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We propose a continuous-time autoregressive model for the temperature dynamics with volatility
being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen
and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible
enough to model temperature data accurately, and at the same time being analytically tractable.
Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like
cooling- and heating-degree days and cumulative average temperatures are computed, as well as
option prices on them.

1. Introduction

Protection against undesirable weather events, like, for instance, hurricanes and droughts,
has been offered by insurance companies. In the recent decades, the securitization of
such weather insurances has taken place, and nowadays one can trade weather derivative
contracts at the Chicago Mercantile Exchange (CME), or more specialized weather contracts
in the OTC market. At the CME, one finds derivatives written on temperature and snowfall
indices, measured at different locations worldwide. The market for weather derivatives is
emerging and gaining importance as a tool for hedging weather risk.

In this paper we propose a new model for the dynamics of temperature which
forms the basis for pricing weather derivatives. The model generalizes the continuous-time
autoregressive models suggested in Benth et al. [1] (see also Dornier and Querel [2] and
Benth et al. [3]), to allow for stochastic volatility effects. Signs of stochastic volatility in the
temperature variations have been detected in many data studies, for example, in an extensive
study of daily US temperature series by Campbell and Diebold [4] and in Norwegian data
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by Benth and Šaltytė-Benth [5]. Campbell and Diebold suggested a seasonal generalized
autoregressive conditional heteroskedasticity (GARCH)model to explain their observations,
while here in this paper we suggest to model the variations by the stochastic volatility model
of Barndorff-Nielsen and Shephard [6].

As it turns out, one may derive reasonably explicit expressions for futures prices of
commonly traded contracts at the CME. Our proposed model is flexible in capturing the
stylized features of temperature data, as well as being analytically tractable. To account for
seasonality, we introduce a multiplicative structure, which is much simpler to analyse than
the complex model suggested by Campbell and Diebold [4], where the seasonality comes in
additively in the GARCH dynamics. One of the main advantages with our model is that
it is set in a continuous-time framework, accommodating for a simple application of the
theory of derivatives pricing. For example, we find that the volatility of futures prices on
the cumulative average temperature is given by the temperature volatility, modified by a
Samuelson effect inherited from the autoregressive structure of the temperature dynamics.

The risk premium in derivatives prices is parametrized by a time-dependent market
price of risk. In addition, we include a market price of volatility risk. Thus, the risk loading
in derivatives prices, interpreted as the risk premium in the financial setting, includes both
temperature and volatility. In mathematical terms, the pricing measure is obtained by a
combination of a Girsanov and Esscher transform.

We discuss the estimation of the proposed temperaturemodel on data from Stockholm,
Sweden. The purpose of the study is not to give a full-blown fitting of the model, but to
outline the steps and to justify the model. Next, we discuss some issues related to the mean
reversion of themodel, where in particular we derive the so-called half-life of our temperature
model. The importance of the various terms in the model is discussed.

We present our findings as follows. In the next section we review the basics of the
CMEmarket for weather derivatives. Next, in Section 3, our temperaturemodel with seasonal
stochastic volatility is defined and analysed. Section 4 contains results on the futures price
dynamics for some commonly traded products at the CME. Some empirical considerations of
our model and its applications to weather derivatives are presented in Section 5.

2. The Market for Temperature Derivatives

The organizedmarket for temperature derivatives at the CME offers trade in futures contracts
“delivering” various temperature indices measured at different locations in the world,
including the US, Canada, Australia, Japan, and some countries in Europe. In addition, there
are contracts written on snowfall in New York and frost conditions at Schiphol airport in
Amsterdam. On the exchange one may also buy plain vanilla European call and put options
on the futures.

The main temperature indices are so-called cooling-degree days (CDDs), heating-degree
days (HDDs), and cumulative average temperature (CAT). The CAT index is for European
cities mainly. For a measurement period [T1, T2], T1 < T2, the CDD index is measuring the
demand for cooling and is defined as the cumulative amount of degrees above a threshold c.
Mathematically we express it as

T2∑

t=T1

max(T(t) − c, 0), (2.1)
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with T(t) being the daily average temperature on day t, and the average is computed as the
mean of the daily maximum and minimum observations. The threshold c is in the market
given as 18◦C, or 65◦F and is the trigger point for when air-conditioning is switched on. The
measurement periods are set to weeks, months, or seasons consisting of two or more months,
within the warmer parts of the year. A futures written on the CDD pays out an amount
of money to the buyer proportional to the index, in US dollars for the American market,
and in Euro for the European one (except London, where British Pounds is the currency).
By entering such a contract, one essentially exchanges a fixed CDD against a floating, and
thereby one may view these futures as swaps.

An HDD index is defined similarly to the CDD as the cumulative amount of
temperatures below a threshold c over a measurement period [T1, T2], that is,

T2∑

t=T1

max(c − T(t), 0). (2.2)

The index reflects the demand for heating at a certain location, and measurement periods are
typically weeks, months, or seasons in the cold period (winter).

The CAT index is simply the accumulated average temperature over the measurement
period defined as

T2∑

t=T1

T(t). (2.3)

This index is used for European and Canadian cities at CME. CME also operates with a
daily average index called the Pacific Rim measured in several Japanese cities. The Pacific
Rim is simply the average of daily temperatures over a measurement period, with the daily
temperature defined as the mean of the hourly observed temperatures.

Temperature futures may be used by energy producers to hedge their demand risk
(see Perez-Gonzales and Yun [7] for a study of weather hedging of US energy utilities).
Other typical users of such futures contracts for hedging purposes are electricity retailers,
holiday resorts, producers of soft drinks and beer, or even organisers of outdoor sport
events, and fairs. Also investors have seen the potential in weather derivatives as a tool for
portfolio diversification, since the derivatives are not expected to correlate significantly with
the financial markets (see Brockett et al. [8]).

For mathematical convenience, we will use integration rather than summation and
define the three indices CDD, HDD, and CAT over a measurement period [T1, T2] by

CDD(T1, T2) =
∫T2

T1

max(T(t) − c, 0)dt, (2.4)

HDD(T1, T2) =
∫T2

T1

max(c − T(t), 0)dt, (2.5)

CAT(T1, T2) =
∫T2

T1

T(t)dt, (2.6)

respectively.
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In this paper we are concerned with modelling the temperature dynamics T(t)
accurately in continuous time. Moreover, we aim at deriving futures prices based on
our proposed dynamics. In the literature, one finds several streams for pricing weather
derivatives. The main approach is to model the stochastic temperature evolution and price
by conditional risk-adjusted expectation (see Benth et al. [3]). This is motivated from fixed-
income theory, where zero-coupon bonds are priced using a model for the short rate of
interest and conditional risk-adjusted expectation (see, e.g., Duffie [9]). Another popular way
to price derivatives is using the so-called burn analysis (see Jewson and Brix [10]). There, one
computes the historical average of the index in question and prices by this figure. One may
add a risk loading to this price. A more sophisticated pricing method is the so-called index
modelling approach (see Jewson and Brix [10]), where one is modelling the historical index
value by a probability distribution. Index modelling was applied by Dorfleitner andWimmer
[11] in an extensive empirical study of US futures prices at the CME. The drawbackwith these
two ways of pricing is that you do not get any dynamics for the futures price. If one wants
to derive option prices, one must have accessible the volatility of the futures price as well
as the price itself. Although applying the burn analysis (index modelling) gives an accurate
estimate on the historical index value (distribution), it is expected that a precise model of the
temperature dynamics explains close to equally well the historical average (distribution). In
addition, one obtains the stochasticity of the temperature evolution, which enables us to find
the futures price dynamics and to price options on such futures.

Brockett et al. [8] applies the indifference pricing approach in a mean-variance setting
to valuate weather derivatives. Davis [12] introduces the marginal utility approach to pricing
of weather derivatives, which is based on hedging in correlated assets and modelling of
the index as a geometric Brownian motion. Platen and West [13] suggest using a world
index as a benchmark for weather derivatives pricing. Equilibrium theory has also been a
popular approach for pricing weather derivatives. Cao andWei [14] apply this to analyse US
temperature futures (see also Hamisultane [15] for a more recent study).

3. A Model for the Temperature Dynamics with
Seasonal Stochastic Volatility

Let (Ω,F, {F}0≤t≤τ , P) be a complete filtered probability space with τ < ∞ being a finite time
horizon for which all the relevant financial assets in question exist.

We suppose that the temperature T(t) at time t ≥ 0 is defined as

T(t) = Λ(t) + Y (t), (3.1)

where Λ(t) is the deterministic seasonal mean function and Y (t) is a stochastic process
modelling the random fluctuations around the mean. In other words, Y (t) = T(t) − Λ(t) is
the deseasonalized temperatures.

The seasonal mean function Λ(t) is assumed to be real-valued continuous function.
To capture the seasonal variations due to cold and warm periods of the year, and possible
increase in temperatures due to global warming and urbanization, say, a possible structure of
Λ(t) could be

Λ(t) = a + bt + c sin
(
2π(t − d)

365

)
, (3.2)
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for constants a, b, c, and d, and with time t measured in days. Such a specification of the
seasonality function was suggested by Alaton et al. [16] in their analysis of temperatures
observed in Bromma, Sweden. Benth and Šaltytė Benth [5] applied this seasonality function
when modelling Norwegian temperature data and later used it for data measured in
Lithuania and Sweden in the papers [1, 17, 18]. Mraoua and Bari [19] apply such a seasonal
function on Moroccan data. Other, more sophisticated seasonal functions may of course be
used (see Härdle and Lopez Cabrera [20] and Härdle et al. [21]).

Empirical analysis of temperature data in Norway, Sweden, and Lithuania (see Benth
et al. [1, 5, 17, 18]), and US and Asian cities (see Cao and Wei [14] and Härdle and Lopez
Cabrera [20]), suggest that the deseasonalized temperatures Y (t) have an autoregressive
structure on a daily scale. This motivates the use of a continuous-time autoregressive (CAR)
model for Y (t) (see Brockwell [22] for a general account on such processes).

For p ≥ 1, a CAR(p)-dynamics is defined as follows. Define the p × p-matrix A by

A =

[
0 I

−αp · · · −α1

]
, (3.3)

with αi being positive constants for i = 1, . . . , p, and I the (p − 1) × (p − 1) identity matrix.
Observe that the determinant of A is equal to αp > 0, and hence A is invertible. For a
one-dimensional Brownian motion B(t), we define the p-dimensional Ornstein-Uhlenbeck
process X(t) as

dX(t) = AX(t)dt + σepdB(t), (3.4)

where ei, i = 1, . . . , p is the canonical ith unit vector in R
p and σ > 0 constant. A CAR(p)

process is defined as Y (t) = e′1X(t), with x′ being the transpose of a vector x. It seems that
a CAR(3) is the most reasonable choice from an empirical point of view (see, e.g., Benth
et al. [1] or Härdle and Lopez Cabrera [20], where the volatility σ is allowed to be time-
dependent to allow for seasonality effects). In passing we note that a similar model has been
used for wind speed modelling for New York and Lithuania, resulting in a CAR(4) process
for deseasonalized data as the statistically optimal choice (see Šaltytė Benth and Benth [23]
and Šaltytė Benth and Šaltytė [24]).

In this paper we are concerned with an extension of the CAR(p) model defined (3.4)
to explain seasonality and stochastic volatility effects in the temperature variations. In Benth
and Šaltytė Benth [5], it was observed that the residuals of temperature after explaining
the autoregressive effects had a clear seasonality and signs of stochastic volatility (from a
study of Norwegian temperatures). This seasonal structure can be partly explained by a
seasonal variance. However, one is still left with signs of stochastic volatility observed as an
exponentially decaying autocorrelation function for squared residuals. Similar observations
were made by Campbell and Diebold [4] on US data. They suggest a GARCH volatility
structure where a seasonal level component is added to model this. However, from a
modelling and empirical point of view, it seems much more reasonable to consider a
multiplicative structure between the seasonality and the stochasticity of the volatility. It is
a rather standard approach in time series analysis to apply multiplicative models when
dealing with phenomena having positive values. Using a multiplicative structure makes it
easy to preserve the natural condition of positivity of the overall volatility. Also, empirically
it becomes simple to estimate the seasonality and the stochastic volatility contributions in
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a stepwise procedure. We remark in passing that the seasonal GARCH model of Campbell
and Diebold [4] may lead to negative values of the volatility. Our proposed stochastic
volatility model will lend itself to analytical tractability when it comes to pricing of weather
derivatives, which seems to become very complicated when using the seasonal GARCH
model of Campbell and Diebold [4].

Hence, we propose the following CAR(p) model with seasonal stochastic volatility.
Suppose that X(t) follows the dynamics

dX(t) = AX(t)dt + φ(t)epdB(t), (3.5)

where

φ(t) = ζ(t) × σ(t), (3.6)

for a bounded positive continuous function ζ(t), and σ(t) being a stochastic process assumed
to the positive. We assume that ζ is strictly bounded away from zero, that is, there exists a
constant δ > 0 such that ζ(t) ≥ δ for all t ≤ τ .

In Benth et al. [1], the model (3.5) was considered with σ(t) = 1, that is, with no
stochastic volatility effects. The function ζ(t)was estimated on data from Stockholm, Sweden,
to be a truncated Fourier series of order four, having a yearly seasonality, that is, ζ(t+k×365) =
ζ(t) for k = 1, 2, . . ., t ≥ 0, with time being measured in days. This seasonal volatility has been
observed and modelled for data in Sweden and Lithuania (see Benth et al. [1, 18]), and US
and Asian cities (see Cao and Wei [14], Härdle and Lopez Cabrera [20] and Benth et al.
[25]). Recently, Härdle et al. [21] proposed and applied a powerful local adaptive modelling
approach to optimally estimate the volatility.

A class of stochastic volatility processes providing a great deal of flexibility in precise
modelling of residual characteristics is given by the Barndorff-Nielsen and Shephard [6]
(BNS)model. In mathematical terms, we have

σ2(t) � V (t), (3.7)

with

dV (t) = −λV (t)dt + dL(t). (3.8)

Here, λ > 0 is a constant measuring the speed of mean reversion for the volatility process
V (t), which reverts to zero. The process L(t) is assumed to be a subordinator independent of
B, the Brownian motion, meaning a Lévy process with increasing paths. In this way one is
ensured that V (t) is positive.

In the BNS model a dependency on λ in the subordinator is introduced. We choose
a subordinator U(t) and define L(t) = U(λt), which then again becomes a subordinator.
This is convenient when estimating such a stochastic volatility model. In fact, one may
get relatively explicit distributions for the ”deseasonalized” residuals

√
V (t)dB(t), which

become conditionally normally distributed, with mean zero and variance V (t). In stationarity
of V , this distribution becomes independent of λ, and therefore one may separate modelling
of the distribution of these residuals from the dependency structure in the paths. For
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this stochastic volatility model, the squared residuals will have an exponentially decaying
autocorrelation function, with decay rate λ. By superposition of such V ’s, the autocorrelation
function may decay as a sum of exponentials. We refer to Barndorff-Nielsen and Shephard
[6] for an extensive analysis of this class of stochastic volatility models. We remark that the
stochastic BNS volatility does not become a GARCH dynamics in discrete time, but shares
some similar properties.

In the rest of this paper we suppose that the deseasonalized temperature Y (t) is given
by

Y (t) = e′1X(t), (3.9)

where X(t) is defined in (3.5) and σ(t) defined in (3.7) and (3.8).

4. Temperatures Futures Pricing

In this section we derive the futures price dynamics based on the CDD/HDD and CAT
indices. This will be done with respect to some pricing measure Q specified in a moment.

We use the intrinsic notation TI(T1, T2) for a temperature index over the measurement
period [T1, T2], where TI = HDD/CDD or CAT. Let FTI(t, T1, T2) be the futures price for
a contract returning the index TI(T1, T2). The futures contracts are settled at the end of
measurement period, time T2, and the time t value of a long position in the contract is

exp(−r(T2 − t)){TI(T1, T2) − FTI(t, T1, T2)}, (4.1)

where the constant r > 0 is the risk-free interest rate. Thus, if Q is a probability equivalent to
P , we can define the futures price as

FTI(t, T1, T2) = EQ[TI(T1, T2) | Ft] (4.2)

by using that the contract is costless to enter and assuming that the futures price is adapted
to the information at time t, Ft.

One may ask why we do not consider stochastic interest rates in this setup. In
fact, it would not be any problem to do so, by, for example, assuming a risk-free spot
rate r(t). However, there is no reason why this should depend on the temperature, and a
reasonable model would state independence between r(t) and T(t). Thus, from the properties
of conditional expectations, we would end up with the same pricing relations as in (4.2).

Note that the pricing measure Q is only equivalent to P and not assumed to be a
martingale measure. If temperature would be a tradeable asset, then the no-arbitrage theory
of asset pricing (see, e.g., Duffie [9]) would demand that Q is an equivalent martingale
measure, that is, a probability equivalent to P under which the discounted temperature is
a Q-martingale. Temperature is obviously not a tradeable asset, and the condition on being a
martingale measure is not effective.

To restrict the class of pricing probabilities, we consider a deterministic combination
of a Girsanov and Esscher transform. The Girsanov transform introduces a market price of
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risk with respect to the Brownian motion, while the Esscher transform will model a market
price of volatility risk. In mathematical terms, we define the probability Q as

Q = QB ×QL, (4.3)

with

dQB

dP

∣∣∣∣
Ft

= exp

(∫ t

0

θB(s)
φ(s)

dB(s) − 1
2

∫ t

0

θ2B(s)
φ2(s)

ds

)
,

dQL

dP

∣∣∣∣
Ft

= exp

(∫ t

0
θL(s)dL(s) −

∫ t

0
ψL(θL(s))ds

)
,

(4.4)

for θB, θL being two bounded continuous functions. Here, ψL is the log-moment generating
function of L, that is,

ψL(θ) := lnE
[
exp(θL(1))

]
. (4.5)

Note that the Novikov condition is satisfied for the Girsanov change of measure since
σ2(s) ≥ σ2(0) exp(−λs), ζ(t) ≥ δ and θB being bounded. Furthermore, we assume exponential
integrability of L, that is, there exists a constant k such that

E
[
exp(kL(1))

]
<∞. (4.6)

Then, the Esscher transform is well defined for all functions θL such that sup0≤t≤τ |θL(t)| ≤ k.
We restrict our attention to this class of market prices of volatility risk. We find that

dW(t) = dB(t) − θB(t)
φ(t)

dt, (4.7)

is a Q-Brownian motion, independent of L. Moreover, following the analysis in Benth et al.
[3], it holds that L is an independent increment process under Q, and, in the case where θL is
a constant, a Lévy process.

There has been some work trying to reveal the existence and structure of the risk
premium, or the market price of risk, for temperature derivatives. The theoretical benchmark
approach by Platen and West [13] strongly argues against the existence of a risk premium
in weather markets. The econometric study of US futures prices at CME performed by
Dorfleitner and Wimmer [11] shows that the index modelling approach gives a very good
prediction of prices, pointing towards a zero market price of risk. The results of Cao and Wei
[14] is more inconclusive, as they are able to detect a significant (although small)market price
of risk based on their equilibrium pricing approach. More recently, Hamisultane [15] showed
using New York data that the estimates become very unstable within this pricing framework.
Härdle and Lopez Cabrera [20] analyse various specifications of the market price of risk in an
extensive empirical study of German futures prices. They find signs of a significant market
price of risk for these contracts. Based on the abovementioned studies, one may choose the
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market price of risk θB as zero. As far as we know, there exists no empirical investigations
on the volatility risk premium in weather markets. One may suspect that this is zero, but we
include θL here for generality. Using θb = θL = 0 would correspond to Q = P and be a choice
following the indications of the study in Dorfleitner and Wimmer [11].

In the following proposition we compute the CAT futures price.

Proposition 4.1. The CAT futures price at time t for a contract with measurement period [T1, T2],
t ≤ T1, is

FCAT(t, T1, T2) =
∫T2

T1

Λ(u)du + a(T2 − t, T1 − t)X(t)

+
∫T1

t

a(T2 − s, T1 − s)epθB(s)ds

+
∫T2

T1

a(T2 − s, 0)epθB(s)ds,

(4.8)

where

a(u, v) = e′1A
−1(exp(Au) − exp(Av)

)
. (4.9)

Proof. We know that the Q-dynamics of X(t) becomes

dX(t) = AX(t)dt + θB(t)epdt + epφ(t)dW(t), (4.10)

for theQ-BrownianmotionW . Thus, from themultidimensional Itô formula, it holds for u ≥ t

X(u) = exp(A(u − t))X(t) +
∫u

t

exp(A(u − s))epθB(s)ds +
∫u

t

exp(A(u − s))epφ(s)dW(s).

(4.11)

It follows that

EQ[T(u) | Ft] = Λ(u) + EQ

[
e′1X(u) | Ft

]

= Λ(u) + e′1 exp(A(u − t))X(t) +
∫u

t

e′1 exp(A(u − s))epθB(s)ds

+ EQ

[∫u

t

e′1 exp(A(u − s))epζ(s)σ(s)dW(s) | Ft

]
.

(4.12)

By conditioning on the σ-algebra generated by the paths of σ(s), 0 ≤ s ≤ t and Ft, and using
the tower property of conditional expectation, we find that the last term above is equal to zero
from the independent increment property of W . Finally integrating with respect to u yields
the desired result.
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Observe that the market price of volatility risk does not enter the CAT futures price
explicitly, only the market price of risk θB. We derive the dynamics of the CAT futures price
in the following proposition.

Proposition 4.2. The Q-dynamics of the CAT futures price is

dFCAT(t, T1, T2) = a(T2 − t, T1 − t)epφ(t)dW(t), (4.13)

whereas the P -dynamics becomes

dFCAT(t, T1, T2) = −a(T2 − t, T1 − t)epθB(t)dt + a(T2 − t, T1 − t)epφ(t)dB(t), (4.14)

with a(u, v) defined in Proposition 4.1.

Proof. This follows by a straightforward application of the multidimensional Itô Formula,
where the observation that FCAT(t, T1, T2) is a Q-martingale simplify the derivations
considerably.

As is evident from this dynamics, the CAT futures price will have a seasonal stochastic
volatility φ(t) = ζ(t)σ(t), dampened by the factor a(T2 − t, T1 − t)ep. This factor can be viewed
as the integral of e′1 exp(A(s−t))ep over the measurement period [T1, T2]. Observe that for the
case of a CAR(1) process, which is nothing but an ordinary Ornstein-Uhlenbeck process, this
term collapses into exp(−α1(u − t)), an exponential damping of the volatility of temperature
as a function of ”time-to-maturity” u− t. This is known as the Samuelson effect in commodity
markets. In the current context, we have a term a(T2 − t, T1)ep which can be interpreted as the
aggregation of the Samuelson effect over the measurement period [T1, T2] (see Benth et al.
[3] for a thorough analysis on the Samuelson effect for higher-order autoregressive models).
The drift in the P -dynamics of FCAT(t, T1, T2) will depend explicitly on the parameter θB(t),
defending the name market price of risk.

We next move our attention to CDD futures, whichwill become nonlinearly dependent
on the temperature. Thus, we will not get as explicit results on their prices as for the CAT
futures. It turns out to be useful to apply Fourier transform techniques (see Carr and Madan
[26]).

Recall from Folland [27] that for a function f ∈ L1(R), we have

f(x) =
1
2π

∫

R

f̂
(
y
)
eixydy, (4.15)

where f̂ is the Fourier transform of f defined by

f̂
(
y
)
=
∫

R

f(x)e−ixydx. (4.16)

Note the signs in the exponentials here, which are not following the standard definition.
Relevant to the analysis of CDD futures, consider the function f(x) = max(x, 0), which

is not in L1(R), but we can dampen it by an exponential function and get the following lemma.
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Lemma 4.3. For any ξ > 0, the Fourier transform of the function

fξ(x) = exp(−ξx)max(x, 0), (4.17)

is

f̂ξ
(
y
)
=

1
(
ξ + iy

)2 . (4.18)

Proof. We have

f̂ξ
(
y
)
=
∫

R

fξ(x)e−ixydx =
∫

R

xe−(ξ+iy)xdx. (4.19)

The result follows by straightforward integration.

We apply this in our further analysis of the CDD futures price.

Proposition 4.4. The CDD futures price at time t for a contract with measurement period [T1, T2],
t ≤ T1, is

FCDD(t, T1, T2) =
1
2π

∫

R

f̂ξ
(
y
) ∫T2

T1

Ψ
(
t, s,X(t), σ2(t), y

)
dsdy, (4.20)

with f̂ξ(y) given in Lemma 4.3 and Ψ(t, s, x, σ2, y) given by

lnΨ
(
t, s, x, σ2, y

)
=
(
ξ + iy

)
m(t, s, x) +

1
2
(
ξ + iy

)2
∫s

t

(
e′1 exp(A(s − u))ep

)2
ζ2(u)e−λ(u−t)du σ2

+
∫ s

t

ψL

(
1
2
(
ξ + iy

)2
∫ s

v

(
e1 exp(A(s − u))ep

)2
ζ2(u)e−λ(u−v)du + θL(v)

)

− ψL(θL(v))dv,
(4.21)

where

m(t, s, x) = Λ(s) + e′1 exp(A(s − t))x +
∫s

t

e′1 exp(A(s − u))epθB(u)du − c. (4.22)

The constant ξ > 0 can be arbitrarily chosen.

Proof. First, from the definition of the CDD index and the Q-dynamics of X(t) we find

max(T(s) − c, 0) = max
(
Λ(s) + e′1X(s) − c, 0

)

= max
(
m(t, s,X(t)) +

∫s

t

g(s − u)φ(u)dW(u), 0
)
,

(4.23)
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where we have introduced the short-hand notation g(u) = e′1 exp(Au)ep. From Lemma 4.3
we find that (after commuting integration and expectation by appealing to the Fubini-Tonelli
Theorem)

EQ[max(T(s) − c, 0) | Ft] =
1
2π

∫

R

f̂ξ
(
y
)
EQ

[
exp

((
ξ + iy

)
(m(t, s,X(t))

+
∫ s

t

g(s − u)ζ(u)σ(u)dW(u)
))

| Ft

]
dy

=
1
2π

∫

R

f̂ξ
(
y
)
exp

((
ξ + iy

)
m(t, s,X(t))

)

× EQ

[
exp

((
ξ + iy

) ∫s

t

g(s − u)ζ(u)σ(u)dW(u)
)

| Ft

]
dy .

(4.24)

The last equality follows from the Ft-adaptedness of X(t). To compute the conditional
expectation in the last expression, we apply the tower property of conditional expectations
with respect to the filtration Fσ

t generated by the paths of σ(u), 0 ≤ u ≤ τ and Ft. This yields
from the independence between σ(t) and B(t) and the independent increment property of
Brownian motion,

EQ

[
exp

((
ξ + iy

) ∫ s

t

g(s − u)ζ(u)σ(u)dW(u)
)

| Ft

]

= EQ

[
EQ

[
exp

((
ξ + iy

) ∫s

t

g(s − u)ζ(u)σ(u)dW(u)
)

| Fσ
t

]
| Ft

]

= EQL

[
exp

(
1
2
(
ξ + iy

)2
∫s

t

g2(s − u)ζ2(u)σ2(u)du
)

| Ft

]
.

(4.25)

We have

σ2(u) = V (u) = e−λ(u−t)σ2(t) +
∫u

t

e−λ(u−v)dL(v). (4.26)

Hence, by using the adaptedness of σ2(t) to Ft and the independent increment property of L
under QL,

EQL

[
exp

(
1
2
(
ξ + iy

)2
∫s

t

g2(s − u)ζ2(u)σ2(u)du
)

| Ft

]

= exp
(
1
2
(
ξ + iy

)2
∫s

t

g2(s − u)ζ2(u)e−λ(u−t)duσ2(t)
)

× EQL

[
exp

(
1
2
(
ξ + iy

)2
∫s

t

g2(s − u)ζ2(u)
∫u

t

e−λ(u−v)dL(v)du
)]

.

(4.27)
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Invoking the stochastic Fubini theorem (see Protter [28]) gives

∫s

t

g2(s − u)ζ2(u)
∫u

t

e−λ(u−v) dL(v)du =
∫s

t

∫s

v

g2(s − u)ζ2(u)e−λ(u−v)dudL(v). (4.28)

Finally, we compute the expectation by using the Radon-Nikodym derivative of QL with
respect to P and the log-moment generating function of L. This proves the proposition.

Although seemingly very complex, the price dynamics of a CDD futures can be
simulated by using the fast Fourier transform (FFT) technique (see Carr and Madan [26]
for a discussion of this in the context of options). In fact, given X(t) and σ2(t), one uses
FFT to compute FCDD(t, T1, T2). This procedure will involve numerical integration over the
measurement period and in the expression for Ψ(t, s,X(t), σ2(t), y). Since FFT is rather
efficient, this seems to be preferable to a direct Monte Carlo simulation of FCDD(t, T1, T2).

The CDD futures price depends explicitly on the current states of the volatility σ2(t)
and CAR process X(t). Since we define the deseasonalized temperature as the first coordinate
of X(t), this is observable from today’s (timemoment t) temperature after removing the value
of the seasonal functionΛ(t). However, the remaining p−1 states of X(t)must be filtered from
deseasonalized temperature observations. One may appeal to the Kalman filter for doing
this, although the seasonality and stochastic volatility complicates this procedure. A tempting
alternative is to use an Euler discretization of the CAR dynamics as in Benth et al. [3] to relate
the coordinates of X(t) to lagged observations of temperature. (In Benth et al. [3], the Euler
discretization is performed for a time continuous, but deterministic, volatility. Note that there
is no change in the steps for developing the same identification when having a stochastic
volatility.) It is easily seen from the definition of X(t) that the quadratic variation process of
the last coordinate, Xp(t) = e′pX(t), is equal to

d
〈
Xp

〉
t
= φ2(t)dt, (4.29)

and thus we may apply this to recover σ2(t) from observing the path of Xp(t).
Since FCDD(t, T1, T2) depends explicitly on σ2(t), we get the interesting consequence

that even though the temperature dynamics has continuous paths, the CDD futures dynamics
will jumpwhen σ2(t) jumps. Thus, the futures price dynamics will have discontinuous paths.
See Benth [29] for a similar result in the context of commodity and power markets using the
BNS stochastic volatility model. Note also that the market price of volatility risk appears
explicitly in the price, contrary to CAT futures.

The HDD futures price dynamics FHDD(t, T1, T2) can be computed analogously to the
FCDD(t, T1, T2) price. However, we may also resort to the so-called HDD-CDD parity which
we collect from Benth et al. [1, Proposition 10.1]. It holds that

FHDD(t, T1, T2) = FCDD(t, T1, T2) + c(T2 − T1) − FCAT(t, T1, T2). (4.30)

We have formulas for both the CDD and CAT futures prices, and thus FHDD(t, T1, T2) readily
follows from (4.30).
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4.1. A Discussion on Pricing of Options on Futures

The technique using Fourier transform is well adapted for option pricing as well, and we will
briefly discuss this in connection with European call and put options written on CAT and
CDD futures.

We start with a call option on a CAT futures, with exercise time τ and strike price K,
on a futures with measurement period [T1, T2], τ ≤ T1. The price of this call option at time
t ≤ τ is given by the no-arbitrage theory as

CCAT(t, τ, T1, T2) = e−r(τ−t)EQ[max(FCAT(τ, T1, T2) −K, 0) | Ft]. (4.31)

As it turns out, the derivation of CCAT using Fourier techniques follows more or less exactly
the same steps as computing the CDD futures price. In fact, we observe from Proposition 4.1,
that

FCAT(τ, T1, T2) = FCAT(t, T1, T2) +
∫ τ

t

a(T2 − s, T1 − s)epφ(s)dW(s). (4.32)

Moreover, the payoff function of the call option is the same as the CDD index on a given day.
By conditioning on the paths of σ(t), we can compute the option price step by step as in the
proof of Proposition 4.4. This results in the following proposition.

Proposition 4.5. The price at time t of a call option on a CAT futures with measurement period
[T1, T2], exercise time τ ≥ t, τ ≤ T1, and strike K, is

CCAT(t, τ, T1, T2) =
1
2π

∫

R

f̂ξ
(
y
)
Φ
(
t, τ, FCAT(t, T1, T2), σ2(t), y

)
dy, (4.33)

with f̂ξ(y) given in Lemma 4.3 and

lnΦ
(
t, τ, F, σ2, y

)
=
(
ξ + iy

)
(F −K) +

1
2
(
ξ + iy

)2

×
∫ τ

t

(
a(T2 − s, T1 − s)ep

)2
ζ2(s)e−λ(s−t)dsσ2

+
∫ τ

t

ψL

(
1
2
(
ξ + iy

)2
∫ τ

u

(
a(T2 − s, T1 − s)ep

)2
ζ2(s)e−λ(s−u)ds + θL(u)

)

− ψL(θL(u))du,
(4.34)

and a(u, v) defined in Proposition 4.1.

Options on CDD futures are far more technically complicated to valuate. However,
we may here as well resort to Fourier techniques and in principle obtain transparent price
formulas. Considering a call option at time t, with strike price K and exercise time τ ≥ t,
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we have the price as in (4.31), except that we substitute ”CAT” with ”CDD.” Recalling from
Proposition 4.4, we have

FCDD(τ, T1, T2) =
1
2π

∫

R

f̂ξ
(
y
) ∫T2

T1

Ψ
(
τ, s,X(τ), σ2(τ), y

)
dsdy. (4.35)

Furthermore, from the dynamics of X(s) and σ2(s), we can express both in terms of their
current states X(t) and σ2(t), in addition to integrals with respect to W and L from t to τ .
Similar considerations as for the CAT futures option can then be made, however, leading to a
technically complex formula. We leave the details to the reader.

5. Some Empirical Considerations

We refer to an empirical estimation which can be found in Benth et al. [3] as a starting
point for our discussion. There a data set of daily average temperatures measured in degrees
Celsius in Stockholm, Sweden, is studied. The data are recorded from January 1, 1961 to
May 25, 2006, altogether 16,570 data points after observations on February 29 in every leap
year were removed. The parameters of the seasonal function Λ(t) as defined in (3.2) were
estimated by least squares approach to be a = 6.37, b = 0.0001, c = 10.44, and d = −161.17. This
means that there is a small increase in average temperature over the considered measurement
period. The overall average temperature is around 6.3◦C. The amplitude is ±10.44, which
means that on average in the winter temperatures go down to around −4◦C, while summer
temperatures reach above 16.7◦C. After removing the seasonal function from the data, one
finds based on the autocorrelation structure of the residuals that a CAR(3) process fits the
deseasonalized data very well. The estimated parameters in the A matrix are α1 = 2.04,
α2 = 1.34 and α3 = 0.18, leading to eigenvalues with negative real part and thus A leads
to a stationary CAR dynamics.

Our main concern in this paper is the precise modelling of the residuals. We have
proposed a model where the volatility φ(t) is defined as the product of a deterministic
seasonal function ζ(t) and a stochastic volatility process σ(t). The natural path to follow in
estimating this is to first estimate the seasonal function. We use the approach suggested in
Benth and Šaltytė Benth [5, 17], where a Fourier series of order four is chosen for ζ2(t), and
estimated on daily empirical variances. Next, the residual data are divided by the estimated
ζ(t) function, in order to deseasonalize them.

The residuals after removing the effect of the function ζ(t) and the autoregressive
effects, are close to normally distributed (see Figure 10.11 in Benth et al. [3]). However, there
are signs of heteroskedasticity, in particular, a normality plot shows signs of a heavy left tail
in the distribution (see Figure 10.12 in Benth et al. [3]). Also, the P value of 0.002 of the
Kolmogorov-Smirnov test suggests to reject the normality hypothesis of the residuals. We
remark in passing that recently Härdle et al. [21] have proposed a local adaptive approach
to find an optimal smoothing parameter to locally estimate the seasonality and volatility. The
approach aims at correcting the nonnormalities in the residuals. Their approach improves the
normal distribution fit to residuals formany cities, but there are still signs of heavy tails (see in
particular the QQ-plot of Berlin data in Figure 11 of Härdle et al. [21]). We also remark that in
Benth and Šaltytė Benth [5], the empirical seasonal volatility was used as the estimate of ζ(t),
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Figure 1: The empirical autocorrelation function on a log-scale for de-seasonalized squared residuals
together with a fitted line for the first 10 lags.

but still a clear sign of stochastic volatility were present when analysing the autocorrelation
function of the squared residuals.

In Figure 1 we show the autocorrelation function of the squares of the deseasonalized
residuals on a log-scale. Characteristically, the autocorrelation function decays with the lags,
and eventually wiggle around zero. As mentioned earlier, the stationary autocorrelation
function of σ2(t) = V (t) is an exponential function with decay rate equal to the speed of mean
reversion λ of V (t), meaning a linearly decaying autocorrelation function on a log scale. We
fit a linear function to the first 10 lags, with the estimate λ̂ = 0.21. In Figure 1 the estimated
line is shown together with the empirical logarithmic autocorrelation function.

Admittedly, the linear fit to the log-autocorrelation function in Figure 1 is very rough.
Since the line does not intersect at zero, it cannot be related directly to an exponential
autocorrelation function. One may mend this deviancy by considering a sum of exponentials.
From Figure 1 wemay assume a very steeply decaying autocorrelation function for small lags
(up to 2), and thereafter decaying according the fitted line shown in the plot. Even more, after
approximately 10 lags the autocorrelation function seems to flatten out, and a new line with
a different slope would fit better. This could easily be incorporated into our framework by
considering a superpositioning of three processes of the type V (t) modelling the volatility.
In that case, we would get a theoretical autocorrelation function being the sum of three
exponentials, which would be approximately represented as a piecewise linear function on
log scale if the mean reversion speeds λ1, λ2, and λ3 are sufficiently distinct. This could
be attributed to a fast reversion of big volatility changes, whereas the medium to smaller
variations in volatility are slowly reverting, say. The estimated λ̂ would approximately
correspond the the mean reversion of medium volatility changes. In order to estimate such
a superposition, one must resort to filtering techniques, which are discussed in detail in
Barndorff-Nielsen and Shephard [6].

The final step in estimating our temperature model is to fit a subordinator process L(t).
This is done by appealing to the ingenious parametrization of L(t) by Barndorff-Nielsen and
Shephard [6]. By using L(t) = U(λt) for a subordinator U in the model for V (t) = σ2(t), they
show that the stationary distribution of V (t) is independent of λ. Thus, the model for the
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residuals will become a variance mixture model, being a conditionally normally distributed
with mean zero and variance equal to the stationary distribution of σ2(t). For example,
choosing the stationary distribution of σ2(t) to be generalized inverse Gaussian, the variance
mixture model of the residuals becomes generalized hyperbolic distributed (see Barndorff-
Nielsen and Shephard [6]) for discussion on this).

Based on this, we first select and fit a distribution F to the deseasonalized residuals,
and secondly construct the Lévy process L which has the required stationary distribution
G. The process L is called the background driving Lévy process, and Barndorff-Nielsen and
Shephard [6] show that the distribution Gmust be self-decomposable in order for L to exist.
In Benth and Šaltytė Benth [5], a generalized hyperbolic distribution was successfully fitted
to the deseasonalized temperature residuals for data collected in several Norwegian cities. In
this case, there exists a subordinator L such that the stationary distribution of σ2(t) becomes
generalized inverse Gaussian. The Lévy measure of L can be explicitly characterised in terms
of the selected distribution for the residuals.

One may ask whether some or all of the parameters in the specified temperature
model may be time dependent. In our empirical analysis of Stockholm data, we have not
detected any structural changes in the seasonality function Λ(t). Furthermore, in an AR(1)-
specification of the temperature model for Stockholm, we have investigated if there are any
seasonality in the speed of mean reversion (study not reported). Looking at the estimates for
particular months over the year, we did not find any pattern defending a seasonality in the
speed of mean reversion (or, in the specification of the AR-matrixA in our context). However,
we refer to the paper by Zapranis and Alexandridis [30] for an analysis of temperature
data in Paris, where the authors detect and model a seasonal mean reversion. We have not
investigated if any of the other parameters in our model may vary with time.

To understand how fast the temperature dynamics is reverting back to its long-term
average Λ(t), we discuss the notion of half-life of the stochastic process Y (t). In Clewlow and
Strickland [31] the half-life is defined to be the expected time it takes before the process is
returned half way back to its mean from any position. We express this mathematically as the
smallest time τ > 0 so that

E[Y (τ)] =
1
2
Y (0). (5.1)

For an Ornstein-Uhlenbeck process (where p = 1, and σ(t) = 1), Clewlow and Strickland [31]
derives that τ = ln 2/α. In the next Lemma we derive the half-life of Y (t).

Lemma 5.1. The half-life of Y (t) defined in (3.9) is given by the solution of the equation

e′1 exp(Aτ)e1 =
1
2
, (5.2)

when assuming that e′kX(0) = 0 for k = 2, . . . , p.

Proof. First, we have after using the tower property of conditional expectations that

E[Y (τ)] = e′1 exp(Aτ)X(0). (5.3)
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Putting equal to Y (0)/2 yields

e′1 exp(Aτ)X(0) =
1
2
e′1X(0). (5.4)

Assuming e′kX(0) = 0 for k = 2, . . . , p, we find that X(0) = e1Y (0), and hence the result
follows.

Note that the first coordinate of X(0) is equal to Y (0) by definition. For convenience,
we let the other coordinates be equal to zero in the above result. In reality, we should estimate
the other states of X(0) by filtering the temperature data series in order to reveal their
value at time zero. This means that the half-life becomes state dependent for higher-order
autoregressive models.

For a temperature dynamics based on the Stockholm estimates referred to above, we
find the solution to the half-life equation in Lemma 5.1 to be τ = 5.94, that is, it takes on
average slightly less than six days for today’s temperature to revert half-way back to its long-
term level.

Let us investigate the contribution from the various terms in the CAT futures price
dynamics in order to get a feeling for their relative importance in the context of weather
derivatives. For illustrative purposes, we choose a June contract, which starts measurement
at time T1 = 151 and ends at time T2 = 181 (supposing time is measured from January 1).
Recall the CAT futures price in Proposition 4.1. The first term with the seasonal function is
equal to 191.5. Suppose now that current time is one week prior to June 1, that is, t = 144,
and let e′

k
X(t) = 0 for k = 2, 3, but recalling e′1X(t) = Y (t). We set Y (t) = 5, meaning that

the temperature is 5◦C above the long-term mean level for that particular day. This leads
to a value of 11.8 of the second term, which is around 5% of the value of the mean. By
moving time t to start of measurement, t = 151, we get the value 37.6 of the second term
instead, which is close to 20% of the contribution of the long-term function to the CAT-futures
price. This shows that the mean reversion of the temperature dynamics towards the seasonal
mean function kills the effect of daily temperature variations quickly, and when being far
from start of measurement the CAT futures price will be essentially constant (and equal to
the seasonal mean for the measurement period). However, as we get closer to the start of
measurement, the effect of the temperature variations become gradually more important
and will impact the CAT futures price significantly. In Dorfleitner and Wimmer [11], an
example of a seasonal futures contract (Chicago HDD winter contract) is presented, where
the price is constant except from the last week prior to measurement. Then the observed
futures price starts to wiggle. The seasonal function plays a dominating role of setting the
level of the price. It is worthwhile to emphasize that the length of measurement period
is of importance here. The shorter the measurement period will be, the smaller will the
damping factor a(t, τ1, τ2) become, and the more sensitive the CAT futures price will become
to variations in temperature. This effect is even more emphasized by the fact that the seasonal
term becomes smaller with a smaller measurement period, increasing the relative importance
of the second term. With the introduction of weekly futures contracts at the CME, this is
an important observation. Obviously, the two last terms with the market price of risk can
contribute arbitrarily high or little to the CAT futures price, by adjusting the level of θB. In a
concrete application, one would estimate the θB from historical CAT futures prices. Referring
to the studies in Benth et al. [25] and Härdle and Lopez Cabrera [20], we find that θB of
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the size 0.2 is reasonable. Thus, the terms involving θB will contribute very little compared to
the seasonal function and the second term.

Let us investigate the stochastic volatility contribution to the CDD price. As we see
from the pricing formula in Proposition 4.4, the influence of the stochastic volatility σ(t)
appears in the expression of Ψ(t, s, x, σ2, y), both explicity as σ2(t), and implicitly via the
characteristic function of the subordinator L driving the dynamics of the volatility process. If
we consider a model with no stochastic volatility, it is natural to suppose that σ2(t) = 1. The
function Ψ takes the form

lnΨconst
(
t, s, x, y

)
=
(
ξ + iy

)
m(t, s, x) +

1
2
(
ξ + iy

)2
∫ s

t

(
e′1 exp(A(s − u))ep

)2
ζ2(u)du, (5.5)

withm(t, s, x) defined in Proposition 4.4. Then, we find the difference between the stochastic
volatility and constant cases as

lnΨ
(
t, s, x, σ2, y

)
− lnΨconst

(
t, s, x, y

)
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1
2
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ξ + iy

)2
∫s

t

(
e1 exp(A(s − u))ep

)2
ζ2(u)du

{
σ2(t) − 1

}

+
∫s

t

ψL

(
1
2
(
ξ + iy

)2
∫ s

v

(
e1 exp(A(s − u))ep

)2
ζ2(u)e−λ(u−v)du + θL(v)

)

− ψL(θL(v))dv.

(5.6)

The first term is stochastically varying with the volatility around one, while the second term
is determined by the market price of volatility risk through the characteristic function of L.
If σ2(t) is slowly varying around its mean, which naturally should be equal to one, then this
first termwill not contribute significantly. But due to potential jumps in the volatility, we may
experience values of σ(t) significantly larger than one, and thus impacting the futures price.
The contribution of the second term depends on how big the market price of volatility risk is.

We are not aware of any empirical studies of the potential existence of a market price
of volatility risk. Onemay estimate θL in the same way as θB, by for example, inferring it from
minimizing the distance between theoretical and observed futures prices. Motivated by the
studies of the market price of risk mentioned above (see Cao and Wei [14], Dorfleitner and
Wimmer [11], Hamisultane [15], and Härdle and Lopez Cabrera [20]), one may suspect that
the market price of volatility risk will be small and maybe not significant. It is to be noted,
however, that even small values of θL may be big relative to the volatility, and thus modify
significantly the effect of stochastic volatility viewed under the pricing measure Q.

In view of the existence of European-style call and put options written on the
temperature futures, precise knowledge of the volatility is important. The volatility of the
underlying temperature futures will determine the price of the option and play a crucial
role in a hedging strategy of the option. In particular, the Samuelson effect of the volatility
of the temperature futures makes the options particularly sensitive to the volatility close
to measurement. Hence, a precise model for the stochastic volatility is important. The
nonlinearity in the payoff of options also makes second-order effects in the underlying
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dynamics more pronounced, and thus even small stochastic volatility variations may become
significant in the option dynamics.
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