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We consider the Cauchy-Dirichlet problem in [0,∞) × D for a class of linear parabolic partial
differential equations. We assume that D ⊂ R

d is an unbounded, open, connected set with regular
boundary. Our hypotheses are unbounded and locally Lipschitz coefficients, not necessarily
differentiable, with continuous data and local uniform ellipticity. We construct a classical solution
to the nonhomogeneous Cauchy-Dirichlet problem using stochastic differential equations and
parabolic differential equations in bounded domains.

1. Introduction

In this paper, we study the existence and uniqueness of a classical solution to the Cauchy-
Dirichlet problem for a linear parabolic differential equation in a general unbounded domain.
Let L be the differential operator

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑

i=1

bi(t, x)Diu(t, x), (1.1)

where {aij} = a = σσ ′, Di = ∂/∂xi, and Dij = ∂2/∂xi∂xj . The Cauchy-Dirichlet problem is

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞) ×D,
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u(0, x) = h(x), x ∈ D,

u(t, x) = g(t, x), (t, x) ∈ (0,∞) × ∂D,

(1.2)

where D ⊂ R
d is an unbounded, open, connected set with regular boundary.

In the case of bounded domains, the Cauchy-Dirichlet problem is well understood (see
[1, 2] for a detailed description of this problem). Moreover, when the domain is unbounded
and the coefficients are bounded, the existence of a classical solution to (1.2) is well known.
For a survey of this theory see [3, 4] where the problem is studied with analytical methods
and [5] for a probabilistic approach.

In the last years, parabolic equations with unbounded coefficients in unbounded
domains have been studied in great detail. For the particular case when D = R

d, there exist
many papers in which the existence, uniqueness, and regularity of the solution is studied
under different hypotheses on the coefficients; see for example, [6–17].

In the case of general unbounded domains, Fornaro et al. in [18] studied the
homogeneous, autonomous Cauchy-Dirichlet problem. They proved, using analytical
methods in semigroups, the existence and uniqueness of a solution to the Cauchy-Dirichlet
problem when the coefficients are locally C1,α, with aij bounded, b and c functions with a
Lyapunov type growth; that is, there exists a function ϕ ∈ C1,2((0, T) × R

d) such that

lim
|x|→∞

inf
0≤t≤T

ϕ(t, x) = ∞ (1.3)

and for some λ > 0,

sup
[0,T]×Rd

{(
− ∂

∂t
+L

)
ϕ(t, x) − λϕ(t, x)

}
< ∞. (1.4)

It is also assumed that D has a C2 boundary. Schauder-type estimates were obtained for the
gradient of the solution in terms of the data. Bertoldi and Fornaro in [19] obtained analogous
results for the Cauchy-Neumann problem for an unbounded convex domain. Later, in [20]
Bertoldi et al. generalized the method to nonconvex sets with C2 boundary. They studied
the existence, uniqueness, and gradient estimates for the Cauchy-Neumann problem. For a
survey of this results, see [21].

Using the theory of semigroups, Da Prato and Lunardi studied, in [22, 23], the
realization of the elliptic operator A = (1/2)Δ − 〈DU,D·〉, in the functions spaces L2(D),
L∞(D) and Cb(D), whenU is an unbounded convex function defined in a convex setD. They
proved existence and uniqueness for the elliptic and parabolic equations associated with A
and studied the regularity of the semigroup generated by A. Geissert et al. in [24], made a
similar approach for the Ornstein-Uhlenbeck operator.

In the paper of Hieber et al. [25], the existence and uniqueness of a classical solution
for the autonomous, nonhomogeneous Cauchy-Dirichlet and Cauchy-Neumann problems
is proved. The domain is considered to be an exterior domain with C3 boundary. The
coefficients are assumed to be C3,α continuous functions with Lyapunov type growth. The
continuity properties of the semigroup generated by the solution of the parabolic problem
are studied in the spaces Cb(D) and Lp(D).
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In all the papers cited above, the uniformly elliptic condition is assumed; that is, there
exists λ > 0 such that for all (t, x) ∈ [0,∞) × D we have that

∑
aij(t, x)ηiηj ≥ λ‖η‖2 for all

η ∈ R
d.
In this paper, we prove the existence and uniqueness of a classical solution to (1.2),

when the coefficients are locally Lipschitz continuous in x and locally Hölder continuous
in t, aij has a quadratic growth, bi has linear growth, and c is bounded from above. We
allow f , g, and h to have a polynomial growth of any order. We also consider the elliptic
condition to be local; that is, for any [0, T] × A ⊂ [0,∞) × D, there exists λ(T,A) such that∑

aij(t, x)ηiηj ≥ λ(T,A)‖η‖2 for all t ∈ [0, T], x ∈ A and η ∈ R
d. We assume that D is an

unbounded, connected, open set with regular boundary (see [1] Chapter III, Section 4, for
a definition of regular boundary). Furthermore, we prove that the solution is locally Hölder
continuous up to the second space derivative and the first time derivative.

Our approach is using stochastic differential equations and parabolic differential
equations in bounded domains. For proving existence, many analytical methods construct
the solution by solving the problem in nested bounded domains that approximate the domain
D. In these cases, the convergence of the approximating solutions is always a very difficult
task. Unlike these methods, first we propose, as a solution to (1.2), a functional of the solution
to a SDE,

v(t, x) = Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]

+ Ex

[
e
∫ t
0 c(t−r,X(r))drh(X(t))1τD≥t

]

+ Ex

[
e
∫τD
0 c(t−r,X(r))drg(t − τD,X(τD))1τD<t

]
,

(1.5)

where

dX(s) = b(t − s,X(s))ds + σ(t − s,X(s))dW(s), X(0) = x,

τD := inf
{
s > 0 | X(s) /∈ D

}
.

(1.6)

Using the continuity of the paths of the SDE, we prove that this function is continuous in
[0,∞) × D. Then, using the theory of parabolic equations in bounded domains, we study
locally the regularity of the function v and prove that it is a C1,2 function. Finally, with some
standard arguments, we prove that it solves the Cauchy-Dirichlet problem. This kind of idea
has been used for several partial differential problems (see [5, 26, 27]).

In Section 2, we introduce the notation and the hypotheses used throughout the paper.
Section 3 presents the main result. In this section we prove that if the function v is smooth,
then it has to be the solution to the Cauchy-Dirichlet problem. Section 4 is devoted to prove
the required differentiability for the candidate function. Finally, in Section 5, the reader will
find some of the results used in the proof of our main theorem.



4 International Journal of Stochastic Analysis

2. Preliminaries and Notation

In this section, we present the hypotheses and the notation used in this paper.

2.1. Domain

Let D ⊂ R
d be an unbounded, open, connected set with boundary ∂D and closure D. We

assume that D has a regular boundary; that is, for any x ∈ ∂D, x is a regular point (see [1]
Chapter III, Section 4 or [28] Chapter 2, Section 4, for a detailed discussion of regular points).
We denote the hypotheses on D by H0.

2.2. Stochastic Differential Equation

Let (Ω,F,P, {Fs}s≥0) be a complete filtered probability space and let {W} = {Wi}di=1 be a d-
dimensional brownian motion defined in it. For t ≥ 0 and x ∈ D, consider the stochastic
differential equation

dX(s) = b(t − s,X(s))ds + σ(t − s,X(s))dW(s), X(0) = x, (2.1)

where b = {bi}di=1 and σ = {σij}di,j=1. Although this process is the natural one for solving
equation (1.2), it does not posses many good properties. The continuity of the flow process
does not imply the continuity with respect to t. Furthermore, although this process is a strong
Markov process, it is not homogeneous in time, a very useful property for proving the results
in this paper.

To overcome these difficulties, we augment the dimension considering the following
process

dξ(s) = −ds, ξ(0) = t. (2.2)

Then the process {ξ(s), X(s)} is solution to

dξ(s) = −ds,
dX(s) = b(ξ(s), X(s))ds + σ(ξ(s), X(s))dW(s),

(2.3)

with (ξ(0), X(0)) = (t, x). Throughout this paper we will use both processes, X(s) and
(ξ(s), X(s)), in order to simplify the exposition. For the expectation, we use the notation

Ex[·] := E[· | X(0) = x] (2.4)

when considering the process X defined as in (2.1) and the notation

Et,x[·] := E[· | (ξ(0), X(0)) = (t, x)] (2.5)

when working with the joint process (ξ, X) defined in (2.3).



International Journal of Stochastic Analysis 5

We need to define the following stopping times

τD := inf
{
s > 0 | X(s) /∈ D

}
,

τ := τD ∧ t.

(2.6)

Remark 2.1. Observe that τ is the exit time of the process (ξ(s), X(s)) from the set [0,∞) ×D,
that is,

τ = inf
{
s > 0 | (ξ(s), X(s)) /∈ [0,∞) ×D

}
. (2.7)

We cannot guarantee that the process X(s) leaves the set D in a finite time however, the
process ξ(s) reaches the boundary s = 0 at time t. Thus, the joint process (ξ(s), X(s)) leaves
the set [0,∞) ×D in a bounded time.

We assume the following hypotheses on the coefficients b and σ. We denote them by
H1. The matrix norm considered is ‖σ‖2 := trσσ ′ =

∑
i,j σ

2
ij .

H1.

Let

σ : R × R
d −→ M

(
R

d × R
d
)
,

b : R × R
d −→ R

d

(2.8)

be continuous functions such that

(1) Continuity. Let λ ∈ (0, 1). For all T > 0, n ≥ 1, there exists L1(T, n) such that

∥∥σ(r, x) − σ
(
s, y

)∥∥2 +
∥∥b(r, x) − b

(
s, y

)∥∥2 ≤ L1(T, n)2
(
|r − s|2λ + ∥∥x − y

∥∥2
)
, (2.9)

for all |r|, |s| ≤ T , ‖x‖ ≤ n, ‖y‖ ≤ n.

(2) Linear-Growth. For each T > 0, there exists a constant K1(T) such that

‖σ(r, x)‖2 + ‖b(r, x)‖2 ≤ K1(T)2
(
1 + ‖x‖2

)
, (2.10)

for all |r| ≤ T , x ∈ R
d.

(3) Local Ellipticity. Let A ⊂ D be any bounded, open, connected set and T > 0. There
exists λ(T,A) > 0 such that, for all (r, x) ∈ [0, T] ×A and η ∈ R

d,

∑

i,j

aij(r, x)ηiηj ≥ λ(T,A)
∥∥η
∥∥2, (2.11)

where {aij} = a = σσ ′.
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Remark 2.2. Observe that the local ellipticity is only assumed on [0,∞) ×D. This condition is
used to prove the existence of a classical solution to (1.2) and so is only needed in that set. The
local Lipschitz condition and the linear growth are assumed on R×R

d to ensure the existence
of a strong solution to (2.3) for s ∈ [0,∞).

Remark 2.3. If we assume, in the more natural case, that

σ : [0,∞) × R
d −→ M

(
R

d × R
d
)
,

b : [0,∞) × R
d −→ R

d

(2.12)

are continuous functions satisfying the hypotheses inH1 restricted to the set [0,∞)×R
d, then

we can extend them to be defined for negative values of r as follows: let b̂ and σ̂ be defined
as

b̂(r, x) =

⎧
⎨

⎩
b(r, x) if r ≥ 0,

b(0, x) if r < 0,

σ̂(r, x) =

⎧
⎨

⎩
σ(r, x) if r ≥ 0,

σ(0, x) if r < 0.

(2.13)

It is easy to see that these functions satisfy H1with the same constants L1 and K1.

Remark 2.4. It follows, from the nondegeneracy (the local ellipticity) of the process X(s), the
regular boundary of the setD and Lemma 4.2, Chapter 2 in [28], that, for any t, x ∈ [0,∞)×D,

Pt,x

[
τ = τ ′

]
= 1, (2.14)

where τ ′ := inf {s > 0 | (ξ(s), X(s)) /∈ (0,∞) ×D} (see Remark 2.1).

The next proposition presents some of the properties of the process (ξ, X) required in
this work.

Proposition 2.5. As a consequence of H1, (ξ, X) has the following properties.

(i) For all (t, x) ∈ [0,∞) × R
d, there exists a unique strong solution to (2.3).

(ii) The process {ξ(s), X(s)}s≥0 is a strong homogeneous Markov process.

(iii) The process {ξ(s), X(s)}s≥0 does not explode in finite time a.s..

(iv) For all x ∈ R
d, T > 0, and r ≥ 1,

Ex

[
sup
0≤s≤T

‖X(s)‖2r
]
≤ C(T,K1, r)

(
1 + ‖x‖2r

)
. (2.15)
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Proof. See

(i) Theorem 1.1 Chapter V in [26] or Theorem 3.2, Chapter 6 in [29].

(ii) Theorem 4.6, Chapter 5 in [27] or Proposition 3.15, Chapter 6 in [29].

(iii) Theorem 10.2.2 in [30].

(iv) Theorem 2.3, Chapter 5 in [31] or Corollary 3.3, Chapter 6 in [29].

2.3. The Cauchy-Dirichlet Problem

Consider the following differential operator:

L[u](t, x) :=
d∑

i,j=1

aij(t, x)Diju(t, x) +
d∑

i=1

bi(t, x)Diu(t, x), (2.16)

where Di = ∂/∂xi, Dij = ∂2/∂xi∂xj , and {aij}di,j=1 = a = σσ ′. For the rest of the paper, we
assume that the coefficients of L satisfy H1.
The Cauchy-Dirichlet problem for a linear parabolic equation is

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x), (t, x) ∈ (0,∞) ×D,

u(0, x) = h(x), x ∈ D,

u(t, x) = g(t, x), (t, x) ∈ (0,∞) × ∂D.

(2.17)

We assume the following hypotheses for the functions c, f , h, and g. We denote them byH2.

H2.

(1) Let

c : [0,∞) ×D −→ R,

f : [0,∞) ×D −→ R

(2.18)

be continuous functions such that

(i) Continuity. Let λ ∈ (0, 1). For all T > 0, n ≥ 1, there exists a constant L2(T, n)
such that

∥∥f(r, x) − f
(
s, y

)∥∥2 +
∥∥c(r, x) − c

(
s, y

)∥∥2 ≤ L2(T, n)2
(
|r − s|2λ + ∥∥x − y

∥∥2
)
, (2.19)

for all 0 ≤ s, r ≤ T , x, y ∈ D with ‖x‖ ≤ n, ‖y‖ ≤ n.
(ii) Growth. There exists c0 ≥ 0 such that

c(r, x) ≤ c0 ∀(r, x) ∈ [0,∞) ×D. (2.20)
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There exists k > 0, such that for all T > 0, a constantK2(T) exists such that

∣∣f(r, x)
∣∣ ≤ K2(T)

(
1 + ‖x‖k

)
, (2.21)

for all 0 ≤ r ≤ T , x ∈ D

(2) Let

h : D −→ R,

g : [0,∞) × ∂D −→ R

(2.22)

be continuous functions such that

(i) Growth. There exists k > 0, such that, for all T > 0, there exists a constant
K3(T) such that

|h(x)| + ∣∣g(r, x)∣∣ ≤ K3(T)
(
1 + ‖x‖k

)
(2.23)

for all (r, x) ∈ [0, T] ×D.
(ii) Consistency. There exists consistency in the intersection of the space and

the time boundaries, that is,

h(x) = g(0, x) (2.24)

for x ∈ ∂D.

2.4. Additional Notation

If μ is a locally Lipschitz function defined in some set R, then, for any bounded open set A
for which A ⊂ R, we denote, by Kμ(A) and Lμ(A), the constants

Kμ(A) := sup
x∈A

∥∥μ(x)
∥∥ < ∞,

Lμ(A) := sup
x,y∈A,x /=y

∥∥μ(x) − μ
(
y
)∥∥

∥∥x − y
∥∥ < ∞.

(2.25)

If ν : [0,∞) → R
d, then, for all T > 0,

‖ν‖T := sup
0≤s≤T

‖ν(s)‖. (2.26)

The space C1,2,λ
loc ((0,∞)×D) is the space of all functions such that they and all their derivatives

up to the second order in x and first order in t, are locally Hölder continuous of order λ.
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3. Main Result

In this section, we present the main result of this work and some parts of the proof.

Theorem 3.1. Assume H0, H1, and H2. Then, there exists a unique solution u ∈ C([0,∞) ×D) ∩
C1,2,λ

loc ((0,∞) ×D) to (2.17). The solution has the representation

u(t, x) = Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]

+ Ex

[
e
∫ t
0 c(t−r,X(r))drh(X(t))1τD≥t

]

+ Ex

[
e
∫τD
0 c(t−r,X(r))drg(t − τD,X(τD))1τD<t

]
,

(3.1)

where X is the solution to the stochastic differential equation

dX(s) = b(t − s,X(s))ds + σ(t − s,X(s))dW(s), X(0) = x,

τD := inf
{
s > 0 | X(s) /∈ D

}
.

(3.2)

Furthermore, for all T > 0,

sup
0≤t≤T

|u(t, x)| ≤ C(T, c0, K1, K2, K3, k)
(
1 + ‖x‖k

)
, x ∈ D, (3.3)

where c0, K1, K2, K3, and k are the constants defined inH1 and H2.

The proof of this theorem is given by several lemmas. The method we will use has
the following steps: first we define a functional of the process X as a candidate solution. Let
v : [0,∞) ×D → R be defined as

v(t, x) := Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]

+ Ex

[
e
∫ t
0 c(t−r,X(r))drh(X(t))1τD≥t

]

+ Ex

[
e
∫τD
0 c(t−r,X(r))drg(t − τD,X(τD))1τD<t

]
.

(3.4)

If v ∈ C([0,∞) × D) ∩ C1,2((0,∞) × D), then there exist some standard arguments (see [27,
chapter 4]) to prove that v is the unique solution to (2.17). The rest of this section is devoted
to proving Theorem 3.1 in the case when v is a “regular” function. The proof is divided into
two lemmas: the first one proves that if v ∈ C([0,∞) × D) ∩ C1,2((0,∞) × D), then v is a
solution to equation. The second one proves that in case of existence of a classical solution, u,
to problem (2.17), then it is unique and has the form given by v in (3.4). The regularity of v
is proved in Section 4 below.
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The next proposition gives an extension of the boundary data to all the space [0,∞) ×
R

d. This extension is given to simplify the notation and is required in the proofs of Lemmas
4.2 and 4.3.

Proposition 3.2. Assume H2. Then, there exists a continuous function G : [0,∞) × R
d → R such

that

G(t, x) = g(t, x), (t, x) ∈ [0,∞) × ∂D,

G(0, x) = h(x), x ∈ D.
(3.5)

Proof. Thanks to the consistency condition inH2 and the continuity of g and h, we can extend
by Tietze’s extension theorem (see [32, Section 2.6]) the functions g, h from the closed set
{0} ×D ∪ [0,∞) × ∂D to a continuous function G defined in [0,∞) × R

d.

As a consequence of Proposition 3.2, we can write v in (3.4) as follows:

v(t, x) = Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]

+ Ex

[
e
∫ t∧τD
0 c(t−r,X(r))drG(t − t ∧ τD,X(t ∧ τD))

]
.

(3.6)

We are ready to prove both lemmas explained above.

Lemma 3.3. Assume H0, H1, and H2. Let v be defined as in (3.6) and assume that v ∈ C([0,∞) ×
D) ∩ C1,2((0,∞) ×D). Then, v fulfils the following equation:

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (0,∞) ×D,

u(t, x) = G(t, x) (t, x) ∈ ∂((0,∞) ×D).
(3.7)

Furthermore, for all T > 0, there exists C such that

sup
0≤t≤T

|v(t, x)| ≤ C(T, c0, K1, K2, K3, k)
(
1 + ‖x‖k

)
, x ∈ D, (3.8)

where c0, K1, K2, K3, and k are the constants defined inH1 and H2.

Proof. Let 0 ≤ α ≤ t, then, following the same argument used to prove (4.80) in the proof of
Theorem 4.4 in Section 4 we have that

Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds + e

∫ t∧τD
0 c(t−r,X(r))drG(t − t ∧ τD,X(t ∧ τD)) | Fα

]

=
∫α∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds + e

∫α∧τD
0 c(t−r,X(r))v(t − α ∧ τD,X(α ∧ τD)).

(3.9)
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Because of H1 and H2, we have that the random variable inside the conditional expectation
is integrable and so the left-hand side of (3.9) is a Fα-martingale, for α ∈ [0, t]. Since v ∈ C1,2,
we can apply Ito’s formula to e

∫α
0 cdrv() to get

e
∫α∧τD
0 c(t−r,X(r))drv(t − α ∧ τD,X(α ∧ τD))

= v(t, x) +
∫α∧τD

0
e
∫s
0 c(t−r,X(r))dr(−vt +L[v] + cv)(t − s,X(s))ds

+
∫α∧τD

0
Dv(t − s,X(s)) · σ(t − s,X(s))dW(s).

(3.10)

It follows from the continuity of Dv, σ and X(·) that

sup
0≤s≤α

‖Dv(t − s,X(s))‖‖σ(t − s,X(s))‖ (3.11)

is a.s. finite and then

∫α∧τD

0
Dv(t − s,X(s)) · σ(t − s,X(s))dW(s) (3.12)

is a local martingale for 0 ≤ α ≤ t. So, combining (3.9) and (3.10), we get that

M(α) :=
∫α∧τD

0
e
∫s
0 c(t−r,X(r))dr(−vt +L[v] + cv + f

)
(t − s,X(s))ds (3.13)

is a continuous local martingale for α ∈ [0, t]. Since M is locally of bounded variation, then
M(α) ≡ 0. This implies that −vt +L[v] + cv + f = 0 for all (t, x) ∈ (0,∞) ×D.

For the boundary condition, it follows from the regularity of the set D and the local
ellipticity (see Remark 2.4) that

Px[t ∧ τD = 0] = 1, for (t, x) ∈ ∂
(
[0,∞) ×D

)
. (3.14)

From this, it is clear that the first addend of the right-hand side of (3.6) is zero. For the second
addend, we get that the exponential term is equal to one and that Ex[G(t− t∧τD,X(t∧τD))] =
G(t, X(0)) = G(t, x), and so we conclude that v satisfies the boundary condition.

The second statement of the theorem is proved with the same argument used to prove
(4.9) and (4.42) in the proofs of Lemmas 4.2 and 4.3 in Section 4.
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The next Lemma proves the uniqueness of the solution.

Lemma 3.4. Assume H0, H1, and H2. Assume that there exists a classical solution u ∈ C([0,∞) ×
D) ∩ C1,2((0,∞) ∩D) to equations

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (0,∞) ×D,

u(t, x) = G(t, x) (t, x) ∈ ∂((0,∞) ×D),
(3.15)

such that, for all T > 0, there exists C for which

sup
0≤t≤T

|u(t, x)| ≤ C(T)
(
1 + ‖x‖μ) (3.16)

for some μ > 0. Then, u has the following representation:

u(t, x) = Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]

+ Ex

[
e
∫ t∧τD
0 c(t−r,X(r))drG(t − t ∧ τD,X(t ∧ τD))

]
,

(3.17)

and hence the solution is unique.

Proof. Consider, for α ∈ [0, t], the process

e
∫α∧τD
0 c(t−r,X(r))dru(t − α ∧ τD,X(α ∧ τD)). (3.18)

Applying Ito’s rule, we get

e
∫α∧τD
0 c(t−r,X(r))dru(t − α ∧ τD,X(α ∧ τD))

= u(t, x) +
∫α∧τD

0
e
∫s
0 c(t−r,X(r))dr(−ut +L[u] + cu)(t − s,X(s))ds

+
∫α∧τD

0
Du(t − s,X(s)) · σ(t − s,X(s))dW(s).

(3.19)

A similar argument as the one used in the proof of Lemma 3.3 shows that

∫α∧τD

0
Du(t − s,X(s)) · σ(t − s,X(s))dW(s) (3.20)

is a local martingale. Due to (3.15), we conclude that

M(α) := e
∫α∧τD
0 c(t−r,X(r))dru(t − α ∧ τD,X(α ∧ τD)) +

∫α∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds (3.21)
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is a local martingale for α ∈ [0, t]. Let {θn}n≥1 be a sequence of localization times for M(α);
that is, θn ↑ ∞ a.s. as n → ∞ andM(α ∧ θn) is a martingale for all n ≥ 1. Then, for all n ≥ 1,

u(t, x) = Ex

[
e
∫α∧τD∧θn
0 c(t−r,X(r))dru(t − α ∧ τD ∧ θn,X(α ∧ τD ∧ θn))

]

+ Ex

[∫α∧τD∧θn

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]
.

(3.22)

Since 0 ≤ α ∧ τD ∧ θn ≤ t, using estimate (3.16), we get

e
∫α∧τD∧θn
0 c(t−r,X(r))dr |u(t − α ∧ τD ∧ θn,X(α ∧ τD ∧ θn))|

≤ ec0tC(t)
(
1 + ‖X(α ∧ τD ∧ θn)‖μ

)

≤ ec0tC(t)

(
1 + sup

0≤s≤t
‖X(s)‖μ

)
,

∣∣∣∣∣

∫α∧τD∧θn

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

∣∣∣∣∣

≤
∫α∧τD∧θn

0
ec0sK2(t)

(
1 + ‖X(s)‖k

)
ds

≤ ec0ttK2(t)

(
1 + sup

0≤s≤t
‖X(s)‖k

)
.

(3.23)

By (2.15) and the dominated convergence theorem, letting n → ∞, we get

u(t, x) = Ex

[
e
∫α∧τD
0 c(t−r,X(r))dru(t − α ∧ τD,X(α ∧ τD))

]

+ Ex

[∫α∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]
.

(3.24)

Letting α ↑ t, a similar argument and the boundary condition proof that

u(t, x) = Ex

[
e
∫ t∧τD
0 c(t−r,X(r))drG(t − t ∧ τD,X(t ∧ τD))

]

+ Ex

[∫ t∧τD

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]
,

(3.25)

and the proof is complete.
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4. Regularity of v

In this section, we prove that v ∈ C([0,∞)×D)∩C1,2,λ
loc ((0,∞)×D). First, we prove, using the

continuity of the flow process X, that v is a continuous function in [0,∞) × D. Since we are
only assuming the continuity of the coefficients, then the flow is not necessarily differentiable
and so we can not prove the regularity of v in terms of the regularity of the flow. To prove
that v ∈ C1,2, we show that v is the solution to a parabolic differential equation in a bounded
domain, for which we have the existence of a classical solution and hence v ∈ C1,2.

4.1. Continuity of v

Let (ξ, X) denote the solution to (2.3) and let G be defined as in Proposition 3.2, then v has
the following form:

v(t, x) = Et,x

[∫ t∧τD

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]

+ Et,x

[
e
∫ t∧τD
0 c(ξ(r),X(r))drG(ξ(t ∧ τD), X(t ∧ τD))

]
.

(4.1)

For simplicity, we write v = v1 + v2, where

v1(t, x) := Et,x

[∫ t∧τD

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
, (4.2)

v2(t, x) := Et,x

[
e
∫ t∧τD
0 c(ξ(r),X(r))drG(ξ(t ∧ τD), X(t ∧ τD))

]
. (4.3)

Theorem 4.1. Assume H0, H1, and H2. Let v be defined as in (4.1). Then, v is continuous on
[0,∞) ×D.

The proof of this theorem is divided into two lemmas.

Lemma 4.2. Assume H0, H1, and H2. Let v1 be defined as in (4.2). Then, v1 is continuous on
[0,∞) ×D.

Proof. First, we prove the continuity on (0,∞) ×D. For that, let

(tn, xn) −→
n→∞

(t, x) (4.4)

in (0,∞)×D and ε > 0. We need to prove that there existsN(ε) ∈ N such that, for all n ≥ N(ε)

|v1(tn, xn) − v1(t, x)| < ε. (4.5)

Denote by (ξ, X) and (ξn, Xn) the solutions to (2.3) with initial conditions (t, x) and (tn, xn),
respectively. To simplify the notation in the proof, let τ := t∧τD and τn := tn∧τDn denote their
corresponding exit times from [0,∞) ×D.
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Let α > 0, then there exists N1 ∈ N such that, for all n ≥ N1

‖(tn, xn) − (t, x)‖ < α. (4.6)

Observe that, for all n ≥ N1, we get

τn ≤ tn ≤ t + α,

τ ≤ t ≤ t + α.
(4.7)

Define the random variables Yn as

Yn :=
∣∣∣∣

∫ τn

0
e
∫s
0 c(ξn(r),Xn(r))drf(ξn(s), Xn(s))ds −

∫ τ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣. (4.8)

The sequence {Yn}n≥N1
is uniformly integrable. Thanks to Theorem 4.2, in Chapter 5 of [33],

it is sufficient to prove that supnE[Y 2
n] < ∞. So,

E

[
Y 2
n

]
≤ 2E

[∣∣∣∣

∫ τn

0
e
∫s
0 c(ξn(r),Xn(r))drf(ξn(s), Xn(s))ds

∣∣∣∣
2
]

+ 2E

[∣∣∣∣

∫ τ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣
2
]

≤ 2E

[∣∣∣∣

∫ τn

0
ec0(t+α)K2(t + α)

(
1 + ‖Xn(s)‖k

)
ds

∣∣∣∣
2
]

+ 2E

[∣∣∣∣

∫ τ

0
ec0(t+α)K2(t + α)

(
1 + ‖X(s)‖k

)
ds

∣∣∣∣
2
]

≤ 2e2c0(t+α)K2
2(t + α)E

⎡

⎣
∣∣∣∣∣

∫ τn

0

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)
ds

∣∣∣∣∣

2
⎤

⎦

+ 2e2c0(t+α)K2
2(t + α)E

⎡

⎣
∣∣∣∣∣

∫ τ

0

(
1 + sup

0≤r≤t+α
‖X(r)‖k

)
ds

∣∣∣∣∣

2
⎤

⎦

≤ 4e2c0(t+α)K2
2(t + α)(t + α)2

(
1 + E

[
sup

0≤r≤t+α
‖Xn(r)‖2k

])

+ 4e2c0(t+α)K2
2(t + α)(t + α)2

(
1 + E

[
sup

0≤r≤t+α
‖X(r)‖2k

])
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≤ C
(
1 +K

(
1 + ‖xn‖2k

))
+ C

(
1 +K

(
1 + ‖x‖2k

))

≤ C
(
1 +K

(
1 + (‖x‖ + α)2k

))
+ C

(
1 +K

(
1 + ‖x‖2k

))
< ∞,

(4.9)

where C = C(t, α, c0) andK = K(t, α, k). We use (4.6), (4.7), (2.15) and the polynomial growth
of f .
Let M > 0, 0 < η < 1, and β > 0 and define the set

EM,n,η,β := {‖X‖t+α ≤ M} ∩ {‖Xn −X‖t+α ≤ η
} ∩ {|τn − τ | ≤ β

}
. (4.10)

Then,

|v1(tn, xn) − v1(t, x)| ≤
∫

Ω
YndP =

∫

EM,n,η,β

YndP +
∫

Ω\EM,n,η,β

YndP. (4.11)

Since the sequence {Yn} is uniformly integrable, there exists δ(ε) such that for any E ∈ F that
satisfies P[E] < δ, we have

sup
n≥N1

∫

E

YndP <
ε

2
. (4.12)

It follows, from Remark 2.4, Proposition 2.5, and Theorems 5.3 and 5.4 in Section 5, the
existence of M andN2 such that

P
[
Ω \ EM,n,η,β

]
< δ(ε) (4.13)

for all n ≥ N2. Then for n ≥ N1 ∨N2, we get that

|v1(tn, xn) − v1(t, x)| ≤
∫

EM,n,η,β

YndP +
ε

2
. (4.14)

For simplicity of notation, we write the set EM,n,η,β as E and define

A := [0, t + α] × [−M − 1,M + 1]d,

Dt := [0, t + α] ×D
(4.15)

and let

BA := (−m,m)d+1 (4.16)

be an open set such that A ⊂ BA.
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On the set E, for all n ≥ N1 and 0 ≤ s ≤ t + α, it is satisfied that

(ξn(s), Xn(s)), (ξ(s), X(s)) ∈ A. (4.17)

We have that

∫

E

YndP ≤
∫

E

∫ τn∧τ

0

∣∣∣e
∫s
0 c(ξn(r),Xn(r))drf(ξn(s), Xn(s)) − e

∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))

∣∣∣dsdP (4.18)

+
∫

E

∫ τn∨τ

τn∧τ

(
e
∫s
0 c(ξn(r),Xn(r))dr

∣∣f(ξn(s), Xn(s))
∣∣1τn>τ

+e
∫s
0 c(ξ(r),X(r))dr∣∣f(ξ(s), X(s))

∣∣1τn≤τ
)
dsdP.

(4.19)

We first analyse (4.19):

(4.19) ≤
∫

E

∫ τn∨τ

τn∧τ
ec0(t+α)Kf(A ∩Dt)(1τn≤τ + 1τn>τ)dsdP

= ec0(t+α)Kf(A ∩Dt)
∫

E

|τn − τ |dP

≤ ec0(t+α)Kf(A ∩Dt)β.

(4.20)

For (4.18), we get

(4.18) ≤
∫

E

∫ τn∧τ

0
e
∫s
0 c(ξn(r),Xn(r))dr

∣∣f(ξn(s), Xn(s)) − f(ξ(s), X(s))
∣∣dsdP (4.21)

+
∫

E

∫ τn∧τ

0

∣∣f(ξ(s), X(s))
∣∣
∣∣∣e
∫s
0 c(ξn(r),Xn(r))dr − e

∫s
0 c(ξ(r),X(r))dr

∣∣∣dsdP. (4.22)

Now,

(4.21) ≤
∫

E

ec0(t+α)
∫ τn∧τ

0
Lf(BA)

(
|tn − t|λ + ‖Xn(s) −X(s)‖

)
dsdP

≤ ec0(t+α)(t + α)Lf(BA)
(
|tn − t|λ + η

)
.

(4.23)



18 International Journal of Stochastic Analysis

For (4.22), we need the following bound:

∣∣∣e
∫s
0 c(ξn(r),Xn(r))dr − e

∫s
0 c(ξ(r),X(r))dr

∣∣∣

= e
∫s
0 c(ξ(r),X(r))dr

∣∣∣∣exp
{∫ s

0
(c(ξn(r), Xn(r)) − c(ξ(r), X(r)))dr

}
− 1
∣∣∣∣

≤ ec0s
(
exp

{∫s

0
|c(ξn(r), Xn(r)) − c(ξ(r), X(r))|dr

}
− 1
)

≤ ec0s
(
exp

{∫s

0
Lc(BA)

(
|tn − t|λ + ‖Xn(r) −X(r)‖

)
dr

}
− 1
)

≤ ec0s
(
exp

{
Lc(BA)s

(
|tn − t|λ + η

)}
− 1
)
,

(4.24)

since |ex − 1| ≤ e|x| − 1. If we choose N3 ∈ N such that |tn − t|λ ≤ 1/(2Lc(BA)(t + α)) for all
n ≥ N3 and η ≤ 1/(2Lc(BA)(t + α)), then we get by the mean value theorem that

∣∣∣e
∫s
0 c(ξn(r),Xn(r))dr − e

∫s
0 c(ξ(r),X(r))dr

∣∣∣ ≤ ec0seLc(BA)s
(
|tn − t|λ + η

)
. (4.25)

Then,

(4.22) ≤ Kf(A ∩Dt)ec0(t+α)eLc(BA)(t + α)2
(
|tn − t|λ + η

)
. (4.26)

To summarize, we get with the above estimations that

∫

E

YndP ≤ ec0(t+α)(t + α)Lf(BA)
(
|tn − t|λ + η

)

+Kf(A ∩Dt)ec0(t+α)eLc(BA)(t + α)2
(
|tn − t|λ + η

)

+ ec0(t+α)Kf(A ∩Dt)β.

(4.27)

Hence, to prove continuity, we proceed as follows,

(i) Let ε > 0 and 0 < α � 1.

(ii) Let N1 ≥ N such that, for all n ≥ N1,

‖(tn, xn) − (t, x)‖ < α. (4.28)

(iii) Let δ(ε) > 0 fulfil the uniformly integrability condition (4.12).

(iv) TakeM > 0 such that P[‖X‖t+α > M] < δ(ε)/3.

(v) Define A := [0, t + α] × [−M − 1,M + 1]d and Dt := [0, t + α] ×D.
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(vi) Let

η < min

{
1,

1
2Lc(BA)(t + α)

,
ε

16ec0(t+α)(t + α)Lf(BA)
,

ε

16Kf (A ∩Dt)ec0(t+α)eLc(BA)(t + α)2

}
.

(4.29)

(vii) Choose N2 ∈ N such that P[‖Xn −X‖t+α > η] ≤ δ(ε)/3 for all n ≥ N2

(viii) Let N3 ∈ N be such that

|tn − t|λ < min

{
1

2Lc(BA)(t + α)
,

ε

16ec0(t+α)(t + α)Lf(BA)
,

ε

16Kf (A ∩Dt)ec0(t+α)eLc(BA)(t + α)

}
,

(4.30)

for all n ≥ N3.

(ix) Let

β <
ε

4ec0(t+α)Kf(A ∩Dt)
(4.31)

and choose N4 ∈ N such that, for all n ≥ N4, P[|τn − τ | > β] ≤ δ(ε)/3.

Thus, ifN = N1 ∨N2 ∨N3 ∨N4, then, for all n ≥ N,

|v1(tn, xn) − v1(t, x)| < ε. (4.32)

Therefore, v1 is continuous in (0,∞) ×D.
For the continuity at the boundary wemake a similar argument. Let (tn, xn) →

n→∞
(t, x),

where (tn, xn) ∈ (0,∞) ×D and (t, x) ∈ ∂((0,∞) ×D), that is, either t = 0 or x ∈ ∂D. In both
cases we get that τ = 0 a.s. and so v1(t, x) = 0. Then, we need to prove that

|v1(tn, xn)| −→
n→∞

0. (4.33)

Let 0 < α � 1 and N1 ∈ N be such that

‖(tn, xn) − (t, x)‖ < α. (4.34)

We get

τn ≤ tn < t + α (4.35)
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for all n ≥ N1. For the continuity, we have

|v1(tn, xn)| ≤ E

[∫ τn

0
e
∫s
0 c(ξn(r),Xn(r))dr

∣∣f(ξn(s), Xn(s))
∣∣ds

]

≤ E

[∫ τn

0
ec0sK2(t + α)

(
1 + ‖Xn(s)‖k

)
ds

]

≤ ec0(t+α)K2(t + α)E

[
τn

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)]
−→
n→∞

0.

(4.36)

The convergence follows from the uniform integrability of

τn

(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)
(4.37)

and the fact that τn
P→

n→∞
0 (see Theorem 5.2 in Chapter 5 of [33] and Theorem 5.3 in Section 5).

This completes the proof.

Lemma 4.3. Assume H0, H1, and H2. Let v2 be defined as in (4.3). Then, v2 is continuous on
[0,∞) ×D.

Proof. We use an analogous argument to the one in the proof of Lemma 4.2. First, we prove
the continuity in (0,∞) ×D. Let

(tn, xn) −→
n→∞

(t, x), (4.38)

with (tn, xn), (t, x) ∈ (0,∞) × D. Denote by (ξn, Xn) and (ξ, X) the solutions to (2.3) with
initial conditions (tn, xn) and (t, x), respectively, and let τn := tn ∧ τDn and τ := t ∧ τD be their
corresponding exit times from [0,∞) ×D. Let 0 < α � 1 and N1 be such that, for all n ≥ N1,

‖(tn, xn) − (t, x)‖ < α. (4.39)

This implies that

τn ≤ t + α,

τ ≤ t + α.
(4.40)

First, we prove that the sequence of random variables

Yn :=
∣∣∣e
∫τn
0 c(ξn(r),Xn(r))drG(ξn(τn), Xn(τn)) − e

∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

∣∣∣ (4.41)
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is uniformly integrable for all n ≥ N1. As in (4.9),

E

[
Y 2
n

]
≤ 2E

[∣∣∣e
∫τn
0 c(ξn(r),Xn(r))drG(ξn(τn), Xn(τn))

∣∣∣
2
]

+ 2E
[∣∣∣e

∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

∣∣∣
2
]

≤ 2E
[
e2c0(t+α)K2

3(t + α)
(
1 + ‖Xn(τn)‖k

)2]

+ 2E
[
e2c0(t+α)K2

3(t + α)
(
1 + ‖X(τ)‖k

)2]

≤ 2e2c0(t+α)K2
3(t + α)E

⎡

⎣
(
1 + sup

0≤r≤t+α
‖Xn(r)‖k

)2
⎤

⎦

+ 2e2c0(t+α)K2
3(t + α)E

⎡

⎣
(
1 + sup

0≤r≤t+α
‖X(r)‖k

)2
⎤

⎦

≤ 4e2c0(t+α)K2
3(t + α)

(
1 + E

[
sup

0≤r≤t+α
‖Xn(r)‖2k

])

+ 4e2c0(t+α)K2
3(t + α)

(
1 + E

[
sup

0≤r≤t+α
‖X(r)‖2k

])

≤ C
(
1 +K

(
1 + ‖xn‖2k

))
+ C

(
1 +K

(
1 + ‖x‖2k

))

≤ C
(
1 +K

(
1 + (‖x‖ + α)2k

))
+ C

(
1 +K

(
1 + ‖x‖2k

))
< ∞,

(4.42)

where C = C(t, α, c0) and K = K(t, α, k). We use (4.39), (4.40), (2.15), and the polynomial
growth of G in ∂((0,∞) ×D). As in Lemma 4.2, let ε > 0, then there exists δ(ε) > 0 such that

sup
n≥N1

∫

E

YndP <
ε

2 (4.43)

for all E ∈ F, with P[E] < δ(ε).
Let EM,n,η,β be defined as in (4.10), and choose M > 0 and N2 ∈ N such that

P
[
Ω \ EM,n,η,β

]
< δ(ε), (4.44)

for all n ≥ N2.
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For simplicity of notation, denote EM,n,η,β as E. Then,

|v2(tn, xn) − v2(t, x)| ≤
∫

E

YndP +
∫

Ω\E
YndP

≤
∫

E

YndP +
ε

2
.

(4.45)

Let A, Dt, and BA be defined as in Lemma 4.2 (see (4.15) and (4.16)). Then, on the set E, we
get that, for all n ≥ N1 and 0 ≤ s ≤ t + α,

(ξn(s), Xn(s)), (ξ(s), X(s)) ∈ A. (4.46)

So,

∫

E

YndP ≤
∫

E

e
∫τn
0 c(ξn(r),Xn(r))dr × |G(ξn(τn), Xn(τn)) −G(ξ(τ), X(τ))|dP (4.47)

+
∫

E

|G(ξ(τ), X(τ))|
∣∣∣e
∫τn
0 c(ξn(r),Xn(r))dr − e

∫τ
0 c(ξ(r),X(r))dr

∣∣∣dP. (4.48)

We study each addend of the right-hand side separately:

(4.47) ≤ ec0(t+α)
∫

E

|G(tn − τn,Xn(τn)) −G(tn − τn,X(τn))|dP (4.49)

+ ec0(t+α)
∫

E

|G(tn − τn,X(τn)) −G(t − τ,X(τ))|dP. (4.50)

First, we get a bound for (4.49). Since G is continuous, then it is uniformly continuous on A.
Then, for ε > 0, there exists γ(c0, t, α, ε,M) such that

|G(t1, x1) −G(t2, x2)| < ε

8ec0(t+α)
(4.51)

for all (t1, x1), (t2, x2) ∈ A with ‖(t1, x1) − (t2, x2)‖ < γ(c0, t, α, ε,M). On the set E, we have
(tn − τn,Xn(τn)), (tn − τn,X(τn)) ∈ A and

‖(tn − τn,Xn(τn)) − (tn − τn,X(τn))‖ < η. (4.52)

So, if we choose η < γ , then we get

(4.49) <
ε

8
. (4.53)
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Next, we study (4.50). Thanks to Theorem 5.3, we know that τn
a.s→

n→∞
τ . This and the

continuity of X(·) and G imply that

G(tn − τn,X(τn))
a.s.−→

n→∞
G(t − τ,X(τ)). (4.54)

On the set E, we have that (tn − τn,X(τn)), (t − τ,X(τ)) ∈ A and so

|G(tn − τn,X(τn)) −G(t − τ,X(τ))|1E ≤ 2KG(A). (4.55)

By the dominated convergence theorem, there exists N3 ∈ N such that

(4.50) <
ε

8
(4.56)

for all n ≥ N3.
To give a bound for (4.48), we observe that, on the set E,

∣∣∣∣

∫ τn

0
c(ξn(r), Xn(r))dr −

∫ τ

0
c(ξ(r), X(r))dr

∣∣∣∣

≤
∫ τn∧τ

0
|c(ξn(r), Xn(r)) − c(ξ(r), X(r))|dr

+
∫ τn∨τ

τn∧τ
(|c(ξn(r), Xn(r))|1τn≥τ + |c(ξ(r), X(r))|1τn<τ)dr

≤
∫ τn∧τ

0
Lc(BA)

(
|tn − t|λ + ‖Xn(r) −X(r)‖

)
dr +Kc(A ∩Dt)|τn − τ |

≤ Lc(BA)(t + α)
(
|tn − t|λ + η

)
+Kc(A ∩Dt)β.

(4.57)

Making a similar argument as the one made in (4.24) and (4.25), we get

∣∣∣e
∫τn
0 c(ξn(r),Xn(r))dr − e

∫τ
0 c(ξ(r),X(r))dr

∣∣∣

≤ ec0(t+α)e
[
Lc(BA)(t + α)

(
|tn − t|λ + η

)
+Kc(A ∩Dt)β

] (4.58)

if |tn − t|λ < 1/3Lc(BA)(t + α), η < 1/3Lc(BA)(t + α), and β < 1/3Kc(A ∩Dt). Then,

(4.48) ≤ KG(A)ec0(t+α)e
[
Lc(BA)(t + α)

(
|tn − t|λ + η

)
+Kc(A ∩Dt)β

]
. (4.59)

To summarize, we get with the above estimations that

∫

E

YndP ≤ ε

4
+KG(A)ec0(t+α)e

[
Lc(BA)(t + α)

(
|tn − t|λ + η

)
+Kc(A ∩Dt)β

]
. (4.60)
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Hence, to prove continuity, we proceed as follows.

(i) Let ε > 0 and 0 < α � 1.

(ii) Let N1 ∈ N be such that, for all n ≥ N1,

‖(tn, xn) − (t, x)‖ < α. (4.61)

(iii) Let δ(ε) > 0 fulfil the uniformly integrability condition (4.43).

(iv) TakeM > 0 such that P[‖X‖t+α > M] < δ(ε)/3.

(v) Define A := [0, t + α] × [−M − 1,M + 1]d and Dt := [0, t + α] ×D.

(vi) Let

η < min
{
1, γ(c0, t, α, ε,M),

1
3Lc(BA)(t + α)

,
ε

12KG(A)ec0(t+α)eLc(BA)(t + α)

}
. (4.62)

(vii) Choose N2 ∈ N such that P[‖Xn −X‖t+α > η] < δ(ε)/3 for all n ≥ N2

(viii) Let

β < min
{

1
3Kc(A ∩Dt)

,
ε

12KG(A)ec0(t+α)eKc(A ∩Dt)

}
. (4.63)

(ix) Choose N3 ∈ N such that P[|τn − τ | > β] < δ(ε)/3 for all n ≥ N3.

(x) Let N4 ∈ N be such that

|tn − t|λ < min
{

1
3Lc(BA)(t + α)

,
ε

12KG(A)ec0(t+α)eLc(BA)(t + α)

}
, (4.64)

for all n ≥ N4.

(xi) Let N5 ∈ N to get

∫

E

|G(tn − τn,X(τn)) −G(t − τ,X(τ))|dP <
ε

8ec0(t+α)
, (4.65)

for all n ≥ N5.

So, for N = N1 ∨N2 ∨N3 ∨N4 ∨N5, we have that, if n ≥ N, then

|v2(tn, xn) − v2(t, x)| < ε (4.66)

and we conclude that v2 is continuous over (0,∞) ×D.
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Next, we prove the continuity in the boundary. Let (tn, xn) →
n→∞

(t, x), where (tn, xn) ∈ (0,∞)×
D and (t, x) ∈ ∂((0,∞) × D), that is, either t = 0 or x ∈ ∂D. In both cases, we get that τ = 0
a.s., We need to prove that

|v2(tn, xn) −G(t, x)| −→
n→∞

0. (4.67)

Let 0 < α � 1 and N1 ∈ N such that

‖(tn, xn) − (t, x)‖ < α. (4.68)

So, for all n ≥ N1,

τn ≤ tn < t + α. (4.69)

We have that

|v2(tn, xn) −G(t, x)| ≤ E

[
e
∫τn
0 c(ξn(r),Xn(r))dr |G(tn − τn,Xn(τn)) −G(t, x)|

]
(4.70)

+ E

[
|G(t, x)|

∣∣∣e
∫τn
0 c(ξn(r),Xn(r))dr − 1

∣∣∣
]
. (4.71)

Because |e
∫τn
0 c(ξn,Xn)dr−1| ≤ ec0(t+α)+1, we have that (4.71) is uniformly integrable and repeating

the same argument made with (4.48), we can prove that

E

[
|G(t, x)|

∣∣∣e
∫τn
0 c(ξn(r),Xn(r))dr − 1

∣∣∣
]
−→
n→∞

0. (4.72)

Next, we work with (4.70). As in estimate (4.42), we can prove that the sequence

{
e
∫τn
0 c(ξn(r),Xn(r))dr |G(tn − τn,Xn(τn)) −G(t, x)|

}

n≥N1
(4.73)

is uniformly integrable. We have that

(4.70) ≤ ec0(t+α)E[|G(tn − τn,Xn(τn)) −G(tn − τn,X(τn))|] (4.74)

+ ec0(t+α)E[|G(tn − τn,X(τn)) −G(t, x))|]. (4.75)

We repeat the same arguments made for the estimates to (4.49) and (4.50) with (4.74) and
(4.75), respectively. Then, we can prove that

E[|G(tn − τn,Xn(τn)) −G(tn − τn,X(τn))|] −→
n→∞

0,

E[|G(tn − τn,X(τn)) −G(t, x))|] −→
n→∞

0.
(4.76)

So, v2 ∈ C([0,∞) ×D) and the proof is complete.
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4.2. Differentiability of v

Let 0 ≤ T0 < T1 and A ⊂ D be a bounded, open, connected set with C2 boundary. Consider
the following Cauchy-Dirichlet problem:

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ (T0, T1] ×A,

u(T0, x) = v(T0, x) for x ∈ A,

u(t, x) = v(t, x) for (t, x) ∈ (T0, T1] × ∂A,

(4.77)

where the boundary data is v. If we assume H0, H1, and H2, then by the continuity of v
(Theorem 4.1) and Theorem 5.5, we can guarantee the existence of a unique classical solution
to problem (4.77). To prove the regularity of v, we show that it coincides with the solution to
(4.77) in the set (T0, T1) ×A and so v ∈ C1,2((T0, T1) ×A). Since T0, T1, and A are arbitrary, we
get the desired regularity. We are ready to prove the next theorem.

Theorem 4.4. AssumeH0, H1, and H2. Let v be defined as in (4.1). Then v ∈ C1,2,λ
loc ((0,∞) × R

d).

Proof. Let w be the solution to (4.77). Define the following stopping times

θT := inf {s > 0 | ξ(s) < T0}

θA := inf
{
s > 0 | X(s) /∈ A

}
,

θ := θT ∧ θA.

(4.78)

Following the same arguments of Section 5 in Chapter 6 of [31], we can prove that w has the
following representation:

w(t, x) = Ex

[∫θ

0
e
∫s
0 c(t−r,X(r))drf(t − s,X(s))ds

]
+ Ex

[
e
∫θ
0 c(t−r,X(r))dsv(t − θ,X(θ))

]
. (4.79)

Next, we prove that v satisfies the following equality:

v(t, x) = Et,x

[∫θ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
+ Et,x

[
e
∫θ
0 c(ξ(r),X(r))dsv(ξ(θ), X(θ))

]
. (4.80)

Let v1 and v2 be defined as in (4.2) and (4.3), where τ := t ∧ τD is introduced to simplify the
notation. We will use the following representation of v1 and v2:

v1(t, x) = Et,x

[∫ τ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
,

v2(t, x) = Et,x

[
e
∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]
.

(4.81)
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First, we work with v1

v1(t, x) = Et,x

[
E

[∫ τ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣Fθ

]]

= Et,x

[
E

[∫θ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣∣Fθ

]] (4.82)

+ Et,x

[
E

[∫ τ

θ

e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

∣∣∣∣Fθ

]]
. (4.83)

We study the addends of the right-hand side separately

(4.82) = Et,x

[∫θ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]
. (4.84)

For (4.83), we make a couple of changes of variables to get

(4.83) = Et,x

[
E

[∫ τ−θ

0
e
∫s+θ
0 c(ξ(r),X(r))drf(ξ(s + θ), X(s + θ))ds

∣∣∣∣∣Fθ

]]

= Et,x

[
e
∫θ
0 c(ξ(r),X(r))dr

E

[∫ τ−θ

0
e
∫s
0 c(ξ(r+θ)),X(r+θ))drf(ξ(s + θ), X(s + θ))ds

∣∣∣∣∣Fθ

]]
.

(4.85)

Since θ < τD and θ is bounded, we get that (see Remark 2.1)

τ = inf
{
s > 0 | (ξ(s), X(s)) /∈ [0,∞) ×D

}

=θ + inf
{
s > 0 | (ξ(s + θ), X(s + θ)) /∈ [0,∞) ×D

}
,

(4.86)

so

τ − θ = Θθ ◦ τ, (4.87)

whereΘ· denotes the shift operator. Since the process (ξ, X) is a homogeneous strongMarkov
process, we get that

E

[∫Θθ◦τ

0
e
∫s
0 c(Θθ◦(ξ,X)(r))drf(Θθ ◦ (ξ, X)(s))ds | Fθ

]

= Eξ(θ),X(θ)

[∫ τ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]

= v1(ξ(θ), X(θ)).

(4.88)
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The last equality follows from a general form of the strong Markov property (see Theorem
4.18 in Chapter 5 of [29] Theorem 4.6 in Chapter 5 of [27], or Theorem 5.1 in Chapter V of
[26]) that states that if F : Ω → R is a bounded measurable functional, then

E
[
(F(ξ(·), X(·)) ◦Θθ)1{θ<∞} | Fθ

]
= Eξ(θ),X(θ)[F(ξ(·), X(·))]. (4.89)

In both sides of (4.88), we consider the sequence (F ∨ −n) ∧ n and apply the conditional
dominated convergence Theorem.

So,

v1(t, x) = Et,x

[∫θ

0
e
∫s
0 c(ξ(r),X(r))drf(ξ(s), X(s))ds

]

+ Et,x

[
e
∫θ
0 c(ξ(r),X(r))drv1(ξ(θ), X(θ))

]
.

(4.90)

Next, we study v2. Again, for the integral, we use a couple of changes of variables to get

v2(t, x) = Et,x

[
E

[
e
∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ)) | Fθ

]]

= Et,x

[
e
∫θ
0 c(ξ(r),X(r))dr

E

[
e
∫τ−θ
0 c(ξ(r+θ),X(r+θ))drG(ξ(τ), X(τ)) | Fθ

]]
.

(4.91)

Using (4.87), we write

G(ξ(τ), X(τ)) = G(ξ(τ − θ + θ), X(τ − θ + θ))

= G(ξ(Θθ ◦ τ + θ), X(Θθ ◦ τ + θ)).
(4.92)

Then, the expression inside the conditional expectation can be written as

e
∫Θθ◦τ
0 c(Θθ◦(ξ,X)(r))drG(Θθ ◦ (ξ, X)(Θθ ◦ τ)). (4.93)

Repeating the same argument used for (4.88), we have that the conditional expectation is

E

[
e
∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ)) | Fθ

]

= E

[
e
∫Θθ◦τ
0 c(Θθ◦(ξ,X)(r))drG(Θθ ◦ (ξ, X)(Θθ ◦ τ)) | Fθ

]

= Eξ(θ),X(θ)

[
e
∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]
.

(4.94)



International Journal of Stochastic Analysis 29

Finally we get

v2(t, x) = Et,x

[
e
∫θ
0 c(ξ(r),X(r))dr

Eξ(θ),X(θ)

[
e
∫τ
0 c(ξ(r),X(r))drG(ξ(τ), X(τ))

]]

= Et,x

[
e
∫θ
0 c(ξ(r),X(r))drv2(ξ(θ), X(θ))

]
.

(4.95)

Combining equations (4.90) and (4.95)we prove that (4.80) holds.
So due to equations (4.79) and (4.80) we have that v = w. Since w ∈ C1,2,λ((T0, T1) × A)
(see Theorem 5.5 below) and T0T1 and A are arbitrary we get that v ∈ C1,2((0,∞) × R

d) ∩
C1,2,λ

loc ((0,∞) × R
d) and the proof is complete.

We are ready to proof the Main Theorem

Proof of Theorem 3.1. The proof follows from Theorems 4.1 and 4.4 and Lemmas 3.3 and 3.4.

5. Auxiliary Results

5.1. Continuity of the Stopping Times

Theorem 5.1. Let {Z(t)}t≥0 be a stochastic process with continuous paths a.s. and A ⊂ R
d an open,

connected set with regular boundary. Let

τ := inf
{
t > 0 | Z(t) /∈ A

}
. (5.1)

Assume that P[τ < ∞ | Z(0) = z] = 1 and P[τ = τ ′ | Z(0) = z] = 1 for all z ∈ A, where

τ ′ := inf {t > 0 | Z(t) /∈ A}. (5.2)

For a > 0, define

Aa :=
{
x ∈ R

d | d(x, ∂A) < a
}
,

Aa+ := A ∪Aa,

Aa− := A \Aa

(5.3)

and the corresponding exit times

τa+ := inf
{
t > 0 | Z(t) /∈ Aa+

}
,

τa− := inf
{
t > 0 | Z(t) /∈ Aa−

}
.

(5.4)
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Then, if Z(0) = z ∈ A, then

τa+
a.s.−→
a↓0

τ,

τa−
a.s.−→
a↓0

τ.
(5.5)

Proof. Let Z(0) = z ∈ A and

Bz := {Z(t) is continuous} ∩ {τ = τ ′
} ∩ {τ < ∞}. (5.6)

By the hypotheses, we have that P[Bz] = 1. Observe that τa− ≤ τ ≤ τa+ for all a > 0, then we
need to prove that, for all ω ∈ Bz and α > 0, there exists γ(ω, α) > 0 such that, for all 0 < a < γ ,

0 ≤ τa+(ω) − τ(ω) < α,

0 ≤ τ(ω) − τa−(ω) < α.
(5.7)

Let ω ∈ Bz and α > 0, then Z(t, ω) is continuous and τ(ω) < ∞. We first prove the continuity
for τa+. Define

γ+(α,ω) := sup
{t∈[τ(ω),τ(ω)+α),Z(t,ω)/∈A}

{d(Z(t, ω), ∂A)}. (5.8)

Since Z(t, ω) is continuous, then γ+(α,ω) > 0. So, there exists t+ ∈ [τ(ω), τ(ω) + α) such that
Z(t+, ω) /∈ Aa+ for all 0 < a ≤ (γ+/2). Let γ := γ+/2, then, for all 0 < a ≤ γ , we get that
τa+(ω) ∈ [τ(ω), τ(ω) + α) and so

0 ≤ τa+(ω) − τ(ω) < α. (5.9)

For τa−, we proceed in a similar way. Let

β(ω) := inf
t≤τ(ω)−α

{d(Z(t, ω), ∂A)}. (5.10)

Since τ(ω) = τ ′(ω) and Z(t, ω) is continuous, we get that β(ω) > 0. Define

γ−(α,ω) := sup
t∈(τ(ω)−α,τ(ω)]

{d(Z(t, ω), ∂A)}. (5.11)

Again, it follows from the continuity of Z(t, ω) that γ−(α,ω) > 0. So, there exists t− ∈ (τ(ω) −
α, τ(ω)] such that Z(t−, ω) /∈ Aa− for all 0 < a ≤ (β ∧ γ−)/2. Let γ := (β ∧ γ−)/2, then, for all
0 < a ≤ γ , we get that τa−(ω) ∈ (τ(ω) − α, τ(ω)] and so

0 ≤ τ(ω) − τa−(ω) < α (5.12)

and the proof is complete.
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Remark 5.2. For the continuity of τa−, we need the extra constant β. If we only consider the
constant γ−, then we can guarantee that the process Z is “close” to ∂A in the interval (τ −α, τ]
but we cannot guarantee that it is the first time that it does it and so we do not necessarily
have that τa− and τ are “close enough.”

Theorem 5.3. Let {Z(t)}t≥0 be a stochastic process with Z(0) = z ∈ R
d and A ⊂ R

d an open,
connected set with regular boundary. Let {zn} be a sequence such that

zn −→
n→∞

z0 (5.13)

with zn, z0 ∈ A. Denote by Z0 and Zn the stochastic processes with initial conditions z0 and zn,
respectively. Define

τ := inf
{
t > 0 | Z0(t) /∈ A

}
,

τn := inf
{
t > 0 | Zn(t) /∈ A

}
.

(5.14)

Assume that τ < ∞ and τ = τ ′ a.s., where

τ ′ := inf {t > 0 | Z0(t) /∈ A}. (5.15)

Assume also that, for all T > 0,

‖Zn − Z‖T
P−→

n→∞
0. (5.16)

Then,

τn
P−→

n→∞
τ. (5.17)

Proof. Let ε > 0 and η > 0. We need to prove that there exists N(ε, η) ∈ N such that, for all
n ≥ N(ε, η), we have

P[|τn − τ | ≤ ε] ≥ 1 − η. (5.18)

Since τ < ∞ a.s., then there existsM = M(η) such that

P[τ ≤ M] ≥ 1 − η

3
. (5.19)

Thanks to Theorem 5.1, we get the existence of a0 = a0(ε, η) such that, for all a ≤ a0(ε, η), it is
satisfied that

P[τa+ ≤ τ + ε, τa− ≥ τ − ε] ≥ 1 − η

3
. (5.20)
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Let a1 := a0/2. By hypothesis, we have the existence of N = N(M,a1, ε, η) = N(ε, η) such
that for all n ≥ N(ε, η)

P[‖Zn − Z‖M+ε ≤ a1] ≥ 1 − η

3
. (5.21)

So, over the intersection of the three sets, we get

{τ ≤ M} ∩ {τa1+ ≤ τ + ε, τa1− ≥ τ − ε} ∩ {‖Zn − Z‖M+ε ≤ a1}
⊂ {τa1− ≤ τn ≤ τa1+} ∩ {τa1+ ≤ τ + ε, τa1− ≥ τ − ε}
⊂ {τ − ε ≤ τn ≤ τ + ε}.

(5.22)

The first inclusion follows from the fact that, over the set {τ ≤ M} ∩ {‖Zn − Z‖M+ε ≤ a1},
we have that the process Zn cannot leave the set A before the process Z leaves the set Aa1−
and so we get the τa1− ≤ τn. On the intersection of the three sets, we have that τa1+ ≤ M + ε.
Considering a similar argument, we obtain the remaining part, that is, τn ≤ τa1+.

Finally, we get from inequalities (5.19), (5.20), (5.21) and Bonferroni’s inequality that
for all n ≥ N(ε, η),

P[τ − ε ≤ τn ≤ τ + ε] ≥ 1 − η (5.23)

and the proof is complete.

5.2. Additional Results

Theorem 5.4. Let {(tn, xn)}n∈N
⊂ [0,∞) × R

d be a sequence such that (tn, xn) →
n→∞

(t, x). Denote

by Xn and X the solutions of the following equations:

dXn(s) = b(tn − s,Xn(s))ds + σ(tn − s,Xn(s))dW(s), Xn(0) = xn,

dX(s) = b(t − s,X(s))ds + σ(t − s,X(s))dW(s), X(0) = x.
(5.24)

Then, for all T > 0,

‖Xn −X‖T
P−→

n→∞
0. (5.25)

Proof. This theorem is consequence of Theorem 1.5 in Chapter V of [26].

The following theorem is Theorem 9 of Chapter 3 in [3]. Let 0 ≤ T0 < T1 and letA ⊂ R
d

be a bounded open set with C2 boundary. Since σ, b, c, and f are locally Lipschitz, then they
are locally Hölder of any order β ∈ (0, 1)
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Theorem 5.5. AssumeH1 and H2. Consider the following differential equation:

−ut(t, x) +L[u](t, x) + c(t, x)u(t, x) = −f(t, x) (t, x) ∈ [T0, T1] ×A,

u(T0, x) = g(T0, x) for x ∈ A,

u(t, x) = g(t, x) for (t, x) ∈ (T0, T1] × ∂A.

(5.26)

If g is continuous, then there exists a classical solution w ∈ C([T0, T1) ×A) ∩ C1,2,β((T0, T1) ×A) of
(5.26).

Remark 5.6. Let w be the solution of (5.26) and define z as w(t, x) = ec0tz(t, x) in [T0, T1] ×A.
Then, z fulfils (5.26) with c′ = c − c0 and f ′(t, x) = e−c0tf(t, x). And so the hypotheses of
Theorem 9 of Chapter 3 in [3] are satisfied.
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Mexicana, Guanojuato, México, 2002.
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