;(A) and ¢;(B), 0 < i < d, are
in &, we define the matrix P(A, B) in R4 by

Y0<i, j<d, P{(AB);;=(ci(A),c;(B)). (4.42)

By the Moore-Aronszajn theorem [47], we deduce that there is a unique reproducing kernel
Hilbert space associated with a given covariance kernel. Thus, £ is the reproducing subspace
of Co(U, R%) corresponding to the kernel C, with respect to the inner product (, ). O

Remark 4.10. From a more abstract point of view, it is well known that the covariance operator
of a Gaussian measure defines an associated Hilbert structure [48, 49].

In the sequel, we will use the space £ as the ambient Hilbert space to define the finite-
dimensional sample paths spaces as a nested sequence of RKHS. More precisely, let us write
for &y the finite-dimensional subspace of &

En = {u € c0<u, IR{”’> | 2[u] € L?,N}, (4.43)

with the space L%, ~ being defined as
L?,N = span[{ci (¢nx) }n,keoN, 05i<d]' (4.44)

We refer to such spaces as finite-dimensional approximation spaces since we remark
that

éN = span [{Ci(‘l’n,k)} ] =¥y [:Qn], (4.45)

n,kedn 0<i<d

which means that the space & is made of the sample space of the finite-dimensional process
Xn. The previous definition makes obvious the nested structure & C & C --- C &, and it is
easy to characterize each space & as a reproducing Hilbert kernel space.

Proposition 4.11. The Hilbert spaces (En, (, )) are reproducing kernel Hilbert spaces (RKHSs) with
R¥>4-valued reproducing kernel Cy, the covariance function of the process X

Proof. The proof this proposition follows the exact same argument as that in the case of &, but
with the introduction of finite-dimensional kernels ks

V(t,s) € u2/ kn(t,s) = Z ‘I’n,k(t) “i’ik(s)/ (4.46)
(n,k)edN

and the corresponding covariance function

V(t/ S) € [O/ 1]2/ CN (tl S) = Z ‘pn,k(t) : q’;];,k (S) (447)
(n,k)EON
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4.2.2. Finite-Dimensional Processes as Orthogonal Projections

The framework set in the previous section offers a new interpretation of our construction.
Indeed, for all N > 0, the columns of {¢, , },xep, form an orthonormal basis of the space
& N-

D@ p0) = P (2|0 2]9,0]) = P Prk bpa) = 635 (4.48)

This leads to defining the finite-dimensional approximation xy of an sample path x of £ as
the orthogonal projection of x on &y with respect to the inner product (, ). At this point,
it is worth remembering that the space £ is strictly contained in ,Q' and does not coincide
with ,Q': actually one can easily show that P(£) = 0. We devote the rest of this section to
defining the finite-dimensional processes ZN = En[X] resulting from the conditioning on
Dy, as pathwise orthogonal projection of the original process X on the sample space én.

Proposition 4.12. For any N > 0, the conditioned processes En [X] can be written as the orthogonal
projection of X on &N with respect to (, ):

EniXI= D, ‘I’n,k'p<‘l’n,kfx>- (4.49)

(n,k)edn

The only hurdle to prove Proposition 4.12 is purely technical in the sense that the
process X exists in a larger space than &: we need to find a way to extend the definition of (, )
so that the expression bears a meaning. Before answering this point quite straightforwardly,
we need to establish the following lemma.

Lemma 4.13. Writing the Gauss-Markov process X; = f; k(t,s) dWs, for all N > 0, the conditioned
process ZN = En[X] is expressed as the stochastic integral

1
zN =j kn(t, s)dWs  with kn(t,s) = D, @, () - ¢ (5). (4.50)
0 (n,k)edn

Proof. In the previous section, we have noticed that the kernel ky converges toward the kernel
k (the Green function) in the L? sense

k(t;s) = D ¢, (8) ¢y (s)

(nk)e0

= lim > g, () dp i (s)kn (4.51)

N=0 ieon

= lim kn(t9).

This implies that the process X as the stochastic integral can also be written as

1

1
Xt:g(t)f 110, (5)(s)dW; = | k(t,s)dW, = lim f kn (t,s)dW.. (4.52)
u 0 —©Jo
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Specifying the decomposition of ky, we can then naturally express X as the convergent sum

1
Xi= D, ¢, Sk with Zpx =f by (5) AW, (4.53)
(n,k)ed 0

where the orthonormality property of the ¢, with respect to (,) makes the vectors =,
appear as independent d-dimensional Gaussian variables of law U(0,1;). It is then easy to
see that by definition of the elements ¢, ,, for almost every w in Q, we then have

VN >0,0<t<1, ZN(“J) =En[X](w) = Z G- Enk(w), (4.54)
(n,k)edN

and we finally recognize in the previous expression that forall 0 <t <1

1
ZV = > @ Eak= D, ‘Fn,k(t)'f b (s) AW, =J kn(t,s) dWs. (4.55)
(n,k)edN (n,k)edn u 0 .

We can now proceed to justify the main result of Proposition 4.12.

Proof. The finite-dimensional processes ZN defined through Lemma 4.13 have sample paths
t— Zi\’ (w) belonging to £n. Moreover, for almost every w in € and for all n, k in Dy,

0

P{@, 2V (@) ) = /9<qfn,k, fl kn(t, s)dws<w>>

1
=/9<<lfn,k/ > lli,,,q(w)‘f0 ¢,f,q(S)dWs(w)> (4.56)

(p,q) eln

1
- [ hts) aw. (),

because of the orthonormality property of ¢, , with respect to (, ). As the previous equalities
hold for every N > 0, the applications x +— (¢, ,,x) can naturally be extended on

Q' by continuity. Therefore, it makes sense to write, for all (n,k) in Oy, D((pn,k,ZN ) =

imy oo D(, 1, ZN) & P{, 1, X) even if X is defined into a larger sample space than &.

In other words, we have

1
DX = [ §h(6) AW, =2, @57)
0
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and we can thus express the conditioned process ZV = Ey [X] as the orthogonal projection of
X onto the finite sample path &x by writing

V= (Ifn,k'/?<llfn,kfx>- (4.58)
(n,k)EON

4.2.3. Optimality Criterion of the Sample Paths

Proposition 4.12 elucidates the structure of the conditioned processes Zy as pathwise
orthogonal projections of X on the finite-dimensional RKHS &y. It allows us to cast the finite
sample paths in a geometric setting and incidentally, to give a characterization of them as the
minimizer of some functionals. In doing so, we shed a new light on well-known results of the
interpolation theory [50-52] and extend them to the multidimensional case.

The central point of this section reads as follows.

Proposition 4.14. Given a function x in &, the function xy = (¥ o An)[x] belongs to En and is
defined by the following optimal criterion: Xx is the only function in & interpolating x on Dy such
that the functional

1
v, ¥) = 12y )11 = fo 2y () dt (4.59)

takes its unique minimal value over & in xy.

Proof. The space &n has been defined as En = Wn[;Qn] = W o An[£] so that, for all x in
&, xn clearly belongs to £n. Moreover, xy interpolates x on Dy: indeed, we know that the
finite-dimensional operators Ay and ‘P"Nl are inverse of each other Ay = ‘PI_\}, which entails
that for all t in Dy

xN () = (¥ o AN)[X](t) = (¥n o AN)[X](E) = x(£), (4.60)

where we use the fact that, for any ¢ in ;Q' and for all t in Dy, ¥n [&](t) = ¥[&](t) (recall that
¢, (t) =0if n> N and t belongs to D).

Let us now show that xy is determined in & by the announced optimal criterion.
Suppose y belongs to £ and interpolates x on Dy, and remark that we can write

(v, y) = I12[ylll,> = I(®@ o A) [yl (t)],> = [|A[y]ll,> (4.61)

since @ is an isometry. Then, consider A[y] in I>(;Q) and remark that, since for all (1, k) in
ON, Ok are Dirac measures supported by Dy, we have

V(n, k) € On, Ak [Y] = p(6n,k1 Y) = p(6n,er) = Apk [X] = Ak [XN]’ (4.62)
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This entails

ATyl dt = > [Anklyll,> > > [Auklyll, = [A[xn]ll 4. (4.63)
(n,k)eo (n,k)€dN

Since, by definition of xn, O, k[xn] = 0if n > N. Moreover, the minimum (xn,xn) is only
attained for y such that 6, x[y] = 0if n > N and 6,k[y] = 6,k[x] if n < N, which defines
univocally xn. This establishes that, for all y in & such that for all t in Dy, y(¢) = x(t), we have
(xn,xn) < (y,y) and the equality case holds if and only if y = xx. O

Remark 4.15. When £ represents a regular differential operator of order d, Zil a;(t)D?, where
D = d/dt, that is, for

X, = a(t) - Xy + \/T(t) - dW,, (4.64)

with

0 1
at) -

1

0
0
., AT =|.]. (4.65)
1 .
1

ag ag-1 ... a

The finite-dimensional sample paths coincide exactly with the spline interpolation of order
2d + 1, which are well known to satisfy the previous criterion [46]. This example will be
further explored in the example section.

The Dirichlet energy simply appears as the squared norm induced on & by the inner
product (, ), which in turn can be characterized as a Dirichlet quadratic form on &. Actually,
such a Dirichlet form can be used to define the Gauss-Markov process, extending the Gauss-
Markov property to processes indexed on the multidimensional spaces parameter [19]. In
particular, for an n-dimensional parameter space, we can condition such Gauss-Markov
processes on a smooth n — 1-dimensional boundary. Within the boundary, the sample paths
of the resulting conditioned process (the solution to the prediction problem in [19]) are the
solutions to the corresponding Dirichlet problems for the elliptic operator associated with the
Dirichlet form.

The characterization of the basis as the minimizer of such a Dirichlet energy (4.59)
gives rise to an alternative method to compute the basis as the solution of a Dirichlet
boundary value problem for an elliptic differential operator.

Proposition 4.16. Let us assume that a and /T are continuously differentiable and that /T is
invertible. Then, the functions p,,  are defined as
l‘l(t)/ te [ln,k/ mn,k]/

I’ln,k(t) = #r(t)/ te [mn,k/ 7ﬁn,k]/ (466)

0, else,
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where p! and p" are the unique solutions of the second-order d-dimensional linear differential equation
u’ + <I”1 <aTF - F'> - a)u' - <1"’1 (aTF - F')u + a')u =0 (4.67)
with the following boundary value conditions:

(k) =0, p(max) =1,

(4.68)
Fr(mn,k) =1y, ‘ur (Tnk) = 0.
Proof. By Proposition 4.14, we know that p,, , (t) minimizes the convex functional
1
J |2[u](s)],°ds (4.69)
0

over &, being equal to zero outside the interval (I, x, r,, x| and equal to one at the point t = m,, .
Because of the hypotheses on & and T, we have £ = ® and we can additionally restrain
our search to functions that are twice continuously differentiable. Incidentally, we only need
to minimize separately the contributions on the interval [l k, M, k] and [m,k, 7, k]. On both
intervals, this problem is a classical Euler-Lagrange problem (see, e.g., [53]) and is solved
using basic principles of calculus of variations. We easily identify the Lagrangian of our
problem as

2
L(t,u,u') =

(u' - a(t)u(t)) <\/@)1 (4.70)
. :

= (W' (t) —a(yu(t)) ()™ (0 () - a)u()).

From there, after some simple matrix calculations, the Euler-Lagrange equations

—aL(g;i’“l) - %(—aL(g’u‘,‘i’“’) ) =0, i=1,...,d, (4.71)

can be expressed under the form:
u' + (r—1 (aTr - r') - a) u - (r-l <aTF - F')a + tx’)u -0, (4.72)
which ends the proof. O

Remark 4.17. It is a simple matter of calculus to check that the expression of p given in
Proposition 2.1 satisfies (4.67). Notice also that, in the case I = 1, the differential equation
becomes

u’ + <aT - a) u - <uTa + a’)u =0, (4.73)

which is further simplified for constant a.
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Under the hypotheses of Proposition 4.16, we can thus define p, , as the unique
solution to the second-order linear differential equation (4.67) with the appropriate boundary
values conditions. From this definition, it is then easy to derive the bases ¢, , by completing
the following program.

(1) Compute the t — p, , (t) by solving the linear ordinary differential problem.
(2) Apply the differential operator ? to get the functions ®[p,, ;|-

(3) Orthonormalize the column functions t — ¢;(®[p,, (t)]) by the Gram-Schmidt
process.

(4) Apply the integral operator X to get the desired functions ¢, , (or equivalently
multiply the original function t — p, ,(t) by the corresponding Gram-Schmidt
triangular matrix).

Notice finally that each of these points is easily implemented numerically.

5. Examples: Derivation of the Bases for Some Classical Processes
5.1. One-Dimensional Case

In the one-dimensional case, the construction of the Gauss-Markov process is considerably
simplified since we do not have to consider the potential degeneracy of matrix-valued
functions. Indeed, in this situation, the centered Gauss-Markov process X is solution of the
one-dimensional stochastic equation

dX, = a(t) X,dt + \/F(T) AW, (5.1)

with a homogeneously Holder continuous and I' positive continuous function. We then have
the Doob representation

t
X = tf s)dW,, with g(t) = eh®®@4° f(1) = [T (t) e~ ha@ide, (5.2)
=50 | £ g(t) £t =/T(H)
Writing the function h as
t
) = [ s 53)
0

the covariance of the process reads for any 0 <t,s <0
Clt,s) = g()g()h(t As). (5.4)

The variance of the Gauss-Markov bridge B; pinned in ¢, and ¢, yields

2 (h(t) - hits)) (h(tz) - h(#))

(01,.(1)* = g(®) h(t.) - h(ty)

(5.5)
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These simple relations entail that the functions ¢, are defined on their supports S, by
gn k(D) = E[(6"(1)*] with

E[6" )] = (O ) = (15,18 Gty ) + 15,110 B (Onmn (0)?). - (5:6)

This reads on S;41,2k

onr(t)? = g(1)? [(h(t) = hlni)) (h(rnp) = h(t)) — (h(t) = h(lnk)) (R(mnk) — (1))

h(rni) = h(lnx) h(mux) = h(lnx) ] 67)

and on 5,41 2k+1 as

(5.8)

i (O = g(t) [(h(t) — h(ln)) (h(rux) —h(8)  (h(t) = h(mux)) (R(rnk) — h(t))]

h(rn,k) - h(ln,k) h(rn,k) - h(mn,k)

and therefore we have

onk (1) (h(t) — h(lwk))

g(Mu i) (h(myi) — h(lyi))’
Pni(t) = (5.9)
Onk §(t)(h(rnk) — h(t))

g(mn,k) (h(rn,k) - h(mn,k)) ’

ln,k <t< My k,

My <t < Tk,

with

[ (h(rux) = h(mp i) (h(m i) — h(lk))
“*‘V h(rnge) — h(luk) ' 510

As for the first element, it simply results from the conditional expectation of the one-
dimensional bridge pinned in lpp = 0 and rpg = 1:

_ 8(1)(h(t) = h(lop))
Vh(ro0) — h(loo) .

woo(t) (5.11)

In this class of processes, two paradigmatic process are the Wiener process and the Ornstein-
Uhlenbeck processes with constant coefficients. In the case of the Wiener process, h(t) = t
and g(t) = 1, which yields the classical triangular-shaped Schauder functions used by Lévy
[8]. As for the Ornstein-Uhlenbeck process with constant coefficients a and T, we have
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g(t) =exp(a t), f(t) = \fl"exp(—a t)and h(t) = (T/2a)(1-e™2* 1), yielding for the construction
basis the expressions

inh(a(t -1,
JLoshat b))
a /sinh(a(myx — Lyk))

\/f sinh(a(rpx —t)) My <t < Tk 5.12
a\/Sinh(a(mn,k _ln,k)), nk =t > Tnk, ( . )

Unk (t) =

I e /2 sinh(a t)

a  \/sinh(a)

woo(t) =
which were already evidenced in [54].

5.2. Multidimensional Case

In the multidimensional case, the explicit expressions for the basis functions ¢, , make
fundamental use of the flow F of the underlying linear equation (2.3) for a given function
a. For commutative forms of a (i.e., such that a(t) - a(s) = a(s) - a(t) for all ¢,s), the flow
can be formally expressed as an exponential operator. It is, however, a notoriously difficult
problem to find a tractable expression for general a. As a consequence, it is only possible to
provide closed-from formulae for our basis functions in very specific cases.

5.2.1. Multidimensional Gauss-Markov Rotations

We consider in this section that & is antisymmetric and constant and vT € R such that
T = 0%1,. For & antisymmetric, since a’ (t) = —a(t), we have

F(s,t)T = F(s, 1), (5.13)

that is, the flow is unitary. This property implies that

h, (s, t) = 02 It F(w, u)F(w,u) dw = o*(t — s)1,, (5.14)

which yields by definition of o, x

m — l 7 -m
Ok O, = 02( nk ~ Inje) (P = M)
’ Tnk — ln,k

L. (5.15)

The square root o,k is then uniquely defined (by choosing both Cholesky and symmetrical
square roots) by

(mn,k - ln,k) (rn,k - mn,k)
(rn,k - ln,k)

Cuk=0 L, (5.16)
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and ¢, (t) reads

Yk — Myk
(o] - : t—Lo)F(myk,t), Lyx <t<myg,
\/(mn,k—zn,k)(rn,k—ln,k)( k) E (Mo t), b "

@, () = (5.17)
My — ln,k

(rn,k - mn,k) (rn,k - ln,k)

(rn,k - t)F(mn,k/ t)/ ln,k <t< My k-

Recognizing the (n, k) element of the Schauder basis for the construction of the one-
dimensional Wiener process

Tnk — Mpk
), E=Luk), Ik <<k,
\/(Tn,k - l"/k)(mn,k _ ln,k) ( n,k) nk nk
0= (5.18)
Mk = Lnk
; , Tuk—1), L <t<my,g,
\/(rn,k - ln,k)(rn,k - mn,k) ( nk ) nk nk

we obtain the following formula:
@, (t) = 0suk(HF(t — mpk). (5.19)

This form shows that the Schauder basis for multidimensional rotations results from
the multiplication of the triangular-shaped elementary function used for the Lévy-Ciesielski
construction of the Wiener process with the flow of the equation, that is, the elementary
rotation.

The simplest example of this kind is the stochastic sine and cosine process corres-
ponding to

a= (_01 (1)> VT = 0L, (5.20)

In that case, ¢, , has the expression

(5.21)

@, () = Suni(t) <Cos(t — Myx) —sin(t - mn,k)>'

sin(t —my k) cos(t — my i)

Interestingly, the different basis functions have the structure of the solutions of the non-
stochastic oscillator equation. One of the equations perturbs the trajectory in the radial
component of the deterministic solution and the other one in the tangential direction. We
represent such a construction in Figure 2 with the additional conditioning that X; = X, that
is, imposing that the trajectory forms a loop between time 0 and 1.
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1.5

) . . . . .
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 2: Construction of the stochastic sine and cos Ornstein-Uhelenbeck processes for the parameters
given in (5.20): multiresolution construction of the sample path.

5.2.2. The Successive Primitives of the Wiener Process

In applications, it often occurs that people use smooth stochastic processes to model the
integration of noisy signals. This is for instance the case of a particular subject of a Brownian
forcing or of the synaptic integration of noisy inputs [55]. Such smooth processes involves in
general integrated martingales, and the simplest example of such processes are the successive
primitives of a standard Wiener process.

Let d > 2, and denote by X¢ the d — 1th order primitive of the Wiener process. This
process can be defined via the lower-order primitives X for k < d via the relations

dxkt =xkdt, k<d, dX!=dw, (5.22)

where W; is a standard real Wiener process. These equations can be written in our formalism
as

dX, = a(t) - X, +/T(t) - dW,, (5.23)
with
01 0
a(t) = S Arw=| ] (5.24)

0 1
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In particular, though none of the integrated processes X* for K > 1 is Markov by itself, the
d-uplet X = (X4,...,X") is a Gauss-Markov process.

Furthermore, because of the simplicity and the sparsity of the matrices involved, we
can identify in a compact form all the variables used in the computation of the construction
basis for these processes. In particular, the flow F of the equation is the exponential of the
matrix &, and since a is nilpotent, it is easy to show that F has the expression,

—1 (t-1s)

(t-s) (t—s)""]
2 d-1!

Fsh=| . sy (525)
oo e

(t-s)
1

and the only nonzero entry of the d x d matrix I' is one at position (d — 1,d — 1). Using this
expression and the highly simple expression of I, we can compute the general element of the
matrix hy, (¢, s), which reads

(t _ u)delf(iJrj) _ (S _ u)Zd*l*(l#j)

Qd-1-(i+j)d-1-i(d-1-j)! (5.26)

(hy(s,1));; = (1)

Eventually, we observe that the functions ¢, ;, yielding the multiresolution description of the
integrated Wiener processes, are directly deduced from the matrix-valued function

‘Pn,k : L;,lk = g(t)h(ln,k/ t)/ ln,k <t< My,k,
(eni());; = . (5.27)
G- Rn,k = g(t)h(tr rn,k)/ My <t <tuk,
whose components are further expressed as
-1 fip 2d-1-(p+j) _ 12dk717<rf+]')
(Cni(t);; = D, (-1)" — . - o (5.28)
D T e Y 2 [ B
for I, <t <myx and as
-1 i 2d=1=(p+]) _ y2d-1-(p+j)
. P m, t
(enk(t);; = D, (1P — — ~ (5.29)
17 2 G @ (A=A T

for my <t < rpk. The final computation of the (7" involves the computation of L, and
R, ., which in the general case can become very complex. However, this expression is highly
simplified when assuming that 1, is the middle of the interval [l,,k, 7, k]. Indeed, in that
case, we observe that, for any (i,j) such that i + j is odd, (h,,(], r))i,]- = 0, which induces
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the same property on the covariance matrix X, and on the polynomials (¢, (t));;. This
property gives therefore a preference to the dyadic partition that provides simple expressions
for the basis elements in any dimensions, and allows simple computations of the basis.

Remark 5.1. Observe that, forall 0 <i < d -1, we have

fip f2d-1-(p+j) _ Zidk_Z_(p+j)

(i-p)!([@d-1-p)d-1-))
N pd-j-1 d-1-i (_t)qt(d_l_i)_p
(d-j-) G p(d-1-i)-p)t

~
0

d-1
(Cn,k (t));-/]- = (Cn,k(t))i+1,]' + Z(_l)p+j
p=i

(5.30)

= (Cnk (t))i+1,j

As L, and R, are constant, we immediately deduce the important relation that, for all
0<i<d-1, (q;n,k(t))(()l;; = (qrn,k(t))il],. This indicates that each finite-dimensional sample paths
of our construction has components that satisfies the nondeterministic equation associated
with the iteratively integrated Wiener process. Actually, this fact is better stated remembering
that the Schauder basis ¢, , and the corresponding orthonormal basis ¢« : [0,1] — R1xd
are linked through (3.10), which reads

[ (‘Fn,k)i),o (‘F"/k>;,d—1 - (‘l’n,k>1,0 (‘F"/k>1,d—1

! ! -

qfn,k>d_2,0 <‘pn,k>;j_2,d_1 <‘I’n,k>d_1/0 <q}n,k>d_1,d_1

(r..),
(

! qf"'k>d—1,0 <q}"’k>d—1,d—1- 0 0 (5.31)
0 0
o o

<q}"fk>o,0 "' <q’"fk>o, d-1

Additionally, we realize that the orthonormal basis is entirely determined by the one-
dimensional families (¢n,k)o j, which are mutually orthogonal functions satistying (¢nk)o,; =
@ni)o;-

We study in more detail the case of the integrated and doubly-integrated Wiener
process (d = 2 and d = 3), for which closed-form expressions are provided in Appendices
A and B. As expected, the first row of the basis functions for the integrated Wiener
process turns out to be the well-known cubic Hermite splines [56]. These functions have
been widely used in numerical analysis and actually constitute the basis of the lowest
degree in a wider family of bases known as the natural basis of polynomial splines
of interpolation [25]. Such bases are used to interpolate data points with constraint of
smoothness of different degrees (e.g., the cubic Hermite splines ensure that the resulting
interpolation is in C'[0,1]). The next family of splines of interpolation (corresponding to
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(a) (b)

Figure 3: (a) Basis for the construction of the Integrated Wiener process (d = 2). Plain red curve: ¢,
dashed red: ¢, 1, plain blue: ¢, and dashed blue: ¢ . (b) 10-steps construction of the process. Moreover,
we observe that each basis accounts separately for different aspects of sample path: ¢, fixes the value
of the integrated process at the middle point m, x and ¢, the value of the derivative of the process at
the endpoints {l,,x, 7k} in relationship with the value of the Wiener process at the middle point, whose
contributions are split between functions ¢ ; and ¢, (see Figure 3).

the C? constraint) is naturally retrieved by considering the construction of the doubly-
integrated Wiener process: we obtain a family of three 3-dimensional functions that consti-
tutes the columns of a 3 x 3 matrix that we denote by ¢. The top row is made of polynomials
of degree five, which have again simple expressions when m,, i is the middle of the interval
[ln,k/ rn,k] .

6. Stochastic Calculus from the Hilbert Point of View

Thus far, all calculations, propositions, and theorems are valid for any finite-dimensional
the Gauss-Markov process and all the results are valid pathwise, that is, for each sample
path. The analysis provides a Hilbert description of the processes as a series of standard
Gaussian random variables multiplied by certain specific functions, that form a Schauder
basis in the suitable spaces. This new description of Gauss-Markov processes provides a new
way for treating problems arising in the study of stochastic processes. As examples of this,
we derive the It6 formula and the Girsanov theorem from the Hilbertian viewpoint. Note that
these results are equalities in law, that is, dealing with the distribution of stochastic processes,
which is a weaker notion compared to the pathwise analysis. In this section, we restrict our
analysis to the one-dimensional case for technical simplicity.

The closed-form expressions of the basis of functions ¢, x in the one-dimensional case
are given in Section 5.1. The differential and integral operators associated, introduced in
Section 3.1.2 are highly simplified in the one-dimensional case. Let U be a bounded open set
of [0,1], we denote by C(U) the space of continuous real functions on U and we recall that
the topological dual of C(U) is R(U), the space of Radon measures on U. We also introduce
Dy(U), the space of test functions in C*(U) that are zero in zero, and whose dual space
Dy (U) satisfies Dy, (L) ¢ R(U).Let U be a bounded open neighborhood of [0, 1], and denote
by C(U) is the space of continuous real functions on U, R(U) its topological dual, the space



50 International Journal of Stochastic Analysis

of Radon measures, Dy(U) the space of test function in C*(U) which are zero at zero and it
dual Dy(U) ¢ R(U). We consider the Gelfand triple

Do(U) c C(U) c L*(U) ¢ Dy(U) ¢ RU). (6.1)

The integral operator X is defined (and extended by dual pairing) by
LL10 = [ 201©g05at5) - ds, (62)
u

and the inverse differential operator ® reads

1 d .
2010 =~ (75 ). (63)

Now that we dispose of all the explicit forms of the basis functions and related
operators, we are in position to complete our program and start by proving the very
important Ito6 formula and its finite-dimensional counterpart before turning to the Girsanov
theorem.

6.1. Ité’s Formula

A very useful theorem in the stochastic processes theory is the Ito6 formula. We show here that
this formula is consistent with the Hilbert framework introduced. Most of the proofs can be
found in Appendix E. The proof of Itd formula is based on demonstrating the integration by
parts property.

Proposition 6.1 (Integration by parts). Let (X;) and (Y;) be two one-dimensional Gauss-Markov
processes starting from zero. Then one has the following equality in law:

t t
X, Y = f X, 0dY, + J‘ Y, 0 dX,, (6.4)
0 0

where, for two stochastic processes A; and By, jé As o dB; denotes the Stratonovich integral. In terms
of the Ito integral, this formula is written as

t t
XY, = f X,dY, + f Y.dX, + (X, Y), (6.5)
0 0

where the brackets denote the mean quadratic variation.

The proof of this proposition is quite technical and is provided in Appendix E. It is
based a thorough analysis of the finite-dimensional processes XY and YN. For this integration
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by parts formula and using a density argument, one can recover the more general 1t6 for-
mula.

Theorem 6.2 (It0). Let (X;), be a Gauss-Markov process and F € C?(R). The process f(X;) is a
Markov process and satisfies the following relation in law:

t 1t
f(Xe) = f(Xo) + J‘o f(Xs)dXs + 3 fo f'(Xs)d(X),. (6.6)

This theorem is proved in Appendix E.

The It6 formula implies in particular that the multiresolution description developed
in the paper is valid for every smooth functional of a Gauss-Markov process. In particular,
it allows a simple description of exponential functionals of Gaussian Markovian processes,
which are of particular interest in mathematics and have many applications, in particular in
economics (see, e.g., [57]).

Therefore, we observe that in the view of the paper, It6 formula stems from the
nonorthogonal projections of basis element. For multidimensional processes, the proof of the
It6 formula is deduced from the one-dimensional proof and would involve the study of the
multidimensional bridge formula for X; and Y;.

We eventually remark that this section provides us with a finite-dimensional
counterpart of the Itd formula for discretized processes, which has important potential
applications, and further assesses the suitability of using the finite resolution representation
developed in this paper. Indeed, using the framework developed in the present paper allows
considering finite-resolution processes and their transformation through nonlinear smooth
transformation in a way that is concordant with the standard stochastic calculus processes,
since the equation on the transformed process indeed converges towards its Itd representation
as the resolution increases.

6.2. Girsanov Formula: A Geometric Viewpoint

In the framework we developed, transforming a process X into a process Y is equivalent to
substituting the Schauder construction basis related to Y for the basis related to X. Such an
operation provides a pathwise mapping for each sample path of X onto a sample path of
Y having the same probability density in ;€. This fact sheds a new light on the geometry
of multidimensional Gauss-Markov processes, since the relationship between two processes
is seen as a linear change of basis. In our framework, this relationship between processes is
straightforwardly studied in the finite rank approximations of the processes up to a certain
resolution. Technical intricacy is nevertheless raised when dealing with the representation of
the process itself in the infinite-dimensional Hilbert spaces. We solve these technical issues
here and show that in the limit N — oo one recovers Girsanov theorem as a limit of the linear
transformations between the Gauss-Markov processes.

The general problem consists therefore in studying the relationship between two real
Gauss-Markov processes X and Y that are defined by

dXt = [XX(t)Xt dt + \/Fx(t) th,

6.7)
dYt = [XY(t)Xt dt + \/Fy(t) th
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We have noticed that the spaces ' are the same in the one-dimensional case as
long as both I'y and I'y never vanish and therefore make this assumption here. In order to
further simplify the problem, we assume that yxy = I'x/I'y is continuously differentiable.
This assumption allows us to introduce the process Z; = yx y(t)Y; that satisfies the stochastic
differential equation

d
az; = T (YX,Y(f))Yt dt +yxy(t)dY;

- (%(Yx,y(t)) +Yx,y(t)ay(t)) Yidt +\[Tx(t)aw, (6:5)

= az()Z; dt +\/Tx(H)dW,,

with az(t) = (d/dt)(yx,y(t))yx,y(t)_l + ay(t). Moreover, if zg, x and y¢, « are the bases of
functions that describe the process Z and Y, respectively, we have zg, x = yxy - Y@k

The previous remarks allow us to restrict without loss of generality our study to the
processes defined for same function v/T, thus reducing the parameterization of the Gauss-
Markov processes to the linear coefficient a. Observe that in the classical stochastic calculus
theory, it is well known that such hypotheses are necessary for the process X to be absolutely
continuous with respect to Y (through the use of the Girsanov theorem).

Let us now consider that a, 3, and VT three real Holder continuous real functions, and
introduce ,X and 4X solutions of the equations

AXy) = a(t) (X)) dt +\/T(t) dW,,

(6.9)
d(pX0) = (1) (5%X;) dt +1/T(t) dW,.

All the functions and tools related to the process , X (resp., X) will be indexed by , (p) in the
sequel.

6.2.1. Lift Operators

Depending on the space we are considering (either coefficients or trajectories), we define the
two following operators mapping the process ,X; on pX;.

(1) The coefficients lift operator , G is the linear operator mapping in ;Q' the process X
on the process X:

apG = pAoa¥: (;Q,B(Q)) — ((Q,B(XQ)). (6.10)

For any ¢ €; &', the operator , 3G maps a sample path of ;X on a sample path of
pX.

(2) The process lift operator ,4F is the linear operator mapping in . the process ,X on
the process pX:

u,ﬁH = WPo, A: (er B(xg)) — (er B(xg)) (6-11)
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We summarize the properties of these operators now.

Proposition 6.3. The operators , 3G and ,gH satisfy the following properties.

(i) They are linear measurable bijections

(i) For every N > 0, the function ,gGN = Pn oqp Go In z Q, — QN (resp., o,pHN =
Py ogp Holn iz QF — :Qn) is a finite-dimensional linear operator, whose matrix
representation is triangular in the natural basis of :Qn (resp., ;QY,) and whose eigenvalues
a,fVnk are given by

Sa(Mu i) pMn ik

<n< < pN-1 .
gﬂ(mn,k) “Mn,k, 0<n<N,0<k< (6.12)

apfVnk =

(resp., pavuk = (apVni) )
(iii) 4G and 5 pH are bounded operators for the spectral norm with

sup g sup f5
infgs inf f ﬂZ

Gl = sup SUP a7, < <o, (6.13)

and |lagH|l2 = |p2Gll2 < oo.
(iv) The determinants of 5 pGN (denoted by ,p]N) and o pHN admit a limit when N tends to

infinity:
1 1
apl = M o]y = exp<§ <f0 (alt) - p(1)) dt> >,
1
lim det(opHy ) = exp <% <f0 (B(t) - a(t))dt>> = pal -

The proof of these properties elementary stems from the analysis done on the functions
¥ and A that were previously performed, and these are detailed in Appendix C.

(6.14)

6.2.2. Radon-Nikodym Derivatives

From the properties proved on the lift operators, we are in position to further analyze
the relationship between the probability distributions of ;X and pX. We first consider the
finite-dimensional processes , X" and ;X~. We emphasize that, throughout this section, all
equalities are true pathwise.

Lemma 6.4. Given the finite-dimensional measures PN and P;;V , the Radon-Nikodym derivative of

P’f\[ with respect to PN satisfies
dpy

dPZ\I ((U) = a,ﬂ]N - exp <_%<EN((,¢))T<[1’[§SN - Id§QN>EN((U)>> (615)

With o pSN =a,p GnT - a,pGN and the equality is true pathwise.
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Proof. In the finite-dimensional case, for all N > 0, we can write that PN, Pé\] pfx\’ , and the
Lebesgue measure QN are mutually absolutely continuous: we denote by p& and pg[ the
Gaussian density of PY and Pé\[ with respect to the Lebesgue measure on ,QN. Therefore,
in the finite-dimensional case, the Radon-Nikodym derivative of PY with respect to PV is
defined to be pathwise and is simply given by the quotient of the density of the vector
{pXN (m;;)} with the density of the vector {XN(m;;)} for 0 <i < N,0 < j < 27!, that
is,

N N( N
dpy ) - Py (XN (w))
dpry P (XN (w)) 616
_[det(o2N) 1 N/ AT[ -1 -1 N
- /m -exp<—§<aX (w) <ﬂzN — 2N>ax (w)> .
We first make explicit
det(,2nN) a
det( 2N - p=
det(sn) (2 p27)
= det(lleN AN ﬁAN ﬂAN>
6.17
= det(pAn - Wn - ¥NT - pANT) (6.17)
= det(uﬁGN . aﬂGNT>
= det (a,pGN)
Then, we rearrange the exponent using the Cholesky decomposition:
ﬂZ_Nl - aZ;\} = ﬁANT . ﬂAN - uANT “aAN, (618)

so that we write the exponent of (6.16) as
:xXNT<[5ANT : ﬂAN - /xANT : aAN> aXN

N a‘PNT<ﬂANT “pAN Ta ANT- aAN> «¥IN(w) - EN (6.19)

NT<a,ﬁGNT “apGy IdégN)EN.

[1]

[11

We finally reformulate (6.16) as

ar; L an(w)” T 2 6.20
dI)_N(w) = a,ﬂ]N'eXp<_§<:‘N(w) (a,ﬁGN 'a,ﬂGN_IdeN>‘:’N(w)>>' ( . E)]

Let us now justify from a geometrical point of view why this formula is a direct
consequence of the finite-dimensional change of variable formula on the model space ;Qn. If
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we introduce ,An;, the coefficient application related to XN, we know that Zy =, An(oXN)
follows a normal law (0, Lo ). We denote by pé\] its standard Gaussian density with respect

to the Lebesgue measure on ;QN. We also know that
aAN <[5XN> = (uAN Oa,p FN) (uXN> =pa GNn <uAN <uXN)> =pa GN (E‘N) (621)

Since p,GN is linear, the change of the variable formula directly entails that 5 ,Gn (En)
admits on ¢Qn

Ph&n) = 1det(aG) | P [En" (epGn" - apGn v ] (622)

as density with respect to the Lebesgue measure. Consider now B as a measurable set of
(xQnN, B(+xQN)); then we have

PN e -

AN

P (EN)dén
B)

B Ppa(N)
B ’[aAN(B) Pé\[(‘;N) Py (on)déN (6.23)
p;;\,]a(uAN(XN)) N N
= | L—— " apN(xV),
.[B pév(aAN(XN)) x < >

from which we immediately conclude.

6.2.3. The Trace Class Operator

The pathwise expression of the Radon-Nikodym derivative extends to the infinite-
dimensional representation of ,X and sX. This extension involves technical analysis on
the infinite-dimensional Hilbert space I?(R). We have shown in Proposition 6.3 that the
application ,3G was bounded for the spectral norm. Therefore, we have, for any ¢ in I*(R),
the inequality

[ 2sG@Il, <l apGll, - 1]l (6.24)

implying that 3G maps I*(R) into I*(R). We can then define the adjoint operator 3G’ from
I2(R) to I>(R), which is given by

e, neP®),  (apG(1),8) = (1, apG())- (6.25)

Let us now consider the self-adjoint operator , 43S = a,ﬂGTo apG 2(R) — I*(R). This operator
is the infinite-dimensional counterpart of the matrix ,3Sn.
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Lemma 6.5. Considering the coefficients of the matrix representation of 44S in the natural basis ey k
of I(R) given as u,ﬂSst = (enk, apS(epq)), one has

! (alt) - p(t)) (alt) - p(t))
nk _ L 7 —_—
syl | <a¢n,k<t) " awn,k<t>> <R¢M<t> s aqu,q<t>>dt.
(6.26)

Proof. Assume that max(n,p) < N and that (n, k) and (p,q) € On. With the notations used
previously with U, an open neighbourhood of [0, 1], we have

n,k
apSpg = (apG(enk)apGlepg))

IWJMmquﬁﬁmwwmﬂ (627)
(1 ])69
Since we have by definition sgnkx = «K[aPnk], p6; p‘i’ s ek = 20 597 = s KT
on the space Dj,(U), we have
i) = 5 [5,] )= 0 [ 055,51, (628)
1 d aPn k(t)
aPn, t) = a%* aPn, t) = —< - ) 6.29
Buslt) = o2 Lm0 = 5 5 (2 (629)

From there using (6.28), we can write the integration by part formula in the sense of the
generalized functions to get

_ 1 i u([fn,k(t)
J 18 Outnstt = | G dt< 2D >f’¢w“’dt

(6.30)
= [ 09 [l @9, 1)
u ,
We now compute using (6.29):
* L1 d ¥l gl
ﬂ%b%ﬂw—ﬁmﬂ<gw)%m>
(6.31)

ga(t)f(t) (i)( ) _ 49 ga(t)> uq}n,k(t)
TONGE s(t) ) gp(t) fp ()

Specifying g., gs, fa, and fp and recalling the relations

8efl) = 850 50 =T, dt<§“()> CORON — OCE
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we rewrite the function (6.31) in L?[0,1] as

. 1 d fapnr(®) (a(t) - B(t))
D [Pk (1) = [70) E< () > = P (t) + Wa‘l’n,k(t)- (6.33)

Now, since the family g¢,x forms a complete orthonormal system of L?[0,1] and is zero
outside [0, 1], by the Parseval identity, expression (6.27) can be written as the scalar product:

i _ (' (a(t) - (1) , (a®) -p1)
arﬂsp,ﬁl - .[0 <l¥¢n,k (t) + \/m u(pnk > < ¢pq( m a(lfp,q (t)>dt, (634)

which ends the proof of the lemma. O

Notice that we can further simplify expression (6.26):

a,ﬁszk 6nk I ((X(t ﬁ(t)) <a(Pn,k(t) u‘l"p,q(ﬂ)dt

T
. U (a(t) - B(t))
0 VI(t)

(6.35)
(a¢n,k(t) «¥pg() + 2P, () aqfn,k(t)>dt

We are now in a position to show that the operator ,4S — Id can be seen as the limit of the
finite-dimensional operator apSN —1 dggN, in the following sense.

Theorem 6.6. The operator ,4S - Id : 2(R) — I2(R) is a trace class operator, whose trace is given

by

1
Tr( opS—1d) = fo (a(t) —ﬂ(t))dt+f0 ;’ (tz( a(t) - B(t))’dt. (6.36)

We prove this essential point in Appendix F. The proof consists in showing that the
operator ,4S — Id is isometric to a Hilbert-Schmidt operator whose trace can be computed
straightforwardly.

6.2.4. The Girsanov Theorem

We now proceed to prove the Girsanov theorem by extending the domain of the quadratic
form associated with 43S — Id to the space ;Q', which can only be done in law.

Theorem 6.7. In the infinite-dimensional case, the Radon-Nikodym derivative of Pg = P x- with
respect to Py = P x-1 reads

dp !
dpﬂﬁiﬁi = exp <—% <f0 p(t) = a(t)dt +Z(w)" (apS - Idgszf)5<w>> > (6.37)
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which in terms of the 1t0 stochastic integral reads

dPy(w) <f B(t) —a(t) oXi(w) <axt<w>)> 1" () - a(t))’ <axt<w>)2
=exp d -= dt.

APy(w) o £ &) Sal(t) 2)o A0 Sal(t)

(6.38)

In order to demonstrate the Girsanov theorem from our geometrical point of view, we
need to establish the following result.

Lemma 6.8. The positive definite quadratic form on I(R) x (R) associated with operator oS —1d :
P(R) — P(R) is well defined on ;Q'. Moreover, for all ;Q',

(& (apS - 1d,2) (@)
(6.39)

(MO =BO X@) XK@Y (@O BB X))
_zfo 2 &alt) d( Sa(t) )+.[o F2 (1) < Sa(t) ) at

where o X¢(¢8) =4 D (&) and o refers to the Stratonovich integral and the equality is true in law.

Proof of Theorem 6.7. We start by writing the finite-dimensional Radon-Nikodym derivative

dPj(w)
dPy(w)

. Lo -
= a,ﬂ]N 1\}11)1‘100 eXp <_§ <|:AN ((,(])T (mﬁSN — Idg-QN ):;N (W)> > . (640)
By Proposition 6.3, we have
1 (L
apl = M 45T = 5 fo (alt) - B(t))dt. (6.41)

If, as usual, = denotes a recursively indexed infinite-dimensional vector of independent var-
iables with law /(0,1) and En =; Py o E, writing &, x = E,x(w), we have

N N
=N (w)T (a,ﬂSN - IdeN)EN (w) = Z Z Z én,k [u,ﬁsN - IdeN]Z::ép,q- (6.42)
n=0 p=0 0<k<2m-! 0<g<2r-!

We know that ¢ is almost surely in :£’, and, by Lemma 6.8, we also know that on ;Q' x Q'

im (& (apSy ~ 10y )©) = (& (apS-1d,0 ) @), (6.43)

N — oo
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so that we can effectively write the infinite-dimensional Radon-Nikodym derivative on £’
as the point-wise limit of the finite-dimensional one on ;Qp through the projectors ; Py

dP dPN
P (w) = (6.44)
dP N ) dPN

which directly yields formula (6.37).
The derivation of the Girsanov formula (6.40) from (6.37) comes from the relationship
between the Stratonovich and It6 formulas since the quadratic variation of ,X;/g,(t) and

(a(t) = B(1)/ f2(t) xa Xt/ ga(t) reads

f: E< fo fuls) AW, % fo fuls) dws> - f: (al) - p)dt.  (645)

Therefore, the expression of the Radon-Nikodym derivative in Lemma 6.8 can be written in
terms of the Ito integrals as

(& (apS-1d,0)(8))
1
S RECRION 646

Va() - B Xi@) /XN L (F (@) =B®) /Xi(E)
+2f0 20 gat) d( ga(t)>+ 120 <ga(t)> a

and the Radon-Nikodym derivative as

2
DB oy = ex p< :ﬁ(t)—a(t) «Xi(w) d<axt(w>>_ 1t () —at) <axt<w>>2 dt>.

dp, fa2(t) Sa(t) 8a(t) JS0) a(t)
(6.47)
[
Observe that, if a(t) = 0, we recover the familiar expression
dap t
d_PZ(w) - exp< j&Wt(w) AW (w) - = ﬁr((t)) W (w)? dt> (6.48)

Conclusion and Perspectives

The discrete construction we present displays both analytical and numerical interests for
further applications. From the analysis viewpoint, even if the basis does not exhibit the same
orthogonal properties as the Karhunen-Loéve decomposition, it has the important advantage
of saving the structure of sample paths through its property of strong pathwise convergence
and of providing a multiscale representation of the processes, which contrasts with the con-
vergence in the mean of the Karhunen-Loéve decomposition. From the numerical viewpoint,
three Haar-like properties make our decomposition particularly suitable for certain numerical
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computations: (i) all basis elements have compact support on an open interval that has the
structure of dyadic rational endpoints, (ii) these intervals are nested and become smaller for
larger indices of the basis element, and (iii) for any interval endpoint, only a finite number of
basis elements are nonzero at that point. Thus the expansion in our basis, when evaluated at
an interval endpoint (e.g., dyadic rational), terminates in a finite number of steps. Moreover,
the very nature of the construction based on an increasingly refined description of the sample
paths paves the way to coarse-graining approaches similar to wavelet decompositions in
signal processing. In view of this, our framework offers promising applications.

Dichotomic Search of First-Hitting Times

The first application we envisage concerns the problem of first-hitting times. Because of its
manifold applications, finding the time when a process first exits a given region is a central
question of stochastic calculus. However, closed-form theoretical results are scarce and one
often has to resort to numerical algorithms [59]. In this regard, the multiresolution property
suggests an exact scheme to simulate sample paths of a Gaussian Markov process X in an
iterative “top-down” fashion. Assuming the intervals are dyadic rational and that we have a
conditional knowledge of a sample path on the dyadic points of Dy = {k27V | 0 < k < 2N},
one can decide to further the simulation of this sample path at any time ¢ in D+ by drawing
a point according to the conditional law of X; given {X;},.p, , which is simply expressed in the
framework of our construction. This property can be used for great advantages in numerical
computations such as dichotomic search algorithms for first passage times: the key element
is to find an estimate of the true conditional probability that a hitting time has occurred when
knowing the value of the process at two given times, one in the past and one in the future.
With such an estimate, an efficient strategy to look for passage times consists in refining the
sample path when and only when its trajectory is estimated likely to actually cross the barrier.
Thus the sample path of the process is represented at poor temporal resolution when it is far
from the boundary and at increasingly higher resolution closer to the boundary. Such an
algorithmic principle achieves a high level of precision in the computation of the first-hitting
time, while demanding far less operation than usual stochastic Runge-Kutta scheme. This
approach has been successfully implemented for the one-dimensional case [58], see Figure 4.
In that article, the precision of the algorithm is controlled as well as the probability to evaluate
a first hitting time substantially different from the actual value. The approach proves to be
extremely efficient compared to customary methods. The general multidimensional approach
proposed in the present paper allows direct generalization of these results to the computation
of exit times in any dimension and for general smooth sets [30-32].

Gaussian Deformation Modes in Nonlinear Diffusions

The present study is developed for the Gauss-Markov systems. However, many models
arising in applied science present nonlinearities, and in that case, the construction based
on a sum of Gaussian random variables will not generalize. However, the Gaussian case
treated here can nevertheless be applied to perturbation of nonlinear differential equations
with small noise. Let F : R x R? s R be a nonlinear time-varying vector field, and let us
assume that Xo(t) is a stable (attractive) solution of the dynamical system:

dx
== F(t,X). (6.49)
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(b))

(A

Figure 4: First passage time for an Ornstein-Uhlenbeck process U with a elastic coefficient # = 1 and a
noise intensity I' = 1, the barrier is constant A = 1 and the initial condition is Uy = 0. The plots represent
at different scales a realization U;(w) for which the algorithm of [58] returns a first passage time 7(w) =
8.00469684 with a resolution 6t = 22! = 5107 after 5 recursive calls. The whole sample path is represented
in (a) and a series of zooms is carried out around 7(w) in (b), (c), and (d). The dilation coefficients are
set according to the scale invariance of a Wiener process with the time scale being expanded by 20 and
the distance scale by 41/5 during each dilation. The series (b), (c), and (c), (d) zoom on regions where the
sample path gets close to the barrier. The simulation of the sample path has required 683 subdivisions and
illustrates an unfavorable situation since the expected number of divisions is approximatively 284 for this
particular setting.

This function Xy can for instance be a fixed point (in which case it is a constant), a cycle
(in which case it is periodic), or a general attractive orbit of the system. In the deterministic
case, any solution having its initial condition in a given neighbourhood B in R x R of the
solution will asymptotically converge towards the solution, and therefore perturbations of
the solutions are bounded. Let us now consider that the system is subject to a small amount
of noise and define Y € R as the solution of the stochastic nonlinear differential equation:

dY, = F(t, Yy)dt + e\[T(t, Y})dW,. (6.50)

Assuming that the noise is small (i.e., € is a small parameter), because of the attractivity of
the solution Xy(f), the function Y(t) will remain very close to Xy (¢) (at least in a bounded time
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interval). In this region, we define €Z; = Y; — Xo(t). This stochastic variable is the solution of
the equation

az; = %(F(t, Xo(t) +€Z;) —F(t,Xo(t)) + e\/T (¢, Xo(t) + sZt)th)

= (V<F) (£, Xo())Z; +\/T(t, Xo () )dW; + O(e).

(6.51)

The solution at the first order in ¢ is therefore the multidimensional Gaussian process with
nonconstant coefficients:

dzZ; = (V<F)(t, Xo(£))Z; + /T (£, Xo(£))dW¢, (6.52)

and our theory describes the solutions in a multiresolution framework. Notice that, in that
perspective, our basis functions ¢, , can be seen as increasingly finer modes of deformation of
a deterministic trajectory. This approach appears particularly relevant to the theory of weakly
interconnected neural oscillators in computational neuroscience [60]. Indeed, one of the most
popular approaches of this field, the phase model theory, formally consists in studying how
perturbations are integrated in the neighborhood of an attracting cycle [61, 62].

All these instances are exemplary of how our multiresolution description of the Gauss-
Markov processes offers a simple yet rigorous tool to broach a large number of open problems
and promises fascinating applications both in theoretical and in applied science.

Appendices
A. Formulae of the Basis for the Integrated Wiener Process

In the case of the primitive of the Wiener process, straightforward linear algebra compu-
tations lead to the two bases of functions ((¢x)11, (¢nk)21) and ((¢nk)12, (Pnk)zp) having
the following expressions

( t—1lnk 2 My — £
(Onk)1, <ﬁ> <1 + 2n—_l> L <t <myi,
nk nk My i nk

(‘I’n,k>1,1 () = 3

fux—t \?2 t—-m
(2 Y (1027 iz
! Tnk — My k Tnk — My
( (t = Lnj) (M — 1)
(Gn,k)1,16 & - ’ ln,k <t< My k,

(mn,k - ln,k)3

(‘I’n,k>2,1(t) = (T —t)(t — My k)

_(O'n,k)l,16 3 7 mn,k S t S rn,k/
L (Tnk — Mpk)
( t—1Lk 2
=(On k) (M — 1) <W—nlk> ;I St<my,
n, n,
(‘I’n,k)l,z(t) =
Tk —t

2
) 7 mn,k S t S rn,k/

[ @122t = mu0)

Tnk — Myk
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t—1 2 —t
(O'n,k)z,2<—n,k> <1 - zm"/k >r ln,k <t< My k,

My — ln,k t— ln,k
(‘I’n,k)z,z(t) = r t 2 t—m
nk — — My, k
o, _ 1-2 — ), My <t<ruk,
( "’k)2'2<rn,k - mn,k> ( g —t ) stk

(A1)

where

[ 1 [1
(O'n,k)l,l = ﬁ (rn,k - ln,k)3/ (O'n,k)z,z = 3_2 (rn,k - ln,k) (A.2)

are the diagonal components of the (diagonal) matrix o, x. As expected, we notice that the
differential structure of the process is conserved at any finite rank since we have

d d
(@0)130) = @ui)ay @ Z((ni)120) = (i) 0. (A3)

B. Formulae of the Basis for the Doubly-Integrated Wiener Process

For the doubly-integrated Wiener process, the construction of the three-dimensional process
involves a family of three 3-dimensional functions, which constitutes the columns of a 3 x 3
matrix that we denote by ¢. This basis has again a simple expression when m,, x is the middle
of the interval [l k, k]

(‘/fﬂ,k)1,1 (t)
Lm (t=Lyx)® (zfl o = 7l jct + 5l ik = 25t i + 1682 + 1072 k)/
= ()] O 0 ' ,
nKj)12 \/g /s 2 2
_W(T’n,k =17 (12 = Triit + Sl = 25thy + 1612 + 1012, ),
Tnk — lnk ’ 3
(qfn,k)llz(t)
V3
W(lﬂ,k - t)3(2rn,k + Lok = 38) (rpk + Lok — 21),
_ Tnk — lnk
) V3
12( L (Fuie = 1) (P + 2Dk = 3) (Fux + Lux — 21),
\ Tnk — lnk
(‘/fﬂ,k)1,3 (t)
( 1
_m(t - ln,k)3(2t —Tnk — ln,krn,k + ln,k — 3t)2(rn,k + ln,k _ Zt),
_ Tnk — lnk
- 1
_6( Lx)*? (Fje = 1)° (2t = T = LuiTuge + Inje = 38 (P + Lo — 28),
\ Tnk — lnk
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((Ffl/k)z,l (t)
(v
m(f — L) Bruk + lnk — 4% £) (T + L = 28),
_ Tnk = Ink
B V1
- =75 (P = ) Bluje + T = 4% D) (T + L = 28),
\ 6(rn,k - ln,k)
(‘Ifn,k)z,z(t)
( V3
TR (t = L) > BT + 2L = 58) (ru e + 2L = 3t),
_ Tnk — lnk
B V3
—m(mk = 1)*Bluk + 27 = 5) (L + 2rn i = 31),
Tnk — lnk
(qfn,k)2,3 (t)
( ! (= Lok)? (2 = P = yknk + ok = 302 (P + Lox — 26)
==, U " Ink “Ink — tnklTnk nk — nk nk — s
_ 6(rn,k - ln,k)5/2
B 1
S (T £)° (2t = Tug = LugTuk + Lok = 38)* (T + Lux — 21),
\ 6(rn,k - ln,k)
(‘/’n,k)sj (t)
(
3(—‘/§)5/2 (£ = L) (42 = 170t + O = 15k, + 312 + 1682),
Tnk — lnk

V5

YRS (rn,k—t)<4r721,k—17trn,k+9ln,krn,k—15tln,k+3lfl,k+16t2>,
\ nk — tn,

,k)3,2(t)

(3
(T _ 1)5/2

V3

(I-t)(r+1-2t)(r +4l - 5t),

Y(r+1-2t)(1+4r - 5t),

!

rk)3,3(t)

1

- 2 _ _ 2 2

(r —t)(19r% = 56rt + 181r — 24t1 + 31> + 40#?).

1
(3(r-1)>?
(B.1)

Notice again that the basis functions satisfy the relationships

d
o7 ((t/fn,k)i,j(t)) = (¢nk) i () (B.2)
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Figure 5: (a) Basis for the construction of the Doubly Integrated Wiener process (d = 3) and (b) 10-steps
construction of the process.

fori € {1,2} and j € {1,2,3}. These functions also form a triorthogonal basis of functions,
which makes it easy to simulate sample paths of the doubly-integrated Wiener process, as
show in Figure 5.

C. Properties of the Lift Operators

This appendix is devoted to the proofs of the properties of the lift operator enumerated in
Proposition 6.3. The proposition is split into three lemmas for the sake of clarity.
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Lemma C.1. The operator ,pG is a linear measurable bijection. Moreover, for every N > 0, the
function 5 sGN = Pn ogp Goln iz Qy, — :Qn is a finite-dimensional linear operator, whose matrix
representation is triangular in the natural basis of ;Qn and whose eigenvalues 4 gvy x are given by

8 (mn,k) ﬂMn,k

<n<N, 0<k<2N .
gﬁ(mn,k) DCMTl,k’ 0 == ! 0 sk (C 1)

u,ﬂvn,k =

Eventually, 3G is a bounded operator for the spectral norm with

sup gz Sup fp sup fz
infgg inff inf f;

ll26Gll, = sup SUP i < oo, (C.2)
n

and the determinant of o sGn denoted by o p]N admits a limit when N tends to infinity:

1
lim det(syGn) = lim o] = exp(% <f0 (a(t) - ﬁ(t))dt>> = ap) - (C.3)

Proof. All these properties are deduced from the properties of the functions A and ¥ derived
previously.

(i) apG = pAos¥ is a linear measurable bijection of ;Q' due to the composed
application of two linear bijective measurable functions ,A : Q' — Q' and
o gQ’ — Q.

(ii) Since we have the expressions of the matrices of the finite-dimensional linear
transformations, it is easy to write the linear transformation of , Gy on the natural
basis e, k as

N @)n,k:fu 56, (TRt = 3 (fu 00 g )b ()

(p.g)€oN

leading to the coefficient expression

«pGry = f N CTORNOL D WV (C5)

i,jEON
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where we have dropped the index N since the expression of the coefficients does
not depend on it. We deduce from the form of the matrices jAx and ,¥ that the
application ,sGn has a matrix representation in the basis e, x of the form

- -

0,0
ap Go,o

0,0 0
arﬁGLo a,ﬂcl,o

«8Gyg | 28G3o | apGap
«$Ga1 | #pGy es
afGN = | wpGsg | «pGsp | 2pGao e , o (CO)
«$Gay | «fGy1 | apGiy e
u,ﬂGgfg a,ﬂGéig a,ﬂciﬁ mﬂGgﬁ
28G5 | pG33 «$G33 e

where we only represent the nonzero terms.

The eigenvalues of the operator are therefore the diagonal elements a,pGZ’,’z that are
easily computed from the expressions of the general term of the matrix:

#bGre = phm ¥k
. ﬁMn,k gu(mn,k)
T gp(Muk) aMpk (C.7)
_ 8a(mui) pM,,x
© gp(Muk) «aMpi

(iii) From the expression of ;M i = \/(ha(r) — ha(m)) (ha(m) — ha(1))/ (ha(r) — ha(1)),
we deduce the inequalities

SUp f 1
2 < , C8
inf f2 (8)

from which follows the given upper-bound to the singular values.

(iv) 4G is a finite-dimensional triangular linear matrix in the basis {e,}. Its deter-
minant is simply given as the product

N N
el =TT TT wsGrc=T1 TT apvur (C.9)

n=0 0<k<2n-1 n=0 0<k<2n-1
where we noticed that the eigenvalues , 3v, x are of the form

ga (mn,k) ﬁMn,k

. C.10
8p (Mpk) aMpk ( )

apVnk =
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Since, for every N > 0, we have ,3sGN =¢p Gn 04 GN, which entails that 4 g/n =¢p IN -

) N)fl, it is enough to show that we have
1 1
li = - bdt.
Nlinoo a,O]N eXP 2 -[O lX( )
Now, writing for every 0 < s <t <1 the quantity
t t
avt,s — J‘ r(u)eZ_[u u(v)dvdul
S

we have

7

2
(ga (M ) ) _ aOl, i mu " aOmygrap
aMp k avlm,krrn,k

so that 0/ is a telescoping product that can be written as

2N

Uko N (k+1)2-N
(a,O]N)Z = H¢

120 0JKk2N (k)2

If a is Holder continuous, there exist 6 > 0 and C > 0 such that

wp 1A =2 _

0<s, t<1 |t —s|°
and introducing, for any 0 < s < t < 1, the quantity Q,

Uts B J‘; T(u) ejf‘ a(v) do-|[! a(v) do du

Qt, — E_f; a(v)do |
’ 00ss f; I'(u)du

we have that Q, /< Qs < Qyc with

f: I'(u) o~ (C/(1+6)) (=) *O+(u=5)") 4,

Qt s t
’ J.T(u) du

7

f; F(u) e(C/(1+6))((t_u)1+5+(u_s)1+5)du

t,s

[LT(u)du

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)
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After expanding the exponential in the preceding definitions, we have

2C(supgee (D) (4 - 5140

Q.21-—p T areers TolE9").
(C.18)
_ 2C(sup () _ o)(1+0)
Q<1+ ( =l 0) -9 +o((t-5)1"),
’ infogaal'(f)  (1406)(2+0)
now, from
2N
[ [Qe~, gnen =1+ O<2_N>, (C.19)
k=0
we can directly conclude that
1 2N 1
i ol = e P09 tim TTQu g =0 (€20
O

Notice that, if & = f, 4 4G is the identity and 5./ = 1 as expected.
Similar properties are now proved for the process lift operator , s H.

Lemma C.2. The function ,H is a linear measurable bijection.

Moreover, for every N > 0, the function ,pHN = Py o qpH olN 1x Qy — QN is a finite-
dimensional linear operator, whose matrix representation is triangular in the natural basis of ,Qn and
whose eigenvalues are given by

-1 8p (mn,k) aMn,k
aVuk = (apVn = . C.21
pavni = (apVnk) e 0Tn) M (C.21)

Eventually, , sH is a bounded operator for the spectral norm with

2
_ _ sup gy sup f SUP J c2
”ﬂ/ﬂHllz = ||ﬂ,aG||2 = S‘ip Slipﬂ,rx”n,k < infg, inff; inf f2 < oo, (C.22)

and the determinant of o g Hn admits a limit when N tends to infinity:

1
lim_det(oH) - exp<§ < [[6o- a(t))dt>> . c23)
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Proof.
(i) The function ,gH = pW¥o,A is a linear measurable bijection of Q' onto Q'
because ;A : Q' — Q and ¥ : :Q — ,Q' are linear bijective measurable
functions.

(ii) We write the linear transformation of , gH for x in ,Q' as

SHIO = 3 8,0 [ abax(ds
(n,k)ed u

(C.24)
) -[u < 2 i) a5n,k(t)> x(t)dt.

(n,k)ed

If we denote the class of x in ,Q' by x = {x;;} = {x(m; )}, (i,j) € On, we can write
(C.24) as

epHy(X); ;= >, > s anl ) x (C.25)
(kDeon \ (p9)EON
from which we deduce the expression of the coefficients of the matrix , g H:

Lj _ p.4q
apHy ) = Z ﬁlp;{q “alis (C.26)
(P.9)EON

where as usual we drop the index N. Because of the the form of the matrices ,An
and g%y, the matrix , gHy in the basis f;; has the following triangular form:

0,0
apHop

0,0 ;
apHqy | apHq)

0,0 7,0 7,0
apH 20| @p H 20| ap H 2,0

0.0 f
apH 21| ap H 2,1 apH 21

= 0,0 1,0 20 3,0
apHy apHszp | apH3p | apHzo apHz)

0,0 f
apH 8(1) apHsz | apH 31 1 s
apH 8% apHsz, apH 32 apHs> s
apHszs | apHss apH33 apHs3

. (€27
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From the matrix representations ;A and ¥, the diagonal terms of , sH read

Wbl A N
apH;; = p¥i; - ali; = ﬂ‘”i,j (mif)

aMij _ gp(mij) aMij
Sa(mij)  gu(mij) pMi, (C.28)

(iii) The upper bound directly follows from the fact that g ,v;; = (a,ﬁvi,j)_l.

iv) Since g,vii = (4 Vi i ! the value of the determinant of «pHN is clearly the inverse
paVij PVij P y
of the determinant of , 3G, so that limn -, . det(4sH ;) = (u,ﬂ])_l = ﬂ,a]. O]

Note that Lemma C.2 directly follows from the fact that ,% and ,A are inverse of each
other and admit a triangular matrix representation. More precisely, when restricted to the
finite-dimensional case, we have set the following properties.

Properties C.3. We have the following set of properties in terms of matrix operations
(i) apHN = p¥y - aAn and 4 sGN = Ay - o PN,
(ii) a,ﬂHN = ¢pHy  acHy and apGn = 8GN - iGN
(iti) apHy = paHy and apGrl = paGys
(iv) apHN - «a¥N = p¥y and 4 pGN - o AN = Ay,
V) apHN" - pAT = aANT and 4yGNT - pD, T = 2N

Proof.

(i) Let us write ;Vy = @ jvect({enk }ockerr1) and VN = &N vect({ fij}osj<air)- Since
«¥ and ¥ project the flag ; Vo C ;V, C--- C ;V, onto the flag ,V( C Vi C--- C
xV N, and since conversely ,A and ,A project the flag ., Vo C yV; C... C xV onto
the flag ; Vo C ;V, C... C {V, we can write

wpHy = xPNn O pPoaAoxIN = (xPno p¥0rIN) © (xPNalAOxIN)

= ﬂlp o EYAN/

N (C.29)
apGy = Py o pAoaWorly = (¢Pyo pAogly)o (¢Pya¥orly)
= ﬂAN o aIPN-
(ii) We have
(pHN© agHy = p¥y 0 (AN og ¥N) © aAN = p¥y 0 Id,ay 0 «AN
= D(,ﬂH 7

N (C.30)

(BGN © Gy = pAy 0 ((WN© (AN) © «¥N = pAy o ld.oy 0 «¥N.

= a,ﬂHN-
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(iii) We have

rx,ﬂHN o ﬂ,aHN = a,aHN = IdeN/

(C31)
u,ﬂGN o ﬁ,aGN = a,aGN = IdégN.
(iv) We have
apHN - «¥N =p ¥N o (rAN 0 a¥N) = p¥y 0 Id,ay = p¥y,
(C.32)
u,ﬂGN . pcAN = ﬂAN o (ulPN S aAN) = ﬂAN OId,QN = ﬂAN
(v) We have
apFINT - pANT = cANT 0 (4¥NT 0 pAyT) = wANT 0 0 = aANT,
(C.33)
iGN+ T = BNT 0 (AN 0 g T) = JWNT 0 Id0y = LN -

D. Construction and Coefficient Applications

In this appendix, we provide the proofs of the main properties used in the paper regarding
the construction and the coefficient applications.

D.1. The Construction Application

We start by addressing the case of the construction application introduced in Section 3.2.1.
We start by proving Proposition 3.11.

Proof. For the sake of simplicity, we will denotes for any function A : [0,1] — R™, the
uniform norm as [Ale, = supy,;|A(t)|, where |[A(t)| = supOSkm(Zg_1 |A;(t)]) is the operator
norm induced by the uniform norms. We will also denote the ith line of A by [;(A) (it is a
R4-valued function) and the jth column of A by cj(A).

Let ¢ € Q' be fixed. These coefficients induce a sequence of continuous functions
¢N (&) through the action of the sequence of the partial construction applications. To prove
that this sequence converges towards a continuous function, we show that it uniformly
converges, which implies the result of the proposition using the fact that a uniform limit
of continuous functions is a continuous function. Moreover, since the functions take values
in R9, which is a complete space, we show that for any sequence of coefficients ¢ €; Q', the
sequence of functions ¢ (t) constitutes a Cauchy sequence for the uniform norm.
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By definition of ;£, for every ¢ in (£, there exist 6 < 1 and n; such that, for every
n > n;, we have

sup |&,x| < ond/2.

0<k<2n-1 (D.1)
which implies that for, N > n;, we have
PNQO @O D |wa® g
(nK)EIN\Dy,
. (D2)
S Zznﬁ/Z q’n,k .

n=ng

We therefore need to upperbound the uniform norm of the function ¢, ;. To this
purpose, we use the definition of ¢, ; given by (3.28):

t
@ () = g(8)- f ) @) (D.3)

The coefficient in position (i, j) of the integral term in the right-hand side of the previous
inequality can be written as a function of the lines and columns of f and @, and can be
upperbounded using the Cauchy-Schwarz inequality on L*([0, 1], R%) as follows:

(101 (£, ¢ (pui) ) = f 101 (8) (HO(S) - ¢ (k) () s

< 12ons, L5 llei(@nio -

(D.4)

Since the columns of @, form an orthogonal basis of functions for the standard scalar
product in L%([0,1],R%) (see Proposition 3.5), we have ||cj(¢nx)|l2 = 1. Moreover, since f is
bounded continuous on [0, 1], we can define constants K; = sup,, ||l (f) (t)|| < oo and write

20105, L = fu 1o, () (H(E)(5) - Li(B)(s) ) s

< f Lo sns, (5)Kids (D:5)
u
=2""1K? < co.
Setting K = max<j<4Kj, for all (n, k) in 9, the R4*d_yalued functions
Kokl®) = [ L0a()E() pun(s)ds (D6)
u

satisfy |16, klloo = SUP(yeq 10k (£)] < K 270172,
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Moreover, since g is also bounded continuous on [0, 1], there exists L such that ||g||.. =
SUPy<118(t)| < L, and we finally have, forall0 <t <1,

Now using this bound and (D.2), we have

< Igllopllen ko < LK27CD72, (D.7)

[oe]

q;n,k

LAGIORL EI0] D YR VARCR S EE S ol Gl DI Y

(n,k)eDN\D,,g n=n

and since 6 < 1, for the continuous functions t + WM (&) forms a uniformly convergent
sequence of functions for the d-dimensional uniform norm. This sequence therefore
converges towards a continuous function, and ¥ is well defined on Q' and takes values
in Co([0, 1], R%). O

This proposition being proved, we dispose of the map ¥ = limy_,,,%¥". We now
turn to prove different useful properties on this function. We denote by B(Cy ([0, 1], R%)) the
Borelian sets of the d-dimensional Wiener space Cy([0, 1], R%).

Lemma D.1. The function ¥ : (:Q,B(:Q)) — (Co([0,1],R%),B(Co([0,1],R%))) is a linear
injection.

Proof. The application ¥ is clearly linear. The injective property simply results from the
existence of the dual family of distributions 6, k. Indeed, for every ¢,¢" in :Q', we have that
W(¢) = W(¢) entails, that for all n,k, &, = P (6, ¥(&)) = D(Oui, ¥ () =&, - O

In the one-dimensional case, as mentioned in the main text, because the uniform
convergence of the sample paths is preserved as long as « is continuous and I is nonzero
through (D.8), the definition ,Q' does not depend on a or I and the space Q' is large enough
to contain reasonably regular functions.

Proposition D.2. [n the one-dimensional case, the space Q' contains the space of uniformly Holder
continuous functions H defined as

H={xecC[0,1]]36>0, Supw<+oo . (D.9)
o<st<1l |t —s|

Remark D.3. This point can be seen as a direct consequence of the characterization of the
local Holder exponent of a continuous real function in terms of the asymptotic behavior of its
coefficients in the decomposition on the Schauder basis [63].

Proof. To underline that we place ourselves in the one-dimensional case, we drop the bold
notations that indicate multidimensional quantities. Supposing that x is uniformly Holder
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continuous for a given 6 > 0, there always exists ¢ such that ¥V (¢) coincides with x on Dy: it
is enough to take ¢ such that, for all (n, k) in On, &,k = (Onk, X). We can further write for n > 0

n, ln
(X, 6n,k) = Mn,kx(m ,k) - <Ln,kM + Rn,kx(rn,k) >/
g(my k) Sallnk) 8&(rnk)
(D.10)
- L <x(mn,k) x(ln,k) ) <x(mn,k) x(rn,k) )
= Lnk - + Rn,k - .
g(mui)  g(lnk) 8g(mui)  §(rnk)
For a given function a, posing N, = SUP o<1 fa(t)/ infoc<1 f,f(t), we have
M < NG 2mD/2 1 S NG 207072 Ry < N, 2007172, (D.11)

Moreover, if a is in H, it is straightforward to see that g, has a continuous derivative. Then,
since x is 6-Holder, for any € > 0, there exists C > 0 such that |t — s| < € entails that

% - ;‘E—z; < Céd, (D.12)

from which we directly deduce
| k] < N"Tzcz"““ 2)-20), (D.13)
This demonstrates that {¢&, i} belongs to ;Q' and ends the proof. O

We equip the space Q' with the topology induced by the uniform norm on
Co([0,1],R%). As usual, we denote by B(,Q') the corresponding Borelian sets. We now show
Proposition 3.12.

Proposition D.4. The function ¥ : (:Q',B(:Q")) — (', B(Q")) is a bounded continuous
bijection.

Proof. Consider an open ball ,B(x, €) of ,Q' of radius e. If we take M = LK/+/2 as defined in
(D.8), we can choose a real 6 > 0 such that

- -1
§<eM <Zz-"/2> : (D.14)

n=0

Let us consider ¢ in ¢’ such that ¥(¢) = x. Then, by (D.8), we immediately have that, for all
¢ in the ball of radius ;B(¢, 6) of :Q, |[¥(¢ - &')|ls < €. This shows that ¥~'(,B(x, €)) is open

and that ¥ is continuous for the d-dimensional uniform norm topology. O

D.2. The Coefficient Application

In this section of the appendix, we show some useful properties of the coefficient application
introduced in Section 3.2.2.
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Lemma D.5. The function A : (Co([0,1], R?), B(Co([0,1],R))) — (:Q, B(:Q)) is a measurable
linear injection.

Proof.

(i) The function A is clearly linear.

(ii) To prove that A is injective, we show that for x and y in Co([0,1],RY), X#Y
implies that A(x) # A(y). To this end, we fix x#y in Co([0, 1], R?) equipped with
the uniform norm and consider the continuous function

dv) = 3 @O (AR~ AY),.): (D.15)
(n,k)edn

This function coincides with x — y on every dyadic number in Dy and has zero
value if A(x) = A(y). Since x#Yy, there exists s in ]0,1[ such that x(s) #y(s), and
by continuity of x — y, there exists an € > 0 such that x#y on the ball |s —¢,5 + €[.
But, for N large enough, there exists k, 0 < k < 2N~ such that |s - k27N| < &.
We then necessarily have that A(f) # A(g); otherwise, we would have dy (k27N) =
(x —y)(k27N) = 0, which would contradict the choice of .

(iii) Before proving the measurability of A, we need the following observation. Consider
for N > 0, the finite-dimensional linear function Ap

2N-1

Co([0,11,RY) — (RY)"

X —> AN(.X') = {A(x)N,k}(N,k)EON'

(D.16)

Since for all (N, k), the matrices My k, Ry k, Ly k are all bounded, the function Ay :

(Co([0,1],RY), B(Co([0,1],RY))) — ((Rd)zNil, B((R”l)ZAH )) is a continuous linear
application. To show that the function A is measurable, it is enough to show that the
pre-image by A of the generative cylinder sets of B(;Q) belongs to B(Cy([0, 1], R%)).

For any N > 0, take an arbitrary Borel set

B= [] Buxe B<<Rd>9N> (D.17)

(nk)edn
and define the cylinder set Cn(B) as
Cn(B)={ée: Q|VY(nk) €In, &, € Bk}, (D.18)
and we write the collection of cylinder sets C as

C=JCn withCn= |J Cn(B).

50 o)™ (D.19)



International Journal of Stochastic Analysis 77

We proceed by induction of N to show that the preimage by A of any cylinder set in C is
in B(Cy([0,1],R9)). For N = 0, a cylinder set of Cy is of the form Byy in B(R?), A™(B) =
{x € Co([0,1],RY) | x(1) € L{, g (r00)(Boo)}, which is measurable for being a cylinder
set of B(Co([0,1],R%)). Suppose now that, for N > 0, for any set A in Cn_1, the set A™'(A) is

measurable. Then, considering a set A in Cy, there exists B in B((Rd)gN) such that A = Cn(B).
Define A’ in Cn such that A’ = Cn_1(B'), where

! _
B= [] Buk (D.20)
(n,k)edN-1

and remark that A = Cn(B) ¢ A’ = Cn(B'). Clearly, we have that A = A’ N D, where we have
defined the cylinder set D as

D=Cp, < 1T BN,k>. (D.21)

(N,k)eDN k

Having defined the function Ay, we now have A™'(A) = A™(A'n D) = A1(A) N
ATY(D) = AN (A) N A‘Nl(D). Because of the continuity of Ay, AI_\}(D) is a Borel set of
B(Co([0,1],R4)). Since, by hypothesis of recurrence, A(A) is in B(Co([0,1],R%)), A1 (A)
is also in B(Cy([0, 1], R%)) as the intersection of two Borel sets. The proof of the measurability
of A is complete. O

We now demonstrate Theorem 3.14.

Proposition D.6. The function A : (,Q',B(,Q')) — (;Q', B(;Q")) is a measurable linear bijection
whose inverse is ¥ = AL,

Proof. Let x €, €' be a continuous function. We have

WA@))B) = D, ¢t Ank
(n,k)ed

- Z q"n,k(t)'p(Gn,k/x).

(n,k)ed

(D.22)

This function is equal to x(t) for any t € D, the set of dyadic numbers. Since D is dense in
[0,1] and both x and ¥(A(x)) are continuous, the two functions, coinciding on the dyadic
numbers, are equal for the uniform distance, and hence ¥(A(x)) = x. O

E. Ito Formula

In this section, we provide rigorous proofs of Proposition 6.1 and Theorem 6.2 related to the
Ito6 formula.
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Proposition E.1 (integration by parts). Let (X;) and (Y;) be two one-dimensional Gauss-Markov
processes starting from zero. Then one has the following equality in law:

t t
XiY: = I Xso0dYs + J‘ Y 0dXg, (E.1)
0 0

where jé As o dBg two stochastic processes denotes for Ay and By the Stratonovich integral. In terms
of the Ito integral, this formula is written as

t t
XY, = f X.dY, + f Y, dX, +(X,Y), (E.2)
0 0

where the brackets denote the mean quadratic variation.

Proof. We assume that X and Y satisfy the equations:

dXt = ax (t)Xt + FX (t)th,
(E.3)

dYy = ay(t) Xy + /Ty (t)dW,,

and we introduce the functions fx, fy, gx, and gy such that X; = gx(t) fot fx(s) and ¥} =
gr(t) o fr(s).

We define (x @ k) (nx)e0 ad (y@n k) (n k)eo, the construction bases of the processes X and
Y. Therefore, using Theorem 4.5, there exist (XE‘n,k)(n,k)GO and (YEp,q)(p,q)eg standard normal
independent variables such that X = 3, jco x¥uk - xZnkand Y =3, ocr y¥ui - yEnx and
we know that the processes X and Y are almost-surely uniform limits when N — oo of the
processes XV and YV defined as the partial sums:

XN = 3 Xk xEak YN= D vk vEauk (E.4)
(nk)edn (p.)€In

Using the fact that the functions x ¢, and y ¢, have piecewise continuous derivatives, we
have

XN = 30 D x¥uk() v ¥y q(D) xEnk vEpg
(n,k)eln (p.g)€ln

d
= Z Z XSk yEp,qf %(X(Pn,k(s) y‘l’,,,,,(s))dt

t
(nk)eln (p.g)€lN 0

= Z Z XEn,kYEP,qf

(nk)eln (p.g)€lN 0

t

(X‘F;,k(S)Y‘PPrq(S) + x¥ni(s) Y‘If;,,q(s)>ds.

(E.5)
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Therefore, we need to evaluate the piecewise derivative of the functions x ¢, x and y¢, k. We
know that

1 XWn,k )I
—\— )@= t), E.6
which entails that
X¥ g = ax XPi + XX x P = Ax xPni + VIx P, (E7)

and similarly so for the process Y. Therefore, we have

XNYN = AZG -+ By + Gl + Dy, (E8)
with
t
A = <I ax(s) x@nk(s) y@pq(s) ds>x5n,k YZpqr
(nk)eln (p.g)eln \* 0
t
B= > D <I VIX(8)  Prk(S) YPp,q(s) dS>X5n,k YEp,qr
(nk)eln (pg)€lny \70 Eo
t (E9)
Ci= Z Z <f ay () x@nx(s) Yqip,q(s) ds)XEn,k YZp,qs
(nk)eln (p.q)€ln 0
t
D; = Z Z <I Iy (s) Y¢n,k(5)xqu,q(5)> dsxEnkYEp,q-
(nk)eln (pg)ely \”70
We easily compute
t
A +C = f (ax(s) + ay (s))XN(s)YN(s)ds. (E.10)
0

For t € [0,1], as it is our case, XV (s) and YV (s) are both almost surely finite for all ¢ in [0,1].
For almost all y¢ and y¢ drawn with respect to the law of the Gaussian infinite vector 2, we
therefore have, by the Lebesgue dominated convergence theorem, that this integral converges
almost surely towards

ft(ax(s) + ay(s))X(s)Y(s)ds. (E.11)
0
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The other two terms By and D; necessitate a more thorough analysis, and we treat them as
follows. Let us start by considering the first one of this term:

1
Bt=foﬂ[o,q<s) T S S (hue(5) Py () xEuk vEpgds

(nk)eln (p.g)eln

tiv1
f 10,4(s) FX(S)< Z xPri () XEn,k>YN(S)dS (E.12)
LEDN\{1} 7t (

n,k)EDN

i+l 1
()F(< ( ()>>YN()d-
o J‘l [0S xS f ( ) S S)ds

Let us now have a closer look at the process Xf\’ for t € [t;, tis1] where [t;,ti11] = Sni for i such
that (N, i) € 9. Because of the structure of our construction, we have

gy (t) hy(tin) —hy(t) Y + gy(t)  hy(t) — hy(t)

N gy — . :
o= gr(t) hy(tin) —hy(t) " gy(ti) hy(tin) = hy(t) " (E19
1 /XN fx(®) X, X,
. w X\ E.14
fx(®) ( > "= hx (tiv1) — hx(t;) <gX(ti+1) gX(ti)) Y
We therefore have
M (g (s)VIx(s) d [ XN(s) N
L < OVIE 4 <gX(s) >> YN (s)ds
_ J"*‘ 1 Qt](S)\/l—WfX(S) 2v(s)
v hx(tia) - hx(t) (E.15)
hy (tiv1) —hy(s) Y " hy(s) —hy(t) Y., ] ( Xiw Xy )
hy (tisa) = hy (6) gv ()~ Py (tir) =y () gv (i) ] \gx(tin) — gx(8)
_ [ nNyN o (a\NyN X X
- [U’(t) Yo i)Y (gX(ti+1) gX(ti)>
with
N ~ ti l[O,t] (s)@(s)fx(s) gY(S) hY(tiJrl) - hY(S)
o ()= I,- hx(tin) —hx(ti) gy (t:) hy (ti1) — hy () e
(E.16)

N - [ T VTx () fx(s) 8v(s) hy(s) ~ hr(t)
wi (B = j hx (tis1) = hx(ti) gy (tis1) hy (tis1) — hy (t:) =

i

Let us denote by 6x the time step of the partition 65 = maxyea\ (1) (tiv1 — i), which is smaller
than p" with p € (0,1) from the assumption made in Section 3.2.1. Moreover, we know that
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the functions gx = gy, hx and hy are continuously differentiable, and since VTx and VTy
are 6-Holder, so are fyx and fy. When N — oo (i.e,, when 6 — 0), using the Taylor and
Holder expansions for the differential functions, we can further evaluate the integrals we are
considering. Let us first assume that ¢ > t;.;. We have

it VIx(s)fx(s) gv(s) hy(ti) = hy(s)
. hx(tivn) — hx () gy (t) hy (tiv1) — hy (t)

_ VI(1+0(5)) ) (1+0(6%))

fx(t)*(tia1 — t:) (1 + O(6n))

vi(H)N ds

y gy (t)(1+O0@6N)) (5 fr(t)*(ti —s)(1 + O(5N)) (E.17)
gy (t) b fr(t) (fin — ) (1 + O(5N))
\/ﬁ(t) Bty — s
fX(t o =1 <L —ti+11 s ds> <1 +O(6N) + 0(516\1»
- %gx(ti) +o(6N +55N).

Similarly, we show that wlN(t) = (1/2)gx(ti) + O(6n + 65N) when N — co. If t < t;, we have
le(t) = wlN(t) =0 and for tin [t t;, + 1) we have

ti) [ tigs1 —t \?
Uf;[(t) = gX; O)<t o+ y ) +O<6N+6g]>,

io+1 — Lig
) (E.18)
gX (tlo) 0 8 _ N 5
(t) t10+1 tlo * O<6N * 6N> - vio (t) + O<6N + 6N>
We then finally have
N N
8x(ti) X %
B= 3 S5e(nen) (tt- ) =@
HEDN; ti <t 8x ti+1 gX( 1)
(E.19)

N

N
8x (tio) ( ti0+1 -t )2 N N Xtm _ Xtio 5
* 2 t,'0+1 — tio <th0 + Yt > gx (t) 8x (tio) * O<6N + 6N> ’

Moreover, we observe that the process X;/gx(t) = jt’“ fx(s) dW; is a martingale, and by
definition of the Stratonovich integral for martingale processes, we have

B — fgx(s)Y od( > f VIx(8)Ys 0 dW(s), (E.20)

8x(s)

where o is used to denote the Stratonovich stochastic integral and the limit is taken in dis-
tribution. Notice that the fact that the sum converges towards the Stratonovich integral does
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not depend on the type of sequence of partition chosen which can be different from the dyadic
partition. Putting all these results together, we obtain the equality in law:

t t t t
XY = f ax(s)Xs Ys ds + f VIx(s)YsodWs + f ay(s)Xs Ys ds +f VTIy(s)Xs 0 dWs,
0 0 0 0
(E.21)

which is exactly the integration by parts formula we were searching for. The integration by
parts formula for the It6 stochastic integral directly comes from the relationship between the
Stratonovich and Ito stochastic integrals. O

Theorem E.2 (Itd). Let X be a Gauss-Markov process and f in C*(R). The process f(X;) is a Markov
process and satisfies the relation

t 1t
f(Xe) = f(Xo) + fo f'(Xs)dXs + 3 L f'(Xs)d(X),. (E.22)

Proof. The integration by parts formula directly implies the Ito6 formula through a density
argument as follows. Let </ be the set of functions f € C?([0,1],R) such that (E.22) is true. It
is clear that +# is a vector space. Moreover, because of the result of Proposition 6.1, the space «#
is an algebra. Since all constant functions and the identity function f(x) = x trivially belong
to o4, the algebra « contains all polynomial functions.

Letnow f € C?([0,1], R). There exists a sequence of polynomials Py such that Py (resp.,
Py, P) uniformly converges towards f (resp., f', f"). Let us denote by U, the sequence of
stopping times:

U, = inf{t € [0,1];]X/] > n}. (E.23)

This sequence grows towards infinity. We have

t

t
PLXous) = Pe(Xo) = [ PelX0tiou ()X, + 3 [ P 1w (X, (B249)

0

On the interval [0,U,], we have X; < n, which allows to use the Lebesgue dominated
convergence theorem on each term of the equality. We have
2]
(E.25)

]E [
' 2
-2 Irox) - P P,
0
which converges towards zero because of the Lebesgue theorem for the Steljes integration.
The same argument directly applies to the other term. Therefore, letting k — oo, we proved
It6 formula for X;ay,, and eventually letting n — oo, we obtain the desired formula. O

t

t
_[ P (Xs)1ou, (s)dXs —f F'(Xs)Lou,1 (5)dXs
0 0
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F. Trace Class Operator

83

In this section, we demonstrate Theorem 6.6, which proves the instrumental to extend the
finite-dimensional change of variable formula to the infinite-dimensional case. The proof

relies on the following lemma.

LemmaF.1. The operator ,3S—Id : *(R) — I?(R) is isometric to the operator 4 R : I*(R) — I*(R)

defined by

1

apR[x] = fo «pR(t, 5)x(s)ds,

with the kernel

2
WR(ES) = (a(tvs) = v ) 100 f,x(t)< b (e - pa)’

fa(tVs) s fu (1) d“) fals).

Proof. Notice first that

fa(s)
fa(t)

fa(t)

+ 1(sot) (a(s) — B(s)) )

a(EAs)
(ot V) Bt v ) TEEZ =10 att) - )
which leads to writing in L2[0, 1], for any (n, k) and (p,q) in 20
! k k k
(b asR|abys]) = I JO wfR(ES) (P, (D) oD, (5)dt ds = Ak + By + Cik,

with

1 _ t
- [ 2L g0 (fo fals) a¢p,q(5)dS>dt,

o fa(B)
B fO \/m a()bn,k (t) uqu,q(t)dt,

1 1 _
B = [ S st <j s 2 aqbp,q(s)ds) at,

_ fl a(t) - p(t)
o VI

ok ([ (a(u) - P(u))*
Cpa = JTO a(l)n,k(t)fa(t)( . —faz = du)f(s) P, (s)dtds,

a(pn,k (t) a(pp,q (t)dt/

(F1)

(F.2)

(E3)

(E4)
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J’ I f (“(u;a (i(u))

% (100 () fa®) o, g () (1100 (5) fu(5) o b, 1 (5) )t s cu,
f (a(u) - pw)*

- T aPnk(t) @pq(H)dtds.

(E.5)

This proves that (4¢ k,ap RlaPpql) = [apS—1 d]" k Therefore, if we denote the isometric linear
operator

D P(R) — L*(R),

o (E6)
§— a@[¢] = Z Z ad’n,k “En ks
n=0 0<k<2n-1
we clearly have ;@7 053 Ro, @ =44 S — Id with ,®T =, ®". O

We now proceed to demonstrate that , 43S — Id is a trace class operator.

Proof of Theorem 6.6. Since the kernel ,4R(t, s) is integrable in L2([0,1] x [0,1]), the integral
operator 44R : L?[0,1] — L*[0,1] is a Hilbert-Schmidt operator and thus is compact.
Moreover, it is a trace class operator since we have

Te(uR) = [ (et - )t + [ fuz(t)< L -p0)* >dt
‘ 0 ¢ fa (u) E7)

f(a(t) B) )dt+f f“(()) a(t) - p(t))at

a

Since 445 — Id and ,gR are isometric through ,®, the compactness of ,4S — Id is equivalent
to the compactness of , sR. Moreover, the traces of both operators coincide:

© o) 1
SOS ush=3 S Hom,,,k(t)a«ﬁn,k(s)u,pmt,s)dsdt,

n=0 0<k<2m1 n=0 0<k<2n-1

1/
:”O<Z > u¢n,k(t)a¢n,k(5)> «pR(t, s)ds dt, (F.8)

n=0 0<k<2n-1

1
= f «pR(t t)ds dt,
0

using the result of Corollary 3.6. O
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G. Girsanov Formula

In this section we provide the quite technical proof of Lemma 6.8 which is useful in proving
the Girsanov formula.

Lemma G.1. The positive definite quadratic form on I(R) xI*(R) associated with operator 43S—1d :
P(R) — P(R) is well defined on ;Q'. Moreover for all &/,

(& (apS—-1d,0)(8))

o (fah) - XK@ Xe@)N L (C @) -1 7X@\ (G.1)
_ZJ’O 2O gl °d< ga<t>>+ 0 (ga(f)>dt'

where ;X (&) =« W(&) and o refers to the Stratonovich integral and the equality is true in law.

Proof. The proof of this lemma uses quite similar materials to those used in the proof of the
It6 theorem. However, since this result is central for giving insight on the way our geometric
considerations relate to the Girsanov theorem, we provide the detailed proof here.

Consider ¢ in ;Q', denote ¢n =; Pn(¢), and write

@ (epSn—Tda)@)) = X D) (Aph +Bs ) énidog, (G2)

(nk)EON (pg)eon

where we have posited

", La(t) - B(t)
Ayq = 2f BVaol (ke () ¥pg(8) + b, 1 (B) (D))t

U (a(t) - ()
0 I'(t)

(G3)
By = (apne(t) o (8) )t

It is easy to see, using similar arguments to those in the proof of the integration by parts for-
mula, Proposition 6.1:

AN = ST S A bk bpa

(nk)eIN (p.a)EON

5 fl a(t) ) XNE) d (XM@Y
o VI fu) dt\ g )7 (G

1 _ 2
S D Bk bukdg = OMaXMg)Zdt.

(n,k)edn (p.9)€N I'(t)

Because of the uniform convergence property of X~ towards X and the fact that it has almost
surely bounded sample paths, the latter sum converges towards

a) - p0)" (X)) G
.[0 20 (ga(t) ) s
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Now writing quantity AN(¢) as the sum of elementary integrals between the points of

discontinuity ; =27V, 0<i <2V,

IN_1 At N N
om0 () =) XN Q) d (XD e
ATQ =22, J NG dt< ) >‘“ (G0

and using the identities of (E.13) and (E.14), we then have

o2N_1
N NXe®) oy X @) (Xin @) X .
ATE) = Z( Gty ga(ti+1)><ga(ti+1) PO ) (G7)

i=0
where we denote

i (a(t) = BB) (h(tin) = h(E)dt

7

wN =
l (h(ti) - h(t))* Gs)
tisa - .
N [, (a(t) = B(t)) (h(tia) = h(t))dt
Wiy = 5 .
(h(tis1) — h(t;))

Let us define the function w in C[0, 1] by
a(t) - p(t)

If « and f are uniformly 6-Holder continuous, so is w. Therefore, there exist an integer N’ > 0
and a real M > 0 such thatif N > N/, forall 0 < i < 2N, we have

MR FC (d/dt) ((h(tia) = (D))
=] | 0t (o) —h

d/dt)((h(tis) - h(t))?
SMr iy ) (e g)))dt
; (h(tin) — h(ti) (G.10)

(t—ti)6+1

=M <m> M
(t_ti)5+1 (t_ti)6+2

=M <z<5—+1>> M <m '

which shows that [w]N — w(t;)| = O(2"N1+9)), and similarly |w], -
well. As a consequence, expression Lemma G.1 converges when N tends to infinity toward
O

rl (t=t)"" (h(tia) = h(1)*
v O (h(tia) - h(t))?

w(ti)| = O NI+) as

the desired Stratonovich integral.
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