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We use the q-Weibull distribution and define a new counting process using the fractional order.
As a consequence, we introduce a q-process with q-Weibull interarrival times. Some interesting
special cases are also discussed which leads to a Mittag-Leffler form.

1. Introduction

The concept of renewal process has been developed for describing a counting process with
the assumption that the times between successive events are independent and identically
distributed nonnegative random variables. Count models are used in a wide range of
disciplines. For an early application and survey in economics see Cameron and Trivedi [1]; for
more recent developments, seeWinkelmann [2]; for a comprehensive survey of the literature,
see Gurmu and Trivedi [3]. The Poisson process plays a fundamental role in renewal theory
(see Muralidharan [4] for more details and the references contained therein).

The data of Jaggia and Thosar [5] on the number of takeover bids received by a target
firm after an initial bid illustrate the use of small counts in a Poisson model. For a Poisson
count model, there is a general consensus that the inter arrival time follows an exponential
distribution. The Poisson count models are valid only when the mean and variance are
equal, which gives the condition of equidispersion. But in general, in real life situations, the
models are overdispersed which satisfies the heavy-tailedness property. The data of Greene
[6] on the number of major derogatory reports in the credit history of individual credit card
applicants illustrate over-dispersion, that is, the sample variance is considerably greater than
the sample mean, compared to the Poisson which imposes equality of population mean
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and variance, and excess zeros are present since the observed proportion of zero counts is
considerably greater than the predicted probability. An indication of the likely magnitude of
underdispersion and over-dispersion can be obtained by comparing the sample mean and
variance of the dependent count variable, as subsequent Poisson regression will decrease the
conditional variance of the dependent variable. If the sample variance is less than the sample
mean, the data will be even more under-dispersed once regressors are included, while if
the sample variance is more than twice the sample mean, the data will almost certainly be
overdispersed upon inclusion of regressors.

Poisson processes with exponential, gamma, and Weibull, distributions as inter
arrival times were developed and their limitations were studied by many authors including
Winkelmann [2, 7]. The simplest model for duration data is the exponential, the duration
distribution being implied by the pure Poisson process, with density λe−λt and constant
hazard rate λ. The restriction of a constant hazard rate is generally not appropriate for
econometric data, and we move immediately to the analysis of the Weibull model, which
nests the exponential as a special case. Here we consider such a problem with q-Weibull inter
arrival times, which incorporates the Weibull distribution as the pathway parameter tends to
unity. This model generalizes the Poisson model with the generalizedWeibull as inter arrival
times since the q-Weibull distribution allows a transition to the original Weibull distribution.
Also the q-Weibull distribution nests the exponential,Weibull and q-exponential distributions
as special cases.

In 2005, Mathai introduced a pathway model connecting matrix variate Gamma and
normal densities. For the pathway parameter q > 1, −∞ < x < ∞, a > 0, α > 0, β > 0, δ > 0,
the following is the scalar version of the pathway model:

f1(x) = c1|x|α−1
[
1 + a

(
q − 1

)|x|δ
]−β/(q−1)

, (1.1)

where the normalizing constant c1 is given by

c1 =
δ
[
a
(
q − 1

)]α/δΓ(β/(q − 1
))

2Γ(α/δ)Γ
(
β/
(
q − 1

) − α/δ
) , β

q − 1
>

α

δ
. (1.2)

Observe that, for q < 1, on writing q − 1 = −(1 − q), the density in (1.1) reduces to the
following form:

f2(x) = c2|x|α−1
[
1 − a

(
1 − q

)|x|δ
]β/(q−1)

, (1.3)

for q < 1, a > 0, α > 0, β > 0, δ > 0, 1 − a(1 − q)|x|δ > 0 and the normalizing constant c2 being
given by

c2 =
δ
[
a
(
1 − q

)]α/δΓ(β/(1 − q
)
+ α/δ + 1

)

2Γ(α/δ)Γ
(
β/
(
1 − q

)
+ 1
) . (1.4)
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As q → 1, f1(x) and f2(x) tend to f3(x), which is referred to as the “extended symmetric
Weibull distribution”, where f3(x) is given by

f3(x) =
δ
(
αβ
)α/δ

2Γ(α/δ)
|x|α−1 exp

(
−αβ|x|δ

)
, −∞ < x < ∞, a, α, β, δ > 0. (1.5)

For different values of the parameters in (1.1), (1.3), and (1.5), we get different
distributions like the Weibull, gamma, beta type-1, beta type-2, and so forth. More results are
available in Mathai and Haubold [8] and Mathai and Provost [9]. The q-Weibull distribution
is a generalized model for the q-exponential distribution which facilitates a transition to the
Weibull as q → 1 through the pathway parameter q. Some results in this paper are defined
in terms ofH-function which can be defined as follows:

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣
(a1, α1), . . . ,

(
ap, αp

)
(
b1, β1

)
, . . . ,

(
bq, βq

)
]
=

1
2πi

∫ c+i∞

c−i∞
φ(s)z−sds, (1.6)

where

φ(s) =

{∏m
j=1Γ
(
bj + βjs

)}{∏n
j=1Γ
(
1 − aj − αjs

)}
{∏q

j=m+1Γ
(
1 − bj − βjs

)}{∏p

j=n+1Γ
(
aj + αjs

)} . (1.7)

Now we define the fractional order derivative in the Caputo sense, which provides a
fractional generalization of the first derivative through the following rule in the Laplace
domain:

L
{
tD

β
∗f(t); s

}
= sβf̃(s) − sβ−1f(0+), 0 < β ≤ 1, s > 0. (1.8)

The Caputo derivative has been indexed with the subscript ∗ in order to distinguish it from
the classical Riemann-Liouville fractional derivative tDβ. It can be noted from the (1.8) that
the Caputo derivative provides a sort of regularization of the Riemann-Liouville derivative
at t = 0.

2. Preliminaries on the q-Weibull Distribution

The q-Weibull distribution gives a wide range of applications in reliability analysis, statistical
mechanics, various engineering fields and so forth. (Picoli et al. [10], Jose et al. [11], Jose
and Naik [12], etc.] as a consequence of the pathway model introduced by Mathai [13]. The
probability density function (pdf) of the q-Weibull random variable is given as follows:

f1(x) = αλα(2 − q
)
xα−1[1 − (1 − q

)
(λx)α

]1/(1−q)
, 0 ≤ x ≤ 1

λ
(
1 − q

)1/α , α, λ > 0. (2.1)

The parameter q is known as the pathway parameter (the entropy index in statistical
mechanics), which determines the shape of the curves. We call this p.d.f a q-Weibull
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distribution of type-1. Observe that, for q > 1, writing 1 − q = −(q − 1), the density in (2.1)
assumes another formwhich we call it as type-2 q-Weibull model which is defined as follows.
For x ≥ 0 and for α, λ > 0, 1 < q < 2 the probability density function is given by

f2(x) = αλα(2 − q
)
xα−1[1 + (q − 1

)
(λx)α

]−1/(q−1)
, x ≥ 0. (2.2)

As q approaches to one, we obtain Weibull density.
Figure 1 shows a comparison between the Weibull distribution (q = 1) and the q-

Weibull distribution for different values of q. As q goes to 2, we get thicker tailed curves,
and as q tends to 1 from the right, the curve becomes peaked and slowly moves to the curve
corresponding to the Weibull distribution. As q moves from the left, the mode decreases, and
the curve slowly approaches the Weibull distribution, that is, the curve for q = 1. The main
reason for introducing the q-Weibull model is the switching property of the exponential form
to corresponding binomial function. That is,

lim
q→ 1

F0

(
1

q − 1
; −(q − 1

)
z

)
= lim

q→ 1

[
1 +
(
q − 1

)
z
]−1/(q−1) = e−z. (2.3)

The pathway model includes a wide variety of continuous distributions since one can
move from one functional form to another through the pathway parameter. For α = 1, we get
the q-exponential distribution introduced by Tsallis [14]. As α = 1 and q → 1, we get the
corresponding exponential distribution. The survival function of the q-Weibull distribution
is given by

F1(t) =
[
1 +
(
q − 1

)
(λt)α

](q−2)/(q−1)
, for 1 < q < 2,

F2(t) =
[
1 − (1 − q

)
(λt)α

](2−q)/(1−q)
, for q < 1.

(2.4)

As q → 1 both the survival functions converge to the survival function of the extended
Weibull distribution. For both 1 < q < 2 and q < 1, the survival functions are decreasing and
tend to 0. The hazard rate function (HRF) of the q-Weibull distribution is given by

h1(t) =
αλα
(
2 − q

)
tα−1

1 +
(
q − 1

)
(λt)α

, for t ≥ 0 1 < q < 2,

h2(t) =
αλα
(
2 − q

)
tα−1

1 − (1 − q
)
(λt)α

, for |t| <
1

λ
(
1 − q

)1/α q < 1.

(2.5)

The q-Weibull distribution nests three other distributions as special cases. The hazard
rate function is nonmonotonic when α > 1 and β > 1.

Remark 2.1. As q → 1 and α = 1, we get the hazard rate function of exponential distribution.

Remark 2.2. As q → 1, we get the hazard rate function Weibull model.

Remark 2.3. If q /= 1 and α = 1, we get hazard rate function of the q-exponential model.



International Journal of Stochastic Analysis 5

3. A Generalized q-Counting Process

In this section, we generalize the Poisson process in another direction by introducing a
counting process using q-Weibull inter arrival times. For the Poisson process, the mean and
variance are equal, which is not realistic. Now, following McShane et al. [15], we introduce a
model which gives more flexibility to the mean-variance relationship.

Let Yn be the time from themeasurement origin at which the nth event occurs. LetX(t)
be the number of events that have occurred until the time t. Then Yn ≤ t ⇔ X(t) ≥ n. In other
words the amount of time at which the nth event occurred from the time origin is less than
or equal to t if and only if the number of events that have occurred by time t is greater than
or equal to n. Now, the count model, Pn(t), is given by

Pn(t) = P[X(t) = n] = P[X(t) ≥ n] − P[X(t) ≥ n + 1]

= P[Yn ≤ t] − P[Yn+1 ≤ t] = Fn(t) − Fn+1(t),
(3.1)

where Fn(t) is the CDF of Yn. When the counting process coincide with the occurrence of an
event, then Fn(t) is the n-fold convolution of the common inter arrival time distribution. Now
we consider the count model for the q-Weibull distribution by assuming that the inter arrival
times are i.i.d q-Weibull distributed, with cumulative distribution function (CDF),

F(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − [1 − (1 − q
)
(λt)α

](2−q)/(1−q)
,

0 ≤ t ≤ 1

λ
(
1 − q

)1/α ,

1, t ≥ 1

λ
(
1 − q

)1/α .
(3.2)

Here we consider the case q < 1. The series expansion for the CDF is given by

F(t) = 1 −
∞∑
j=0

(−1)j
((
2 − q

)
/
(
1 − q

))
j

[(
1 − q

)
(λt)α

]j

Γ
(
j + 1

) (3.3)

where (α)j is the Pochammer symbol. Then corresponding f(t) is given by

f(t) =
∞∑
j=0

(−1)j
αj
((
2 − q

)
/
(
1 − q

))
j

(
1 − q

)j
λαtαj−1

Γ
(
j + 1

) . (3.4)

We have also the recursive relationship

Pn(t) =
∫ t

0
[Fn−1(t − s) − Fn(t − s)]f(s)ds =

∫ t

0
Pn−1(t − s)f(s)ds. (3.5)
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Now, F0(t) = 1, for all t and F1(t) = F(t). Also

P0(t) = F0(t) − F1(t) =
[
1 − (1 − q

)
(λt)α

](2−q)/(1−q) =
∞∑
j=0

(−1)j
((
2 − q

)
/
(
1 − q

))
j

[(
1 − q

)
(λt)α

]j

Γ
(
j + 1

) .

(3.6)

Using the recursive formula

P1(t) =
∫ t

0
P0(t − s)f(s)ds

=
∞∑
j=0

∞∑
i=1

(−1)j+i+1
((
2−q)/(1−q))

i

((
2−q)/(1−q))

j

(
1−q)i+j(λt)α(i+j)αiΓ(αi+1)Γ(αj+1)

Γ
(
j + 1

)
Γ(i + 1)Γ

(
α
(
i + j
)
+ 1
)

=
∞∑
j=1

(−1)j+1
[(
1 − q

)
(λt)α

]j
Γ
(
αj + 1

)
j−1∑
i=0

(2 − q

1 − q

)

j−i

(2 − q

1 − q

)

i

Γ(αi + 1)Γ
(
α
(
j − i
)
+ 1
)

Γ(i + 1)Γ
(
j − i + 1

)

=
∞∑
j=1

(−1)j+1
[(
1 − q

)
(λt)α

]j
a
j

i

Γ
(
αj + 1

) ,

(3.7)

where

a
j

i =
j−1∑
i=0

(2 − q

1 − q

)

i

(2 − q

1 − q

)

j−i

Γ(αi + 1)Γ
(
α
(
j − i
)
+ 1
)

Γ(i + 1)Γ
(
j − i + 1

) , (3.8)

which suggest a general form

Pn+1(t) =
∫ t

0
Pn(t − s)f(s)ds

=
∞∑
j=n

∞∑
i=1

(−1)j+i+n+1
((
2 − q

)
/
(
1 − q

))
i

(
1 − q

)i+j(λt)α(i+j)an
j Γ(αi + 1)Γ

(
αj + 1

)

Γ
(
αj + 1

)
Γ(i + 1)Γ

(
α
(
i + j
)
+ 1
) .

(3.9)

On simplification, we get

Pn+1(t) =
∞∑

l=n+1

(−1)l+n+1
[(
1 − q

)
(λt)α

]l
Γ(αl + 1)

l−1∑
k=n

((
2 − q

)
/
(
1 − q

))
l−ka

n
kΓ(α(l − k) + 1)

Γ(α − k + 1)

=
∞∑

l=n+1

(−1)l+n+1
[(
1 − q

)
(λt)α

]l
an+1
l

Γ(αl + 1)
.

(3.10)
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Thus we have the model

P[N(t) = n] =
∞∑
l=n

(−1)l+n
[(
1 − q

)
(λt)α

]l
an
l

Γ(αl + 1)
, n = 0, 1, 2, . . ., (3.11)

where a0
j = ((2 − q)/(1 − q))jΓ(αj + 1)/Γ(j + 1), for j = 0, 1, . . . and an+1

j =
∑j−1

i=n ((2 − q)/(1 − q))j−iΓ(α(j − i) + 1)/Γ(j − i + 1)an
i , for n = 0, 1, . . ., j = n + 1, n + 2, . . ., which

is a Mittag-Leffler type distribution. The mean count of this distribution is given by

E(N) =
∞∑
n=1

∞∑
l=n

(−1)l+n n
[(
1 − q

)
(λt)α

]l
an
l

Γ(αl + 1)
(3.12)

with variance given by

Var(N) =
∞∑
n=2

∞∑
l=n

(−1)l+n n
2[(1 − q

)
(λt)α

]l
an
l

Γ(αl + 1)
−
⎛
⎝

∞∑
n=1

∞∑
l=n

(−1)l+n n
[(
1 − q

)
(λt)α

]l
an
l

Γ(αl + 1)

⎞
⎠

2

. (3.13)

Then the moment generating function can be readily obtained as

Mi(θ) = E
[
eθN
]
=

∞∑
i=0

∞∑
j=i

(−1)j+i e
iN
[(
1 − q

)
(λt)α

]l
an
l

Γ
(
αj + 1

) . (3.14)

Now this model generalizes the commonly used Poisson and Weibull count models;
we call this new model a q-Weibull count model. We have already seen the probability
density curves for the Weibull, Poisson, and the q-Weibull count models that are shown in
Figure 1. Here we consider the under-dispersed case. In a similar manner, we can construct
a heterogeneous q-Weibull count model with λ replaced by λi where λi follows gamma
distribution with parametersm and p. The p.m.f. of such a process is given by

P[N(t) = n] =
∫∞

0

∞∑
l=n

(−1)l+n
[(
1 − q

)
(λt)α

]l
an
l

Γ(αl + 1)
f
(
λi | m, p

)
dλi

=
∞∑
l=n

(−1)l+n
[(
1 − q

)
(t)α
]l
an
l

Γ(αl + 1)

∫∞

0

1
Γ
(
p
)mpλ

p+αl−1
i e−mλidλi

=
∞∑
l=n

(−1)l+n e
im
[(
1 − q

)
(t)α
]l
an
l
Γ
(
p + αl

)

Γ(αl + 1)mαlΓ
(
p
) .

(3.15)

This probability model provides an entirely new class of counting processes derived
using q-Weibull inter arrival times and is an improvement over the traditional Poisson
process.
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Figure 1: Weibull and q-Weibull pdf for different values of q.

4. Fractional Order Process with q-Weibull InterArrival Time

Let us consider the q-counting process with q-Weibull interarrival times. Here we consider
a fractional generalization of the process using the fractional order differential operator
instead of the ordinary differentiation. As the fractional order β is unity, one can obtain the
corresponding process with q-Weibull interarrival time. If the survival probability for the
generalized q-counting process is

Ψ(t) =
[
1 +
(
q − 1

)
(λt)α

](q−2)/(q−1)
, (4.1)

then it obeys the following ordinary differential equation:

d

dt
Ψ(t) = Ktα−1[Ψ(t)]1/(2−q), where K = α

(
q − 2

)
λα. (4.2)

Now, the generalization is obtained by replacing the first derivative by a fractional derivative
(Caputo derivative of order β ∈ (0, 1]) in (4.2). Thus we have

tD
β
∗Ψ(t) = Ktα−1[Ψ(t)]1/(2−q)

L
{
tD

β
∗Ψ(t)

}
= KL

{
tα−1[Ψ(t)]1/(2−q)

}

pβL{[Ψ(t)]} − pβ−1 = KL
{
tα−1[Ψ(t)]1/(2−q)

}
.

(4.3)

To find the Laplace transform involved in the right hand side of (4.3), we have to evaluate
the integral

I1
(
α, λ, q : p

)
=
∫∞

0
e−pxxα−1[1 + (q − 1

)
(λx)α

]−1/(q−1)
dx. (4.4)
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The integrand can be taken as a product of two integrable functions. Let x1 and x2 be
two independent scalar random variables with probability density functions f1(x) and f2(x),
respectively. Consider the transformation u = x1/x2 and v = x2 ⇒ dx1 ∧ dx2 = vdu ∧ dv,
where ∧ is the wedge product discussed in Mathai [13]. Then the joint density of u and v is
g(u, v) = vf1(uv)f2(v). Now, g1(u) is obtained by integrating the joint probability density
function g(u, v) with respect to v. That is, g1(u) =

∫
v
vf1(uv)f2(v)dv. Let f1(x) = c1[1 +

(q − 1)λαx1
α]−1/(q−1), x1 ≥ 0, and f2(x2) = c2x2

α−2e−px2 , x2 ≥ 0, α, λ > 0, where c1 and c2 are
normalizing constants. These constants can be obtained by integrating f1(x) and f2(x) with
respect to x. Thus we have

g1(u) = c1c2

∫∞

0
e−pvvα−1[1 + (q − 1

)
(λuv)α

]−1/(q−1)
dv. (4.5)

Now

E
(
xs−1
1

)
= c1

∫∞

0
x1

s−1[1 + (q − 1
)
(λx1)α

]−1/(q−1)
dx1

=
c1

αλs
(
q − 1

)s/α
∫∞

0
w(s/α)−1 (1 +w)−1/(q−1)dw

=
c1

αλs
(
q − 1

)s/α
Γ(s/α)Γ

(
1/
(
q − 1

) − s/α
)

Γ
(
1/
(
q − 1

)) , �

(
1

q − 1
− s

α

)
> 0,

(4.6)

where �(·) denote the real part of (·). Similarly

E
(
x1−s
2

)
= c2

∫∞

0
x2

α−s−1e−px2dx2

=
c2Γ(α − s)

pα−s
.

(4.7)

Then

E
(
us−1
)
= E
(
xs−1
1

)
E
(
x1−s
2

)

= c1c2
ps−α

αλs
(
q − 1

)s/α
Γ(s/α)Γ

(
1/
(
q − 1

) − s/α
)
Γ(α − s)

Γ
(
1/
(
q − 1

)) .
(4.8)

Now, the density of u is obtained by taking the inverse Mellin transform. The detailed
existence conditions for the sMellin and inverse Mellin transforms are available in Mathai
[13]. Thus

g1(u) =
c1c2

αpαΓ
(
1/
(
q − 1

)) 1
2πi

∫ c+i∞

c−i∞
Γ
( s
α

)
Γ
(

1
q − 1

− s

α

)
Γ(α − s)

(
u
(
q − 1

)1/α
λ

p

)−s

ds,

(4.9)
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and the quantity in (4.4) becomes

I1
(
α, λ, q : p

)
=

c1c2

αpαΓ
(
1/
(
q − 1

))H1,2
2,1

[(
q − 1

)1/α
λ

p

∣∣∣∣∣

(
1 − 1/

(
q − 1

)
, 1/α

)
, (1 − α, 1)

(0, 1/α)

]
,

�

(
1

q − 1
− s

α

)
> 0.

(4.10)

Hence (4.3) simplifies to

pβ
(
L{[Ψ(t)]}−p−1

)
=

K

αpαΓ
(
1/
(
q−1))H

1,2
2,1

[(
q−1)1/αλ

p

∣∣∣∣∣

(
1−1/(q−1), 1/α), (1−α, 1)

(0, 1/α)

]
,

�

(
1

q − 1
− s

α

)
> 0.

(4.11)

Now

Ψ(t) = 1 +
λα
(
q − 2

)
tα+β−1

Γ
(
1/
(
q − 1

)) 1
2πi

∫ c+i∞

c−i∞

Γ(s/α)Γ
(
1/
(
q − 1

) − s/α
)
Γ(α − s)

((
q − 1

)1/α
λt
)−s

Γ
(
α + β − s

) ds

= 1 +
λα
(
q − 2

)
tα+β−1

Γ
(
1/
(
q − 1

)) H1,2
2,2

[(
q − 1

)1/α
λt

∣∣∣∣
(
1 − 1/

(
q − 1

)
, 1/α

)
, (1 − α, 1)

(0, 1/α),
(
1 − α − β, 1

)
]
.

(4.12)

For t ≥ 0, α, β > 0 and for 1 < q < 2, the pdf is obtained as

f(t) =

(
2 − q

)
λαtα+β−2

Γ
(
1/
(
q − 1

)) H1,2
2,2

[(
q − 1

)1/α
λt

∣∣∣∣
(
1 − 1/

(
q − 1

)
, 1/α

)
, (1 − α, 1)

(0, 1/α),
(
2 − α − β, 1

)
]

(4.13)

and 0 otherwise. Similar expressions for survival and density functions exist for q < 1.

4.1. Series Expansion for the H-Function

The H-function defined in (4.12) can be expanded in a series form by evaluating the contour
integral by means of the residue calculus. The poles of the integrand Γ(s/α)Γ(1/(q − 1) −
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s/α)Γ(α− s)((q − 1)1/αλt)
−s
/Γ(α+ β − s) coming from Γ(s/α), which are s/α = −ν, ν = 0, 1, . . .

The residue at s/α = −ν, denoted by Rν , is given by

Rν = lim
s/α→−ν

((s/α) + ν)Γ(s/α)Γ
(
1/
(
q − 1

) − s/α
)
Γ(α − s)

Γ
(
α + β − s

)
((

q − 1
)1/α

λt
)−s

= lim
s/α→−ν

((s/α) + ν)((s/α) + ν − 1)((s/α) + ν − 2) . . . (s/α)Γ(s/α)Γ
(
1/
(
q − 1

) − s/α
)

(s/α + ν − 1)(s/α + ν − 2) . . . (s/α)Γ
(
α + β − s

)

× Γ(α − s)
((

q − 1
)1/α

λt
)−s

.

(4.14)

Hence

1
2πi

∫ c+i∞

c−i∞

Γ(s/α)Γ
(
1/
(
q − 1

) − s/α
)
Γ(α − s)

Γ
(
α + β − s

)
((

q − 1
)1/α

λt
)−s

ds

=
∞∑
ν=0

Rν =
∞∑
ν=0

Γ
(
1/
(
q − 1

)
+ ν
)
Γ(α + αν)

Γ
(
α + β + ν

)
ν!

((
q − 1

)
(λt)α

)ν
.

(4.15)

Therefore,

Ψ(t) = 1 +
λα
(
q − 2

)
tα+β−1

Γ
(
1/
(
q − 1

))
∞∑
ν=0

(−1)ν Γ
(
1/
(
q − 1

)
+ ν
)
Γ(α + αν)

Γ
(
α + β + αν

)
ν!

((
q − 1

)
(λt)α

)ν
,

Ψ(t) = 1 +
λα
(
q − 2

)
tα+β−1

Γ
(
1/
(
q − 1

)) 2Ψ1

[
−(q − 1

)
(λt)α

∣∣∣∣
(α, α),

(
1/
(
q − 1

)
, 1
)

(
α + β, α

)
]
.

(4.16)

2Ψ1(·) denotes the Wright function introduced by Wright in 1935 which is defined by

pΨq

[
z

∣∣∣∣
(
ap,Ap

)
(
bq, Bq

)
]
=

∞∑
n=0

∏p

i=1Γ(ai + nAi)∏q

j=1Γ
(
bi + nBj

) z
n

n!
, (4.17)

where ai, bj ∈ C and Ai, Bj ∈ � = (−∞,∞), Ai, Bj /= 0, i = 1, 2, . . . , p, j = 1, 2, . . . , q with
the convergence condition that

∑q

j=1 Bj −
∑p

i=1 Ai > −1. The plot of Ψ(t) for various values of
parameters is given in Figure 2. It is seen from the graph that Ψ(t) behaves like a survival
function.

4.2. Some Interesting Special Cases

Note that, for α = β = 1, Ψ(t) reduces to the following form:

Ψ(t) = 1 +

(
q − 2

)
λt

Γ
(
1/
(
q − 1

)) 1
2πi

∫ c+i∞

c−i∞

Γ(s)Γ
(
1/
(
q − 1

) − s
)
Γ(1 − s)

Γ(2 − s)
((
q − 1

)
λt
)−s

ds. (4.18)
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Figure 2: The plot of Ψ(t) for various values of parameters.

Now evaluating the contour integral by the residue calculus, the poles of the integrand
Γ(s)Γ(1/(q− 1)− s)Γ(1− s)/Γ(2− s)((q − 1)λt)−s coming from Γ(s) are s = −ν, ν = 0, 1, . . .. The
residue at s = −ν denoted by Rν is given by

Rν = lim
s→−ν

(s + ν)Γ(s)Γ
(
1/
(
q − 1

) − s
)
Γ(1 − s)

Γ(2 − s)
((
q − 1

)
λt
)−s

. (4.19)
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Therefore the corresponding survival function is

Ψ(t) = 1 +

(
q − 2

)
λt

Γ
(
1/q − 1

)
∞∑
ν=0

(−1)ν Γ
(
1/
(
q − 1

)
+ ν
)

Γ(ν + 1)
((
q − 1

)
(λt)
)ν

=
[
1 +
(
q − 1

)
λt
](q−2)/(q−1)

(4.20)

which is the survival function of q-exponential distribution. For α = β = 1 and as q → 1, then
(4.20) will become the survival function of the exponential distribution (interarrival time
of the Poisson process). For α = 1 and as q → 1, we get the “Mittag-Leffler type renewal
process” introduced by Minardi [16].
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