
Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2011, Article ID 784638, 17 pages
doi:10.1155/2011/784638

Research Article
Existence Results for Stochastic Semilinear
Differential Inclusions with Nonlocal Conditions

A. Vinodkumar1 and A. Boucherif2

1 Department of Mathematics and Computer Applications, PSG College of Technology, Coimbatore,
Tamil Nadu 641 004, India

2 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,
P.O. Box 5046, Dhabran 31261, Saudi Arabia

Correspondence should be addressed to A. Boucherif, aboucher@kfupm.edu.sa

Received 31 May 2011; Accepted 6 October 2011

Academic Editor: Jiongmin Yong

Copyright q 2011 A. Vinodkumar and A. Boucherif. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We discuss existence results of mild solutions for stochastic differential inclusions subject to
nonlocal conditions.We provide sufficient conditions in order to obtain a priori bounds on possible
solutions of a one-parameter family of problems related to the original one. We, then, rely on fixed
point theorems for multivalued operators to prove our main results.

1. Introduction

We investigate nonlocal stochastic differential inclusions (SDIns) of the form

dx(t) ∈
[
Ax(t) + f(t, xt)

]
dt +G(t, xt)dw(t), t ∈ J = [0, T],

x(0) =
m∑

i=1

γix(ti),

x(t) = ϕ(t), t ∈ J1 = (−∞, 0],

(1.1)

where T > 0, 0 < t1 < t2 < · · · < tm < T , γi are real numbers, f is a single-valued function, and
G is multivalued map.

The importance of nonlocal conditions and their applications in different field have
been discussed in [1–3]. Existence results for semilinear evolution equations with nonlocal
conditions were investigated in [4–7], and the case of semilinear evolution inclusions with
nonlocal conditions and a nonconvex right-hand side was discussed in [8].
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Stochastic differential equations (SDEs) play a very important role in formulation and
analysis in mechanical, electrical, control engineering and physical sciences, and economic
and social sciences. See for instance [9–12] and the references therein. So far, very few articles
have been devoted to the study of stochastic differential inclusions with nonlocal conditions,
see [13–15] and the references therein. Our objective is to contribute to the study of SDIns
with nonlocal conditions. Motivated by the above-mentioned works and using the technique
developed in [11, 16, 17], we study the SDIns of the form (1.1). The paper is organized
as follows: some preliminaries are presented in Section 2. In Section 3, we investigate the
existence of mild solutions for SDIns by using fixed point theorems for Kakutani maps.
Finally in Section 4, we give an application to our abstract result.

2. Preliminaries

LetX, Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear operators
mapping Y intoX. For convenience, we will use 〈·, ·〉 to denote inner product ofX and Y and
‖ · ‖ to denote norms in X, Y , and L(Y,X) without any confusion.

Let (Ω,F, P ;F)(F = {Ft}t≥0) be a complete filtered probability space such that F0

contains all P -null sets of F. An X-valued random variable is an F-measurable function
x(t) : Ω → X and the collection of random variables H = {x(t, ω) : Ω → X : t ∈ J} is
called a stochastic process. Generally, we just write x(t) instead of x(t, ω) and x(t) : J → X is
the space of H. Let {ei}i≥1 be a complete orthonormal basis of Y . Suppose that {w(t) : t ≥ 0}
is a cylindrical Y -valued Wiener process with finite trace nuclear covariance operator Q ≥ 0,
denote Tr(Q) =

∑∞
i=1λi = λ < ∞, which satisfies Qei = λiei. Actually, w(t) =

∑∞
i=1

√
λiwi(t)ei,

where {wi(t)}∞i=1 are mutually independent one-dimensional standard Wiener processes. We
assume that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by w and Ft = F. Let
μ ∈ L(Y,X) and define

∥∥μ
∥∥2
Q = Tr

(
μQμ∗) =

∞∑

n=1

∥∥∥
√
λnμen

∥∥∥
2
. (2.1)

If ‖μ‖Q < ∞, then μ is called a Q-Hilbert-Schmidt operator. Let LQ(Y,X) denote the
space of all Q-Hilbert-Schmidt operators μ : Y → X. The completion LQ(Y,X) of L(Y,X)
with respect to the topology induced by the norm ‖ · ‖Q, where ‖μ‖2Q = 〈μ, μ〉 is a Hilbert
space with the above norm topology.

We now make the system (1.1) precise. Let A : X → X be the infinitesimal generator
of a compact analytic semigroup {S(t), t ≥ 0} defined on X. Let Dτ = D((−∞, 0], X) denote
the family of all right continuous functions with left-hand limit ϕ from (−∞, 0] toX and P(E)
is the family of all nonempty measurable subsets of E. The functions f : [0, T] ×Dτ → X; G :
[0, T]×Dτ → P(LQ(Y,X)) are Borel measurable. The phase spaceD((−∞, 0], X) is equipped
with the norm ‖φ‖ = sup−∞<θ≤0‖φ(θ)‖. We denote by Db

F0
((−∞, 0], X) the family of all almost

surely bounded, F0-measurable, Dτ -valued random variables. Further, let BT be the Banach
space of allFt-adapted process φ(t,w)which is almost surely continuous in t for fixedw ∈ Ω,
with norm

∥∥φ
∥∥
BT

=

(

sup
0≤t≤T

E
∥∥φ
∥∥2
)1/2

, (2.2)
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for any φ ∈ BT. Here the expectation E is defined by

Eχ =
∫

Ω
χ(w)dP. (2.3)

We shall assume throughout the remainder of the paper that the initial function ϕ ∈
Db

F0
((−∞, 0], X).

Some notions from set-valued analysis are in order. Denote by Pcl(X) = {Y ∈ P(X) :
Y closed}, Pbd(X) = {Y ∈ P(X) : Y bounded}, Pcv(X) = {Y ∈ P(X) : Y convex}, Pcp(X) =
{Y ∈ P(X) : Y compact}, Pcp,cv(X) = {Y ∈ P(X) : Y compact and convex}. A multivalued
map F : X → P(X) is convex valued if F(x) ∈ Pcv(X) for all x ∈ X, closed valued if
F(x) ∈ Pcl(X) for all x ∈ X, F is compact valued if F(x) ∈ Pcp(X) for all x ∈ X. F is bounded
on bounded sets if F(V ) = ∪x∈V F(x) is bounded in X, for all V ∈ Pbd(X); that is,

sup
x∈V

{
sup

{∥∥y
∥∥ : y ∈ F(x)

}}
<∞. (2.4)

F is called upper semicontinuous (u.s.c) on X, if for each x0 ∈ X, the set F(x0) is non-
empty, closed subset of X, and if for each open set V of X containing F(x0) there exists an
open neighborhoodN of x0 such that F(N) ⊆ V .

F is said to be completely continuous if F(V ) is relatively compact, for every V ∈
Pbd(X).

If the multivalued map F is completely continuous with nonempty compact values,
then F is u.s.c if and only if F has a closed graph (ie., xn → x∗, yn → y∗, yn ∈
F(xn) imply y∗ ∈ F(x∗)).

F has a fixed point if there is x ∈ X such that x ∈ F(x). The fixed point set of the
multivalued operator F will be denoted by Fix F.

The Hausdorff metric on Pbd,cl(X) is the function H : Pbd,cl(X) × Pbd,cl(X) → R+

defined by

H(A,B) = max

{

sup
a∈A

d(a,B), sup
a∈B

d(A, b)

}

, (2.5)

where d(A, b) = inf{‖a − b‖2, a ∈ A}, d(a,B) = inf{‖a − b‖2, b ∈ B}.
The multivalued mapM : [0, T]Pbd,cl(X) is said to be measurable if for each x ∈ X the

function ζ : [0, T] → R+ defined by

ζ(t) = d(x,M(t)) = inf
{
‖x − z‖2 : z ∈M(t)

}
is measurable. (2.6)

For more details on multivalued maps see [18–20]. Our existence results are based on
the following fixed point theorem (nonlinear alternative) for Kakutani maps [21].

Theorem 2.1. Let X be a Hilbert space, C a closed convex subset of X, Y an open subset of C and
0 ∈ Y . Suppose that F : Y → Pcl,cv(C) is an upper semicontinuous compact map. Then either (i) F
has a fixed point in Y or (ii) there are v ∈ ∂Y and λ ∈ (0, 1) with v ∈ λF(v).
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Definition 2.2. The multivalued map G : J ×Dτ → P(LQ(Y,X)) is said to be L2-Carathèodory
if

(i) t �→ G(t, u) is measurable for each u ∈ Dτ ;

(ii) u �→ G(t, u) is upper semicontinuous for almost all t ∈ J ;
(iii) for each q > 0, there exists ωq ∈ L2(J,R+) such that

‖G(t, u)‖2 := sup
{∥∥g

∥∥2 : g ∈ G(t, u)
}
≤ ωq(t), (2.7)

for all ‖u‖2BT
≤ q and for a.e. t ∈ J .

For each x ∈ L2(LQ(Y,X)) define the set of selections of G by

SG,x =
{
g ∈ L2 = L2(LQ(Y,X)

)
: g(t) ∈ G(t, xt) for a.e, t ∈ J

}
. (2.8)

Lemma 2.3 (see [22]). Let I be a compact interval and X be a Hilbert space. Let G be an
L2-Carathèodory multivalued map with SG,x /=φ and let Γ be a linear continuous mapping from
L2(I, X) → C(I, X). Then the operator

Γ ◦ SG : C(I, X) �−→ Pbd,cl,cv(C(I, X)), x �−→ (Γ ◦ SG)(x) = Γ(SG,x), (2.9)

is a closed graph operator in C(I, X) × C(I, X).

Definition 2.4. A semigroup {S(t), t ≥ 0} is said to be uniformly bounded if there exists a
constantM ≥ 1 such that

‖S(t)‖ ≤M, for t ≥ 0. (2.10)

Assume that

m∑

i=1

∣∣γi
∣∣ <

1
M

. (2.11)

Then there exists a bounded operator B on D(B) = X given by the formula

B =

(

I −
m∑

i=1

γiT(ti)

)−1

. (2.12)

Definition 2.5. A stochastic process {x(t) ∈ BT, t ∈ (−∞, T]} is called a mild solution of system
(1.1) if

(i) x(t) is Ft-adapted with
∫T
0 ‖x(t)‖2 dt <∞ almost surely;
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(ii) x(t) satisfies the integral equation

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ J1,
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ t

0
S(t − s)f(s, xs)ds +

∫ t

0
S(t − s)g(s)dw(s), a.e. t ∈ J,

(2.13)

where g ∈ SG,x.

3. Existence Results

In this section, we discuss the existence of mild solutions of the system (1.1). We need the
following hypotheses.

(H1): The function f : J × Dτ → X is continuous and there exist two positive constants
C1, C2 such that

∥∥f(t, xt)
∥∥2 ≤ C1‖x‖2 + C2, for each x ∈ Dτ, t ∈ J. (3.1)

(H2) : G : J × Dτ → P(LQ(Y,X)) is an L2-Carathéodory multivalued function with
compact and convex values.

(H3): There exists a continuous nondecreasing function ψ : R+ → (0,∞) and p ∈
L1(J,R+) such that

‖G(t, xt)‖2 = sup
{∥∥g

∥∥2 : g ∈ G(t, xt)
}
≤ p(t)ψ

(
‖x‖2

)
, a. et ∈ J, all x ∈ Dτ. (3.2)

Theorem 3.1. Assume that (H1)–(H3) hold. Then the system (1.1) has at least one mild solution on
(−∞, T], provided that

3K1C1T < 1, sup
ρ∈[0,∞)

{1 − 3TK1C1}ρ
3TK2C2 + 3K1Tr(Q)

∥∥p
∥∥
L1ψ
(
ρ
) > 1, (3.3)

where

K1 = 3
(
2mM2

∑m

i=1

∣∣γi
∣∣2‖B‖2 + 1

)
M2, K2 =

(
2mM2

∑m

i=1

∣∣γi
∣∣2‖B‖2 + T

)
M2. (3.4)
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Proof. Transform the system (1.1) into a fixed point problem. Consider the multivalued
operator M : BT → P(BT) defined by

M(x) = h ∈ BT : h(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ J1
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ t

0
S(t − s)f(s, xs)ds +

∫ t

0
S(t − s)g(s)dw(s), g ∈ SG,x, a. e. t ∈ J.

(3.5)

It is clear that the fixed points ofM are mild solutions of system (1.1). Hence we have to find
solutions of the inclusion y ∈ M(y). We show that the multivalued operator M satisfies all
the conditions of Theorem 2.1. The proof will be given in several steps.

Step 1. M(x) is convex for each x ∈ BT. Since G has convex values it follows that SG,x is
convex; so that if g1, g2 ∈ SG,x then αg1 + (1 − α)g2 ∈ SG,x, which implies clearly that M(x) is
convex.

Step 2. The operator M is bounded on bounded subsets of BT. For q > 0 let Bq = {x ∈ BT :
‖x‖BT

≤ q} be a bounded subset of BT. We show that M(Bq) is a bounded subset of BT. For
each x ∈ Bq let h ∈ M(x). Then there exists g ∈ SG,x such that for each t ∈ J we have

h(t) =
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ t

0
S(t − s)f(s, xs)ds +

∫ t

0
S(t − s)g(s)dw(s),

(3.6)

‖h(t)‖2 ≤ 3

∥∥∥∥∥

m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]∥∥∥∥∥

2

+ 3

∥∥∥∥∥

∫ t

0
S(t − s)f(s, xs)ds

∥∥∥∥∥

2

+ 3

∥∥∥∥∥

∫ t

0
S(t − s)g(s)dw(s)

∥∥∥∥∥

2

≤ 6m
m∑

i=1

∣∣γi
∣∣2M2‖B‖2M2

[∫ ti

0

∥∥f(s, xs)
∥∥2ds + Tr(Q)

∫ ti

0

∥∥g(s)
∥∥2ds

]

+ 3M2
∫ t

0

∥∥f(s, xs)
∥∥2ds + 3M2 Tr(Q)

∫ t

0

∥∥g(s)
∥∥2ds

≤ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

M2
∫T

0

∥∥f(s, xs)
∥∥2ds
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+ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

Tr(Q)M2
∫T

0

∥∥g(s)
∥∥2ds

≤ 3M2

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)(∫T

0

∥∥f(s, xs)
∥∥2ds + Tr(Q)

∫T

0

∥∥g(s)
∥∥2ds

)

≤ 3M2

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

×
(∫T

0

(
C1‖x(s)‖2 + C2

)
ds + Tr(Q)

∫T

0
p(s)ψ

(
‖x(s)‖2

)
ds

)

≤ K1

(
TC1q

2 + TC2 + Tr(Q)ψ
(
q2
)∥∥p

∥∥
L1

)
.

(3.7)

Hence for each h ∈ M(Bq), we get

‖h‖2BT
= sup

t∈[0,T]
E‖h‖2 ≤ K1T

(
TC1q

2 + TC2 + Tr(Q)ψ
(
q2
)∥∥p

∥∥
L1

)
. (3.8)

Then, for each h ∈ M(x), we have ‖h‖2BT
≤ ∧̂, where ∧̂ := K1T(TC1q

2+TC2+Tr(Q)ψ(q2)‖p‖L1).

Step 3. M sends bounded sets into equicontinuous sets in BT. For each x ∈ Bq let h ∈ M(x)
be given by (3.6). Let τ1, τ2 ∈ J with 0 < τ1 < τ2 ≤ T . Then

h(τ2) − h(τ1) =
m∑

i=1

γi[S(τ2) − S(τ1)]B
[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ τ2

0
S(τ2 − s)f(s, xs)ds +

∫ τ2

0
S(τ2 − s)g(s)dw(s)

−
∫ τ1

0
S(τ1 − s)f(s, xs)ds −

∫ τ1

0
S(τ1 − s)g(s)dw(s).

(3.9)

This implies that

h(τ2) − h(τ1) =
m∑

i=1

γi[S(τ2) − S(τ1)]B
[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ τ1

0
[S(τ2 − s) − S(τ1 − s)]f(s, xs)ds +

∫ τ1

0
[S(τ2 − s) − S(τ1 − s)]g(s)dw(s)

+
∫ τ2

τ1

S(τ2 − s)f(s, xs)ds +
∫ τ2

τ1

S(τ2 − s)g(s)dw(s).

(3.10)
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It follows that

‖h(τ2) − h(τ1)‖2 ≤ 5m‖B‖2‖S(τ2) − S(τ1)‖2
m∑

i=1

∣∣γi
∣∣2
∫ ti

0
‖S(ti − s)‖2

∥∥f(s, xs)
∥∥2ds

+ 5m‖B‖2‖S(τ2) − S(τ1)‖2
m∑

i=1

∣∣γi
∣∣2 Tr(Q)

∫ ti

0
‖S(ti − s)‖2

∥∥g(s)
∥∥2ds

+ 5
∫ τ1

0
‖S(τ2 − s) − S(τ1 − s)‖2

∥∥f(s, xs)
∥∥2ds

+ 5
∫ τ2

τ1

‖S(τ2 − s)‖2
∥∥f(s, xs)

∥∥2ds

+ 5Tr(Q)
∫ τ1

0
‖S(τ2 − s) − S(τ1 − s)‖2

∥∥g(s)
∥∥2ds

+ 5Tr(Q)
∫ τ2

τ1

‖S(τ1 − s)‖2
∥∥g(s)

∥∥2ds

≤ 5mM2‖B‖2‖S(τ2) − S(τ1)‖2
m∑

i=1

∣∣γi
∣∣2
{(
C1q

2 + C2

)
+ Tr(Q)ψ

(
q2
)∥∥p

∥∥
L1

}

+ 5
(
C1q

2 + C2

)∫ τ1

0
‖S(τ2 − s) − S(τ1 − s)‖2ds

+ 5M2
(
C1q

2 + C2

)
(τ2 − τ1)

+ 5Tr(Q)ψ
(
q2
)∫ τ1

0
‖S(τ2 − s) − S(τ1 − s)‖2p(s)ds

+ 5M2 Tr(Q)ψ
(
q2
)∥∥p

∥∥
L1(τ2 − τ1).

(3.11)

Since there is δ > 0 such that

‖S(τ2) − S(τ1)‖ ≤ δ
√
τ1

√
τ2 − τ1, (3.12)

(see [23, proposition 1]) and the compactness of S(t) for t > 0 implies the continuity in the
uniform operator topology, we have

‖S(τ2) − S(τ1)‖2 −→ 0, ‖S(τ2 − s) − S(τ1 − s)‖2 −→ 0 as τ2 −→ τ1. (3.13)

Therefore

E‖h(τ2) − h(τ1)‖2 −→ 0 as τ2 −→ τ1. (3.14)
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When τ1 = 0 we have

‖h(τ2) − h(0)‖2 ≤ 5mM2‖B‖2‖S(τ2) − S(0)‖2
m∑

i=1

∣∣γi
∣∣2
{
ti
(
C1q

2 + C2

)
+ Tr(Q)ψ

(
q2
)∥∥p

∥∥
L1

}

+ 5M2
(
C1q

2 + C2

)
τ2 + 5M2 Tr(Q)ψ

(
q2
)∥∥p

∥∥
L1τ2,

(3.15)

so that, similar to the previous situation, we have

E‖h(τ2) − h(0)‖2 −→ 0 as τ2 −→ 0. (3.16)

Step 4. M sends bounded sets into relatively compact sets in BT. Let 0 < ε < t, for t ∈ J . For
x ∈ Bq define a function hε by

hε(t) =
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+
∫ t−ε

0
S(t − s)f(s, xs)ds +

∫ t−ε

0
S(t − s)g(s)dw(s),

(3.17)

where g ∈ SG,x. Since S(t) is a compact operator, the set Vε(t) = {hε(t) : hε ∈ M(x)} is
relatively compact in BT for every ε in (0, t). Moreover, for every h ∈ M(x)we have

E‖h − hε‖2 ≤ 2εM2
∫ t

t−ε

[
C1E‖x(s)‖2 + C2

]
ds + 2M2 Tr(Q)

∫ t

t−ε
ωq(s)ds

≤ 2ε2M2(C1q + C2
)
+ 2M2 Tr(Q)

∫ t

t−ε
ωq(s)ds.

(3.18)

Since ωq ∈ L1(J) and meas([t − ε, t]) = ε it follows that

‖h − hε‖BT
−→ 0 as ε −→ 0. (3.19)

As a consequence of Step 1 through Step 4, together with Ascoli-Arzela theorem, we can
conclude that the multivalued operator M is compact.

Step 5. M has a closed graph. Let xn → x∗ and hn ∈ M(xn) with hn → h∗. We shall show
that h∗ ∈ M(x∗).

There exists gn ∈ SG,xn such that

hn(t) =
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xn,s)ds +

∫ ti

0
S(ti − s)gn(s)dw(s)

]

+
∫ t

0
S(t − s)f(s, xn,s)ds +

∫ t

0
S(t − s)gn(s)dw(s).

(3.20)
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We must prove that there exists g∗ ∈ SG,x∗ such that

h∗(t) =
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, x∗

s)ds +
∫ ti

0
S(ti − s)g∗(s)dw(s)

]

+
∫ t

0
S(t − s)f(s, x∗

s)ds +
∫ t

0
S(t − s)g∗(s)dw(s).

(3.21)

Consider the linear continuous operator Γ : L2(LQ(Y,X)) → BT defined by

Γ
(
g
)
(t) =

m∑

i=1

γiS(t)B
∫ ti

0
S(ti − s)g(s)dw(s) +

∫ t

0
S(t − s)g(s)dw(s). (3.22)

Clearly, Γ is linear and continuous. Indeed, one has

∥∥Γ
(
g
)
(t)
∥∥2 ≤

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

Tr(Q)M2
∫ t

0

∥∥g(s)
∥∥2ds

E
∥∥Γ
(
g
)∥∥2 ≤

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

Tr(Q)M2∥∥ωq

∥∥
L1 .

(3.23)

Let

Θn(t) = hn(t) −
m∑

i=1

γiS(t)B
∫ ti

0
S(ti − s)f(s, xn,s)ds −

∫ t

0
S(t − s)f(s, xn,s)ds,

Θ∗(t) = h∗(t) −
m∑

i=1

γiS(t)B
∫ ti

0
S(ti − s)f(s, x∗

s)ds −
∫ t

0
S(t − s)f(s, x∗

s)ds.

(3.24)

We have

Θn(t) ∈ Γ ◦ SG,xn . (3.25)

Since f is continuous (see (H1))

‖Θn(t) −Θ∗(t)‖2 −→ 0 as n −→ ∞. (3.26)

Lemma 2.3 implies that Γ ◦ SG has a closed graph. Hence there exists g∗ ∈ SG,x∗ such that

Θ∗(t) =
m∑

i=1

γiS(t)B
∫ ti

0
S(ti − s)g∗(s)dw(s) +

∫ t

0
S(t − s)g∗(s)dw(s). (3.27)

Hence h∗ ∈ M(x∗), which shows that graph M is closed.
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Step 6. Let λ ∈ (0, 1) and let x ∈ λM(x). Then there exists g ∈ SG,x such that

x(t) = λ
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+ λ
∫ t

0
S(t − s)f(s, xs)ds + λ

∫ t

0
S(t − s)g(s)dw(s).

(3.28)

Thus

‖x(t)‖2 ≤ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + T

)

M2
∫ t

0

∥∥f(s, xs)
∥∥2ds

+ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

M2 Tr(Q)
∫ t

0

∥∥g(s)
∥∥2ds.

(3.29)

Conditions (H1)–(H3) imply that for each t ∈ J

E‖x‖2 ≤ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + T

)

M2
∫ t

0

[
C1E‖x(s)‖2 + C2

]
ds

+ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

M2 Tr(Q)
∫ t

0
p(s)ψ

(
E‖x(s)‖2

)
ds.

(3.30)

The function � defined on [0, T] by

�(t) = sup
{
E‖x(s)‖2 : 0 ≤ s ≤ t

}
(3.31)

satisfies

�(t) ≤ 3T

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + T

)

M2C2 + 3T

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + T

)

M2C1�(t)

+ 3

(

2mM2
m∑

i=1

∣∣γi
∣∣2‖B‖2 + 1

)

M2 Tr(Q)
∥∥p
∥∥
L1ψ
(
�(t)

)
.

(3.32)

This yields

�(t) ≤
3TK2C2 + 3K1 Tr(Q)

∥∥p
∥∥
L1ψ
(
�(t)

)

1 − 3TK1C1
. (3.33)

Since

‖x‖BT
= sup

0≤t≤T
�(t), (3.34)
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it follows that

‖x‖BT
≤

3TK2C2 + 3K1 Tr(Q)
∥∥p
∥∥
L1ψ
(
‖x‖BT

)

1 − 3TK1C1
. (3.35)

Therefore

(1 − 3TK1C1)‖x‖BT

3TK2C2 + 3K1 Tr(Q)
∥∥p
∥∥
L1ψ
(
‖x‖BT

) ≤ 1. (3.36)

Now, by (3.3) there exists ρ0 > 0 such that

{1 − 3TK1C1}ρ0
3TK2C2 + 3K1 Tr(Q)

∥∥p
∥∥
L1ψ
(
ρ0
) > 1. (3.37)

LetY = {v ∈ BT : ‖v‖BT
< ρ0}. Suppose that there is v ∈ ∂Y such that v ∈ λM(v) for λ ∈ (0, 1).

Then ‖x‖BT
= �0 satisfies (3.36), which contradicts (3.37). So, alternative (ii) in Theorem 2.1.

does not hold, and consequently, the multivalued operator M has a fixed point, which is a
solution of (1.1).

We now present another existence result for system (1.1). We shall assume that the
single-valued f and the multivalued G satisfy a Wintner-type growth condition with respect
to their second variable.

Theorem 3.2. Assume that (H2) and the following condition hold.

(HfG): There exists � ∈ L1([0, T],R+) such that

H
(
f(t, xt), f

(
t, yt

))
∨H

(
G(t, xt), G

(
t, yt

))
≤ �(t)

∥∥x − y
∥∥2, ∀t ∈ J, x, y ∈ Dτ,

H
(
0, f(t, 0)

)
∨H(0, G(t, 0)) ≤ �(t), a.e. t ∈ J,

(3.38)

then the system (1.1) has at least one mild solution on (−∞, T].

Remark 3.3. H(f(t, xt), f(t, yt)) = ‖f(t, xt) − f(t, yt)‖2.

Proof. Themultivalued operatorM defined in the proof of the previous theorem is completely
continuous and upper semicontinuous. Now, we prove that

Y = {x ∈ BT : x ∈ λM(x) for some λ ∈ (0, 1)} (3.39)
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is bounded. Let x ∈ Y. Then there exists g ∈ SG,x such that for each t ∈ J

x(t) = λ
m∑

i=1

γiS(t)B

[∫ ti

0
S(ti − s)f(s, xs)ds +

∫ ti

0
S(ti − s)g(s)dw(s)

]

+ λ
∫ t

0
S(t − s)f(s, xs)ds + λ

∫ t

0
S(t − s)g(s)dw(s),

(3.40)

for some λ ∈ (0, 1). Then

‖x(t)‖2 ≤ 3

(

2mM2
m∑

i=1

ti
∥∥γi
∥∥2‖B‖2 + T

)

M2
∫ t

0

∥∥f(s, xs)
∥∥2ds

+ 3

(

2mM2
m∑

i=1

∥∥γi
∥∥2‖B‖2 + 1

)

M2 Tr(Q)
∫ t

0

∥∥g(s)
∥∥2ds

≤ 6

(

2mM2
m∑

i=1

ti
∥∥γi
∥∥2‖B‖2 + T

)

M2
∫ t

0
�(s)

(
1 + ‖x(s)‖2

)
ds

+ 6

(

2mM2
m∑

i=1

∥∥γi
∥∥2‖B‖2 + 1

)

M2 Tr(Q)
∫ t

0
�(s)

(
1 + ‖x(s)‖2

)
ds.

(3.41)

Thus

E‖x(t)‖2 ≤ Q1 +Q2

∫ t

0
�(s)E‖x(s)‖2ds, (3.42)

where

Q1 = 6

(

2mM2
m∑

i=1

ti
∥∥γi
∥∥2‖B‖2 + T

)

M2(T + Tr(Q))‖�‖L1 ,

Q2 = 6

(

2mM2
m∑

i=1

∥∥γi
∥∥2‖B‖2 + 1

)

M2(T + Tr(Q)).

(3.43)

Using the function �(t), defined by (3.31), we obtain

�(t) ≤ Q1 +Q2

∫ t

0
�(s)�(s)ds. (3.44)

Gronwall’s inequality gives

�(t) ≤ Q1 exp(Q2‖�‖L1), ∀t ∈ J. (3.45)
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Therefore there exists β > 0 such that

�(t) ≤ β, ∀t ∈ J, (3.46)

which implies that

‖x‖2BT
≤ β. (3.47)

This shows that Y is bounded. Theorem 2.1. shows that M has a fixed point, which is a
solution of (1.1), and this completes the proof.

4. Example

Consider the following stochastic partial differential inclusion with infinite delay

∂

∂t
v(t, x) ∈

n∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
v(t, x)

)

− a0v(t, x) + ε
n∑

i=1

∂

∂xi
v(t − r, x)

+
∫0

−∞
β1(θ)v(t + θ, x)dθ +

∫0

−∞
β2(t, x, θ)G1(v(t + θ, x))dθdβ(t)

v(t, x) = 0, t ∈ J, x ∈ ∂Δ,

v(0, x) =
n∑

i=1

β̂k(x)v(x, tk), x ∈ Δ, tk ∈ [0, T],

v(θ, x) = ϕ(0, x), −∞ < θ ≤ 0, x ∈ Δ,

(4.1)

where a0, r, and ε are positive constants, J = [0, T], Δ is an open bounded set in Rn

with a smooth boundary ∂Δ, β1 : (−∞, 0] → R is a positive function, β(t) stands for a
standard cylindrical Wiener process in L2(Δ) defined on a stochastic basis (Ω,F, P), and
ϕ ∈ Db

F0
((−∞, 0], L2(Δ)).
The coefficients aij ∈ L∞(Δ) are symmetric and satisfy the ellipticity condition

n∑

i,j=1

aij(x)ξiξj ≥ κ|ξ|2, x ∈ Δ, ξ ∈ Rn, (4.2)

for a positive constant κ.
In order to rewrite (4.1) in the abstract form, we introduce X = L2(Δ) and we define

the linear operator A : D(A) ⊂ X → X by

D(A) = H2(Δ) ∩H1
0(Δ); A = −

n∑

i,j

∂

∂xi

(

aij(x)
∂

∂xj

)

. (4.3)
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HereH1(Δ) is the Sobolev space of functions u ∈ L2(Δ)with distributional derivative
u′ ∈ L2(Δ),H1

0(Δ) = {u ∈ H1(Δ); u = 0 on ∂Δ} andH2(Δ) = {u ∈ L2(Δ); u′, u′′ ∈ L2(Δ)}.
Then A generates a symmetric compact analytic semigroup e−tA in X, and there exists

a constantM1 > 0 such that ‖e−tA‖ ≤M1. Also, note that there exists a complete orthonormal
set {ξn}, (n = 1, 2, . . .) of eigenvectors of Awith ξn(x) =

√
(2/n) sin(nx).

We assume the following conditions hold.

(i) The function β1(·) is continuous in J with

∫0

−∞
β1(θ)

2dθ <∞. (4.4)

(ii) The function β2(·) ≥ 0 is continuous in J ×Δ × (−∞, 0)with

∫0

−∞
β2(t, x, θ)dθ = p1(t, x) <∞,

(∫

Δ
p21(t, x)dx

)1/2

<∞. (4.5)

(iii) The multifunction G1(·) is an L2-Carathèodory multivalued function with compact
and convex values and

0 ≤ ‖G1(v(θ, x))‖ ≤ ψ0(‖v(θ, ·)‖L2), (θ, x) ∈ J ×Δ, (4.6)

where ψ0(·) : [0,∞) → (0,∞) is continuous and nondecreasing.

Assuming that conditions (i)–(iii) are verified, then the problem (4.1) can be modeled
as the abstract stochastic partial functional differential inclusions of the form (1.1), with

f(t, vt) =
∫0

−∞
β1(θ)v(t + θ, x)dθ

G(t, vt) =
∫0

−∞
β2(t, x, θ)G1(v(t + θ, x))dθ, γi = β̂k(x).

(4.7)

The next result is a consequence of Theorem 3.1.

Proposition 4.1. Assume that the conditions (i)–(iii) hold. Then there exists at least one mild solution
v for the system (4.1) provided that

sup
ρ∈[0,∞)

{1 − 3TK2C1}ρ
3K1Tr(Q)

∥∥p
∥∥
L1ψ0

(
ρ
) > 1, (4.8)

where K1 = (2mM2
1
∑m

i=1‖γi‖
2‖B‖2 + 1)M2

1 and K2 = (2mM2
1
∑m

i=1ti‖γi‖
2‖B‖2 + T)M2

1.

Proof. Condition (i) implies that (H1) holds with C1 =
∫0
−∞ β21(θ)dθ and C2 = 0. (H2) and (H3)

follow from conditions (ii) and (iii)with p(t) = (
∫
Δ p

2
1(t, x)dx)

1/2 and ψ = ψ0.
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