Research Article

Asymptotics of Negative Exponential Moments for Annealed Brownian Motion in a Renormalized Poisson Potential

Xia Chen ${ }^{\mathbf{1}}$ and Alexey Kulik ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
${ }^{2}$ Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv 01601, Ukraine

Correspondence should be addressed to Alexey Kulik, kulik@imath.kiev.ua
Received 24 December 2010; Accepted 6 April 2011
Academic Editor: Nikolai Leonenko
Copyright © 2011 X. Chen and A. Kulik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In (Chen and Kulik, 2009), a method of renormalization was proposed for constructing some more physically realistic random potentials in a Poisson cloud. This paper is devoted to the detailed analysis of the asymptotic behavior of the annealed negative exponential moments for the Brownian motion in a renormalized Poisson potential. The main results of the paper are applied to studying the Lifshitz tails asymptotics of the integrated density of states for random Schrödinger operators with their potential terms represented by renormalized Poisson potentials.

1. Introduction

This paper is motivated by the model of Brownian motion in Poisson potential, which describes how a Brownian particle survives from being trapped by the Poisson obstacles. We recall briefly the general setup of that model, referring the reader to the book by Sznitman [1] for a systematic representation, to [2] for a survey, and to [3-6] for specific topics and for recent development on this subject.

Let $\omega(d x)$ be a Poisson field in \mathbb{R}^{d} with intensity measure $v d x$, and let B be an independent Brownian motion in \mathbb{R}^{d}. Throughout, \mathbb{P} and \mathbb{E} denote the probability law and the expectation, respectively, generated by the Poisson field $\omega(d x)$, while \mathbb{P}_{x} and \mathbb{E}_{x} denote the probability law and the expectation, respectively, generated by the Brownian motion B with $B_{0}=x$. For a properly chosen (say, continuous and compactly supported) nonnegative
function K on \mathbb{R}^{d} (known as a shape function), define the respective random function (known as a Poisson potential)

$$
\begin{equation*}
V(x)=\int_{\mathbb{R}^{d}} K(y-x) \omega(d y) \tag{1.1}
\end{equation*}
$$

which heuristically represents the net force at $x \in \mathbb{R}^{d}$ generated by the Poisson obstacles. The model of Brownian motion in a Poisson potential is defined in two different settings. In the quenched setting, the setup is conditioned on the random environment created by the Poisson obstacles, and the model is described in the terms of the Gibbs measure $\mu_{t, \omega}$ defined by

$$
\begin{equation*}
\frac{d \mu_{t, \omega}}{d \mathbb{P}_{0}}=\frac{1}{Z_{t, \omega}} \exp \left\{-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right\}, \quad Z_{t, \omega}=\mathbb{E}_{0} \exp \left\{-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right\} \tag{1.2}
\end{equation*}
$$

Here, $\mathcal{\kappa}$ is a positive parameter, responsible for the time scaling $s \mapsto \mathcal{\kappa} s$, introduced here for further references convenience. In the annealed setting, the model averages on both the Brownian motion and the environment, and respective Gibbs measure μ_{t} is defined by

$$
\begin{equation*}
\frac{d \mu_{t}}{d\left(\mathbb{P} \otimes \mathbb{P}_{0}\right)}=\frac{1}{Z_{t}} \exp \left\{-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right\}, \quad Z_{t}=\mathbb{E} \otimes \mathbb{E}_{0} \exp \left\{-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right\} \tag{1.3}
\end{equation*}
$$

Heuristically, the integral

$$
\begin{equation*}
\int_{0}^{t} V\left(B_{\kappa s}\right) d s \tag{1.4}
\end{equation*}
$$

measures the total net attraction to which the Brownian particle is subject up to the time t, and henceforth, under the law $\mu_{t, \omega}$ or μ_{t}, the Brownian paths heavily impacted by the Poisson obstacles are penalized and become less likely.

In the Sznitman's model of "soft obstacles," the shape function K is assumed to be locally bounded and compactly supported. However, these limitations may appear to be too restrictive in certain cases. Important particular choice of a shape function, physically motivated by the Newton's law of universal attraction, is

$$
\begin{equation*}
K(x)=\theta|x|^{-p}, \quad x \in \mathbb{R}^{d}, \tag{1.5}
\end{equation*}
$$

which clearly is both locally unbounded and supported by whole \mathbb{R}^{d}. This discrepancy is not just a formal one and brings serious problems. For instance, under the choice (1.5), the integral (1.1) blows up at every $x \in \mathbb{R}^{d}$ when $p \leq d$.

To resolve such a discrepancy, in a recent paper [7], it was proposed to consider, apart with a Poisson potential (1.1), a renormalized Poisson potential

$$
\begin{equation*}
\bar{V}(x)=\int_{\mathbb{R}^{d}} K(y-x)[\omega(d y)-v d y] \tag{1.6}
\end{equation*}
$$

Assume for a while that K is locally bounded and compactly supported. Then,

$$
\begin{align*}
\bar{V}(x) & =\int_{\mathbb{R}^{d}} K(y-x)[\omega(d y)-v d y] \\
& =\int_{\mathbb{R}^{d}} K(y-x) \omega(d y)-v \int_{\mathbb{R}^{d}} K(y-x) d y \tag{1.7}\\
& =V(x)-v \int_{\mathbb{R}^{d}} K(y) d y
\end{align*}
$$

that is, $\bar{V}-V=$ const. Consequently, replacing V by \bar{V} in (1.2) and (1.3) does not change the measures $\mu_{t, \omega}$ and μ_{t}, because both the exponents therein and the normalizers $Z_{t, \omega}$ and Z_{t} are multiplied by the same constant $e^{t \mathbb{E} V(0)}$ (this is where the word "renormalization" comes from). On the other hand, for unbounded and not locally supported K, the renormalized potential (1.6) may be well defined, while the potential (1.1) blows up. The most important example here is the shape function (1.5) under the assumption $d / 2<p<d$. In that case, \bar{V} is well defined as well as the Gibbs measures

$$
\begin{align*}
\frac{d \bar{\mu}_{t, \omega}}{d \mathbb{P}_{0}}=\frac{1}{\bar{Z}_{t, \omega}} \exp \left\{-\int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right\}, \quad \bar{Z}_{t, \omega}=\mathbb{E}_{0} \exp \left\{-\int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right\}, \tag{1.8}\\
\frac{d \bar{\mu}_{t}}{d\left(\mathbb{P} \otimes \mathbb{P}_{0}\right)}=\frac{1}{\bar{Z}_{t}} \exp \left\{-\int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right\}, \quad \bar{Z}_{t}=\mathbb{E} \otimes \mathbb{E}_{0} \exp \left\{-\int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right\}, \tag{1.9}
\end{align*}
$$

see [7, Corollary 1.3]. We use separate notation $\bar{\mu}_{t, \omega^{\prime}} \bar{\mu}_{t}$ because the Gibbs measures (1.2) and (1.3) are not well defined now.

The above exposition shows that using the notion of the renormalized Poisson potential, one can extend the class of the shape functions significantly. Note that in general, the domain of definition for (1.6) does not include the one for (1.1). For instance, for the shape function (1.5), the potential V, and the renormalized potential \bar{V} are well defined under the mutually excluding assumptions $p>d$ and $d / 2<p<d$, respectively. This, in particular, does not give one a possibility to define respective Gibbs measures in a uniform way. This inconvenience is resolved in the terms of the Poisson potential V^{h}, partially renormalized at the level h; see [7, Chapter 6]. By definition,

$$
\begin{equation*}
V^{h}(x)=\int_{\mathbb{R}^{d}}(K(y-x)-h)_{+} \omega(d y)+\int_{\mathbb{R}^{d}}(K(y-x) \wedge h)[\omega(d y)-v d y] \tag{1.10}
\end{equation*}
$$

where $h \in[0, \infty]$ is a renormalization level. Clearly, $V^{0}=V, V^{\infty}=\bar{V}$. It is known (see [7, Chapter 6]) that V^{h} is well defined for every $h \in(0,+\infty)$ as soon as $V^{h^{\prime}}$ is well defined for some $h^{\prime} \in[0,+\infty]$, and in that case, there exists a constant $C_{K, h, h^{\prime}}$ such that $V^{h}-V^{h^{\prime}}=v C_{K, h, h^{\prime}}$. This makes it possible to define the respective Gibbs measures in a uniform way, replacing V in (1.2), (1.3) by V^{h} with (any) $h \in(0,+\infty)$. In addition, such a definition extends the class of shape functions: for K given by (1.5), V^{h} with $h \in(0,+\infty)$ is well defined for $p>d / 2$.

The main objective of this paper is to study the asymptotic behavior, as $t \rightarrow+\infty$, of the annealed exponential moments

$$
\begin{equation*}
\mathbb{E} \otimes \mathbb{E}_{0} \exp \left\{-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right\} \tag{1.11}
\end{equation*}
$$

This problem is clearly relevant with the model discussed above: in the particular case $\mathcal{\kappa}=1$, $\alpha_{t} \equiv 1$, this is, just the natural question about the limit behavior of the normalizer \bar{Z}_{t} in the formula (1.3) for the annealed Gibbs measure. In the quenched setting, similar problem was studied in the recent paper ([8]). In some cases, we also consider (1.11) with a renormalized Poisson potential \bar{V} replaced by either a Poisson potential V or a partially renormalized potential V^{h} with $h \in(0,+\infty)$.

The function α_{t} in (1.11) appears, on one hand, because of our further intent to study in further publications the a.s. behavior

$$
\begin{equation*}
\int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s, \quad t \longrightarrow \infty \tag{1.12}
\end{equation*}
$$

On the other hand, this function can be naturally included into the initial model. One can think about making penalty (1.4) to be additionally dependent on the length of the time interval by dividing the total net attraction for the Brownian particle by some scaling parameter. Because of this interpretation, further on, we call the function α_{t} a "scale".

Let us discuss two other mathematically related problems, studied extensively both in mathematical and in physical literature. The first one is known as the continuous parabolic Anderson model

$$
\begin{gather*}
\partial_{t} u(t, x)=\kappa \Delta u(t, x) \pm Q(x) u(t, x), \tag{1.13}\\
u(0, x)=1, \quad x \in \mathbb{R}^{d} .
\end{gather*}
$$

This problem appears in the context of chemical kinetics and population dynamics. Its name goes back to the work by Anderson [9] on entrapment of electrons in crystals with impurities. In the existing literature, the random field Q is usually chosen as the Poisson potential V, with the shape function K assumed to be bounded (and often locally supported), so that the potential function (1.1) can be defined. A localized shape is analogous to the usual setup in the discrete parabolic Anderson model, where the potential $\left\{Q(x) ; x \in \mathbb{Z}^{d}\right\}$ is an i.i.d. sequence; we refer the reader to the monograph [10] by Carmona and Molchanov for the overview and background of this subject.

On the other hand, there are practical needs for considering the shape functions of the type (1.5), which means that the environment has both a long range dependency and extreme force surges at the locations of the Poison obstacles. To that end, we consider (1.13) with a renormalized Poisson potential \bar{V} instead of Q. Note that in that case, the field Q represents fluctuations of the environment along its "mean field value" rather than the environment itself although this "mean field value" may be infinite.

It is well known that (1.13) is solved by the following Feynman-Kac representation

$$
\begin{equation*}
u(t, x)=\mathbb{E}_{x} \exp \left\{ \pm \int_{0}^{t} Q\left(B_{2 \kappa s}\right) d s\right\} \tag{1.14}
\end{equation*}
$$

when Q is Hölder continuous and satisfies proper growth bounds. When $Q=\bar{V}$ with K from (1.5), local unboundedness of K induces local irregularity of Q (Proposition 2.9 in [7]), which does not allow one to expect that the function (1.14) solves (1.13) in the strong sense. However, it is known (Proposition 1.2 and Proposition 1.6 in [7]) that under appropriate conditions, the function (1.14) solves (1.13) in the mild sense. It is a local unboundedness of K again, that brings a serious asymmetry to the model, making essentially different the cases " + " and " - " of the sign in the right hand sides of (1.13) and (1.14). For the sign " - ", the random field (1.14) is well defined and integrable for $d / 2<p<d$ (Theorem 1.1 in [7]). For the sign " + ", the random field (1.14) is not integrable for any p. On the other hand, the random field (1.14) is well defined for $d / 2<p<\min (2, d)$ (Theorem 1.4 and Theorem 1.5 in [7]).

In view of (1.14), our main problem relates immediately to the asymptotic behavior of the moments of the solution to the parabolic Anderson problem (1.13) with the sign "-". Here, we cite [10-20] as a partial list of the publications that deal with various asymptotic topics related to the parabolic Anderson model.

Another problem related to our main one is the so called Lifshitz tails asymptotic behavior of the integrated density of states function N of a random Schrödinger operator of the type

$$
\begin{equation*}
H=-\frac{\kappa}{2} \Delta+Q . \tag{1.15}
\end{equation*}
$$

This function, written IDS in the sequel, is a deterministic spectral mean-field characteristic of H. Under quite general assumptions on the random potential Q, it is well defined as

$$
\begin{equation*}
N(\lambda)=\lim _{U \uparrow \mathbb{R}^{d}} \frac{1}{|U|} \sum_{k} 1_{\lambda_{k, u} \leq \lambda,} \tag{1.16}
\end{equation*}
$$

where $\left\{\lambda_{k}, U\right\}$ is the set of eigenvalues for the operator H in a cube U with the Dirichlet boundary conditions, $|U|$ denotes the Lebesgue measure of U in \mathbb{R}^{d}, and the limit pass is made w.r.t. a sequence of cubes which has same center and extends to the whole \mathbb{R}^{d}. The classic references for the definition of the IDS function are [21, 22]; see also a brief exposition in Sections 2 and 5.1 below.

Heuristically, the bottom (i.e., the left-hand side) λ_{0} of the spectrum of H mainly describes the low-temperature dynamics for a system defined by the Hamiltonian (1.15). This motivates the problem of asymptotic behavior of $\log N(\lambda), \lambda \searrow \lambda_{0}$, studied extensively in the literature. The name of the problem goes back to the papers by Lifshitz [23, 24]; we also give $[1,21,22,25-44]$ as a partial list of references on the subject.

Connection between the Lifshitz tails asymptotics for the IDS function N, and the problem discussed above is provided by the representation for the Laplace transform of N

$$
\begin{equation*}
\int_{\mathbb{R}} e^{-\lambda t} d N(\lambda)=(2 \pi \kappa t)^{-d / 2} \mathbb{E} \otimes \mathbb{E}_{0,0}^{\kappa t} \exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right], \quad t \geq 0 \tag{1.17}
\end{equation*}
$$

Here, $\mathbb{E}_{0,0}^{\kappa t}$ denotes the distribution of the Brownian bridge, that is, the Brownian motion conditioned by $B_{\kappa t}=0$. Our estimates for (1.11) appear to be process insensitive to some extent and remain true with \mathbb{E}_{0} in (1.11) replaced by $\mathbb{E}_{0,0}^{\kappa t}$. This, via appropriate Tauberian theorem, provides information on Lifshitz tail asymptotics for the respective IDS function N. Note that in this case, the asymptotic behavior of the $\log N(\lambda)$ as $\lambda \rightarrow-\infty$ should be studied, because the bottom of the spectrum is equal $\lambda_{0}=-\infty$, unlike the (usual) Poisson case, where $\lambda_{0}=0$. This difference is caused by the renormalization procedure, which brings the negative part to the potential.

We now outline the rest of the paper. The main results about negative exponential moments for annealed Brownian motion in a renormalized Poisson potential are collected in Theorem 2.1. They are formulated for the shape function defined by (1.5). Depending on p in this definition, we separate three cases

$$
\begin{gather*}
\alpha_{t}=o\left(t^{(d+2-p) /(d+2)}\right), \quad t \longrightarrow \infty, \tag{1.18}\\
t^{(d+2-p) /(d+2)}=o\left(\alpha_{t}\right), \quad t \longrightarrow \infty, \tag{1.19}\\
\alpha_{t} \sim \alpha t^{(d+2-p) /(d+2)} \quad \text { with some } \quad \alpha>0, t \longrightarrow \infty, \tag{1.20}
\end{gather*}
$$

calling them a "light-scale," a "heavy-scale," and a "critical" case, respectively. There is a close analogy between our "light" versus "heavy" scale classification for a renormalized Poisson potential and the well-known "classic" versus "quantum" regime classification for a (usual) Poisson potential; see detailed discussion in Section 2.

In all three cases listed above, our approach relies on the identity

$$
\begin{equation*}
\mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right]=\mathbb{E}_{0} \exp \left[v \int_{\mathbb{R}^{d}} \psi\left(\frac{1}{\alpha_{t}} \xi(t, x)\right) d x\right], \tag{1.21}
\end{equation*}
$$

with

$$
\begin{gather*}
\psi(u)=e^{-u}-1+u \tag{1.22}\\
\xi(t, x)=\int_{0}^{t} K\left(B_{\kappa s}-x\right) d s \tag{1.23}
\end{gather*}
$$

see Proposition 2.7 and Proposition 3.1 in [7].
Further analysis of the Wiener integral in the r.h.s. of (1.21) in the light-scale case is quite straightforward. First, the upper bound follows from Jensen's inequality and is "universal" in the sense that the Brownian motion B therein can be replaced by an arbitrary
process. Then, we choose a ball in the Wiener space, which simultaneously is "sufficiently heavy" in probability and "sufficiently small" in size. This smallness allows one to transform the integral in the r.h.s. of (1.21) into

$$
\begin{equation*}
v \int_{\mathbb{R}^{d}} \psi\left(\frac{1}{\alpha_{t}} \int_{0}^{t} K(-x) d s\right) d x=v \int_{\mathbb{R}^{d}} \psi\left(\frac{t}{\alpha_{t}} K(-x)\right) d x \tag{1.24}
\end{equation*}
$$

which after a straightforward transformation gives a lower bound that coincides with the universal upper bound obtained before.

We call this approach the "small heavy ball method". It is quite flexible, and by means of this method, we also give a complete description of the light-scale asymptotic behavior for a Poisson potential V and a partially renormalized Poisson potential V^{h} (Theorem 2.4). This method differs from the functional methods, typical in the field, which go back to the paper [41] by Pastur. It gives a new and transparent principle explaining the transition from quantum to classical regime; note that the phenomenology of such a transition is a problem discussed in the literature intensively; see [32, Section 3.5] for a detailed overview. In the context of the small heavy ball method, we can identify the classic regime with the situation where a sufficient amount of Brownian paths stay in a suitable neighborhood. So, the relation $\bar{V}\left(B_{\kappa t}\right) \approx \bar{V}(0)$ donimates in this regime.

In the quantum regime, that is, in the critical and the heavy-scale cases, the contribution of Brownian paths cannot be neglected. In this situation, the key role in our analysis of the Wiener integral in the r.h.s. of (1.21) is played by a large deviations result (Theorem 4.1) formulated and proved in Section 4. In the same section, by means of appropriate rescaling procedure, the asymptotics of the Wiener integral in the r.h.s. of (1.21) in the quantum regime is obtained. In the heavy-scale case, this asymptotics appears to be closely related to the large deviations asymptotics for a Brownian motion in a Wiener sheet potential, studied in ([45]); we discuss this relation in Section 4.4.

Finally, we discuss an application of the main results of the paper to the Lifshitz tails asymptotics of the integrated density of states functions for random Schrödinger operators, with their potential terms represented by either renormalized Poisson potential or partially renormalized Poisson potential.

2. Main Results

Throughout the paper, ω_{d} denotes the volume of the d-dimensional unit ball. We denote

$$
\begin{equation*}
\mathcal{F}_{d}=\left\{g \in W_{2}^{1}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}} g^{2}(x) d x=1\right\} \tag{2.1}
\end{equation*}
$$

where $W_{2}^{1}\left(\mathbb{R}^{d}\right)$ is used for the Sobolev space of functions that belong to \mathscr{L}_{2} together with their first order derivatives. We also denote

$$
\begin{equation*}
\varphi(u)=1-e^{-u}, \quad \Xi(u, v)=\psi(u)-e^{-u} \varphi(v)=e^{-u-v}-1+u, \quad u, v \in \mathbb{R}, \tag{2.2}
\end{equation*}
$$

(ψ is introduced in (1.22)). Clearly, the functions $\psi,-\varphi$, and Ξ are convex; this simple observation is crucial for the most constructions below.

Our main results about the asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential are represented by the following theorem.

Theorem 2.1. Let $p \in(d / 2, d)$.
(i) In the "light-scale" case,

$$
\begin{align*}
\lim _{t \rightarrow \infty} & \left(\frac{\alpha_{t}}{t}\right)^{d / p} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \\
& =v \int_{\mathbb{R}^{d}} \psi\left(\theta|x|^{-p}\right) d x \tag{2.3}\\
& =v \omega_{d} \theta^{d / p}\left(\frac{p}{d-p}\right) \Gamma\left(\frac{2 p-d}{p}\right)=-v \omega_{d} \theta^{d / p} \Gamma\left(\frac{p-d}{p}\right)
\end{align*}
$$

(ii) In the "critical" case,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} t^{-d /(d+2)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \tag{2.4}\\
& \quad=\sup _{g \in \mathcal{F}_{d}}\left\{v \int_{\mathbb{R}^{d}} \psi\left(\frac{\theta}{\alpha} \int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} .
\end{align*}
$$

(iii) In the "heavy-scale" case, under additional assumption $p<(d+2) / 2$,

$$
\begin{align*}
\lim _{t \rightarrow \infty} \alpha_{t}^{4 /(d+2-2 p)} t^{-(d+4-2 p) /(d+2-2 p)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \\
\quad=\sup _{g \in \mathcal{F}_{d}}\left\{\frac{\nu \theta^{2}}{2} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right)^{2} d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} . \tag{2.5}
\end{align*}
$$

Remark 2.2. The additional assumption $p<(d+2) / 2$ in Statement (iii) is exactly the condition for $\xi(t, x)$ to be square integrable (see [45]), and henceforth, for respective central limit theorem to hold true, see Proposition 4.4 and discussion in Section 4.4 below.

Let us discuss this theorem in comparison with the following, well-known in the field, results for annealed Brownian motion in a Poisson potential.

Theorem 2.3. Let K be bounded and satisfy

$$
\begin{equation*}
K(x) \sim \theta|x|^{-p}, \quad|x| \longrightarrow \infty, \tag{2.6}
\end{equation*}
$$

with $p>d$.
(i) (see [41]) If $p \in(d, d+2)$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t^{-d / p} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right]=-v \omega_{d} \theta^{d / p} \Gamma\left(\frac{p-d}{p}\right) \tag{2.7}
\end{equation*}
$$

(ii) (see [40]) If $p=d+2$,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} t^{-d /(d+2)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right] \\
&=-\inf _{g \in \mathcal{F}_{d}}\left\{v \int_{\mathbb{R}^{d}} \varphi\left(\theta \int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right) d x+\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} \tag{2.8}
\end{align*}
$$

(iii) (see [46]) If $p>d+2$,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} t^{-d /(d+2)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\int_{0}^{t} V\left(B_{\kappa s}\right) d s\right] \tag{2.9}\\
&=-\inf _{g \in \mathcal{F}_{d}}\left\{v \int_{\mathbb{R}^{d}} 1_{g(x)>0} d x+\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} .
\end{align*}
$$

It is an effect, discovered by Pastur in [41], that the asymptotic behavior of the Brownian motion in a Poisson potential is essentially different in the cases $p>d+2$ and $p \in(d, d+2)$, called frequently "light tailed" and "heavy tailed," respectively. This difference was discussed intensively in the literature, especially in the connection with the asymptotic behavior of respective IDS function. The main asymptotic term in (2.7) is completely determined by the potential and does not involve κ, that is, the "intensity" of the Brownian motion. On the other hand, (2.9) depends on κ but not on the shape function K. Since K and κ, heuristically, are related to "regular" and "chaotic" parts of the dynamics, an alternative terminology "classic regime" $(p>d+2)$ and "quantum regime" $(p \in(d, d+2))$ is frequently used.

Theorem 2.1 shows that the dichotomy "classic versus quantum regimes" is still in force for the model with a renormalized Poisson potential, with conditions on the shape function K to be either heavy or light tailed replaced by conditions on the scale α_{t} to be, respectively, light or heavy. Note that for $\alpha_{t} \equiv 1$, (1.18) and (1.19) transform exactly to $p<d+2$ and $p>d+2$, respectively. In the classic regime, an analogy between a Poisson potential and a renormalized Poisson potential is very close: for $\alpha_{t} \equiv 1,(2.3)$ and (2.7) coincide completely. However, in the quantum regime, the right hand side in (2.5), although being principally different from (2.3), is both scale dependent (i.e., involves α_{t}) and shape dependent (i.e., involves p).

It is a natural question whether Theorem 2.1 can be extended to other types of potentials, like a Poisson potential V or a partially renormalized Poisson potential V^{h}. We strongly believe that such an extension is possible in a whole generality; however, we cannot give such an extension in the quantum regime (i.e., critical and heavy-scaled cases) so far, because we do not have an analogue of Theorem 4.1 for functions v which are convex but are not increasing (like $-\varphi$ and Ξ). Such a generalization is a subject for further research.

In the classic regime (i.e., light scale case), such an extension can be made efficiently. Moreover, in this case, the assumptions on the shape function K can be made very mild: instead of (1.5), we assume (2.6) with $p>d / 2$ and, when $p<d$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \psi(K(x)) d x<+\infty \tag{2.10}
\end{equation*}
$$

which is just the assumption for \bar{V} to be well defined.
Theorem 2.4. Let the shape function K satisfy (2.6) and scale function α_{t} satisfy (1.18).
(i) Statement (i) of Theorem 2.1 holds true assuming K satisfies (2.10).
(ii) For $p>d$,

$$
\begin{align*}
& \lim _{t \rightarrow \infty}\left(\frac{\alpha_{t}}{t}\right)^{d / p} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V\left(B_{\kappa s}\right) d s\right] \tag{2.11}\\
& \quad=-v \int_{\mathbb{R}^{d}} \varphi\left(\theta|x|^{-p}\right) d x=-v \omega_{d} \theta^{d / p} \Gamma\left(\frac{p-d}{p}\right) .
\end{align*}
$$

(iii) For $p=d$ and $h>0$,

$$
\begin{align*}
\log & \mathbb{E}
\end{align*} \begin{array}{|l}
\mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V^{h}\left(B_{\kappa s}\right) d s\right] \tag{2.12}\\
\\
\end{array}=v\left[\int_{\mathbb{R}^{d}}\left(\min (K(y), h)-\frac{\alpha_{t}}{t}\right)_{+} d y+\omega_{d} \theta \mathrm{Eu}\right]\left(\frac{t}{\alpha_{t}}\right)+o\left(\frac{t}{\alpha_{t}}\right), \quad t \longrightarrow \infty, ~ \$
$$

where $\mathrm{Eu}=-\Gamma^{\prime}(1)=0,57721 \cdots$ is the Euler constant. In particular, when K has the form (1.5),

$$
\begin{align*}
\log & \mathbb{E} \tag{2.13}
\end{align*}>\mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V^{h}\left(B_{\kappa s}\right) d s\right] .
$$

The following theorem shows that statements of Theorems 2.1 and 2.4 are process insensitive to some extent.

Theorem 2.5. Relations (4.4), (2.3)-(2.5), (2.11), (2.12), and (2.13) hold true with \mathbb{E}_{0} replaced by $\mathbb{E}_{0,0}^{\kappa t}$, that is, the expectation w.r.t. the law of the Brownian bridge.

This theorem makes it possible to investigate the Lifshitz tails asymptotics for the integrated density of states of the random Schrödinger operators with (partially) renormalized Poisson potentials. Let us outline the construction of respective objects.

For a given random field $Q(x), x \in \mathbb{R}^{d}$ and a cube $U \subset \mathbb{R}^{d}$, denote by H_{U}^{Q} the random Schrödinger operator in U with the potential Q and the Dirichlet boundary conditions

$$
\begin{equation*}
H_{U}^{Q} f=-\frac{\kappa}{2} \Delta f+Q f,\left.\quad f\right|_{\partial U}=0 \tag{2.14}
\end{equation*}
$$

When the field Q is assumed to have locally bounded realizations, the operator H_{U}^{Q} is a.s. well defined as an operator on $L_{2}(U, d x)$ and is self-adjoint. In addition, respective semigroup $R_{t, U}^{Q}=e^{-t H_{u}^{Q}, t \geq 0}$ has a Feynman-Kac representation ([1, page 13])

$$
\begin{equation*}
R_{t, U}^{Q} f(x)=\mathbb{E}_{x}^{t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right] X U, t(B .) f\left(B_{t}\right)\right), \quad x \in U, t \geq 0 \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
X U, t(B .)=1_{B_{\kappa s} \in U, s \in[0, t]} . \tag{2.16}
\end{equation*}
$$

For general Q, we define H_{U}^{Q} by the following limit procedure. Consider truncations $Q_{N}=$ $(|Q| \wedge N) \operatorname{sgn} Q$. Under appropriate assumptions on Q, for almost every realization of this field, operators $R_{t, U}^{Q_{N}}$ converge strongly for every $t \geq 0$ as $N \rightarrow \infty$. In that case, H_{U}^{Q} is defined as the generator of the limit semigroup $R_{t, U^{\prime}}^{Q} t \geq 0$. Assuming the spectrum of H_{U}^{Q} to be discrete (we verify this assumption below), we denote this spectrum $\left\{\lambda_{k, U}^{Q}\right\}$ and define the function

$$
\begin{equation*}
N_{U}^{Q}(\lambda)=\frac{1}{|U|} \sum_{k} 1_{l_{k, U} \leq \lambda^{\prime}} \quad \lambda \in \mathbb{R} . \tag{2.17}
\end{equation*}
$$

Proposition 2.6. Let the shape function K be such that for some $g>0$, the following conditions hold:
(i) $K^{g}(x)=(K(x)-g)_{+}$is compactly supported,
(ii) $K_{g}=\min (K(x), g)$ is Lipschitz continuous and belongs to the Sobolev space $W_{2}^{1}\left(\mathbb{R}^{d}\right)$.

Consider either a partially renormalized potential $Q=V^{h}$ with $h \in(0, \infty)$, or a renormalized potential $Q=\bar{V}$, in the latter case assuming additionally (2.10).

Then,
(a) for a.s. realization of the potential Q and every cube U, the described above procedure well defines both the random Schrödinger operator H_{U}^{Q} and respective function $N_{U^{\prime}}^{Q}$
(b) there exists an integrated density of states N^{Q}, that is, a deterministic monotonous function such that

$$
\begin{equation*}
N^{Q}(\lambda)=\lim _{U \uparrow \mathbb{R}^{d}} N_{U}^{Q}(\lambda) \tag{2.18}
\end{equation*}
$$

a.s. for every point of continuity of N^{Q}. Respective Laplace transform has the representation

$$
\begin{equation*}
\int_{\mathbb{R}} e^{-\lambda t} d N^{Q}(\lambda)=(2 \pi \kappa t)^{-(d / 2)} \mathbb{E} \otimes \mathbb{E}_{0,0}^{\kappa t} \exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right], \quad t \geq 0 \tag{2.19}
\end{equation*}
$$

Note that in the proof of Proposition 2.6 (Section 5.1 below), most difficulties are concerned with the statement (A) because of local irregularity of the potential Q (Proposition 2.9 in [7]).

As a corollary of Theorem 2.5 and representation (2.19), we deduce the following Lifshitz tails asymptotics for random Schrödinger operators with random potentials \bar{V} and V^{h}.

Theorem 2.7. Let K satisfy (2.6).
(i) For $p \in(d / 2, d)$, assuming additionally (2.10), one has in limit $\lambda \rightarrow-\infty$

$$
\begin{equation*}
\log N^{\bar{V}}(\lambda)=-\left[v \omega_{d} \Gamma\left(\frac{2 p-d}{p}\right)\right]^{-p /(d-p)}\left(\frac{\theta(d-p)}{d}\right)^{d /(d-p)}(-\lambda)^{d /(d-p)}(1+o(1)) \tag{2.20}
\end{equation*}
$$

(ii) For $p=d$ and $h \in(0, \infty)$, one has in limit $\lambda \rightarrow-\infty$

$$
\begin{align*}
\log N^{V^{h}}(\lambda) & =-v \omega_{d} \theta \exp \left[-\frac{\lambda}{v \omega_{d} \theta}-\log h-\mathrm{Eu}-1\right](1+o(1)) \tag{2.21}\\
& =-\frac{v \omega_{d} \theta}{h} \exp \left[-\frac{\lambda}{v \omega_{d} \theta}-\mathrm{Eu}-1\right](1+o(1))
\end{align*}
$$

Theorem 2.7 involves the asymptotic results for exponential moments (Theorem 2.5) only in a partial form, for the trivial scale function $\alpha_{t} \equiv 1$. This observation naturally motivates the following extension of the definition of the IDS function and respective generalization of Theorem 2.7.

Consider the family of random Schrödinger operators

$$
\begin{equation*}
H_{\gamma}=-\frac{\kappa}{2} \Delta+\gamma Q, \quad r>0 \tag{2.22}
\end{equation*}
$$

Assuming every potential $Q_{\gamma}=\gamma Q$ being such that respective IDS function $N^{Q_{r}}$ is well defined, denote $N^{Q}(\lambda, \gamma)=N^{Q_{r}}(\lambda)$. We call the family

$$
\begin{equation*}
N^{Q}(\lambda, \gamma), \quad \lambda \in \mathbb{R}, \gamma>0 \tag{2.23}
\end{equation*}
$$

the integrated density of states field of the family of random Schrödinger operators (2.22). In the Theorem 2.8 below, we describe the asymptotic behavior of this field for random Schrödinger
operators with a renormalized Poisson potential. Let us anticipate this theorem by a brief discussion.

Three statements of Theorem 2.8 below relate directly to our light-scale, heavy-scale, and critical cases, respectively. This means that the integrated density of states field for random Schrödinger operators with a renormalized Poisson potential may demonstrate asymptotic behavior typical either to the classic or to the quantum regime, while for the integrated density of states function, only, the classic regime is available.

Next, observe that $(d+2-p) / 2>(d+4-2 p) / 4$. Hence, conditions, that $(-\lambda)^{(d+4-2 p) / 4} / \gamma \rightarrow \infty$ and $(-\lambda)^{(d+2-p) / 2} / \gamma$ is bounded, yield $\lambda \rightarrow 0-$. Therefore, the quantum regime for the integrated density of states field requires that λ and γ tend to 0 in an adjusted way (Statement (ii) of Theorem 2.8 below). On the contrary, conditions of the Statement (i) of the same theorem allow $\lambda \rightarrow-\infty$ (in that case γ may tend to ∞), $\lambda \rightarrow 0-$, or λ to stay bounded away both from 0 and $-\infty$ (in these two cases $\gamma \rightarrow 0+$ necessarily). This is the reason that two conditions $(-\lambda)^{p / d} / \gamma \rightarrow \infty$ and $(-\lambda)^{(d+2-p) / 2} / \gamma \rightarrow \infty$ are imposed in this case: when $\lambda \rightarrow-\infty$, the first one includes the second one, but when $\lambda \rightarrow 0$-, the inclusion is opposite.

Theorem 2.8. Let K be of the form (1.5) with $p \in(d / 2, d)$.
(i) When $(-\lambda)^{p / d} / \gamma \rightarrow \infty$ and $(-\lambda)^{(d+2-p) / 2} / \gamma \rightarrow \infty$,

$$
\begin{align*}
\log N^{\bar{V}}(\lambda, \gamma)= & -\left[v \omega_{d} \Gamma\left(\frac{2 p-d}{p}\right)\right]^{-p /(d-p)}\left(\frac{\theta(d-p)}{d}\right)^{d /(d-p)} \tag{2.24}\\
& \times(-\lambda)^{d /(d-p)} r^{-d /(d-p)}(1+o(1)) .
\end{align*}
$$

(ii) When $(-\lambda)^{d+4-2 p / 4} / \gamma \rightarrow \infty$ and $(-\lambda)^{(d+2-p) / 2} / \gamma \rightarrow 0$, under additional assumption $p<(d+2) / 2$,

$$
\begin{equation*}
\log N^{\bar{V}}(\lambda, \gamma)=-\left(\frac{2 C_{2}}{d+2-2 p}\right)^{-(d+2-2 p) / 2}\left(\frac{2}{d+4-2 p}\right)^{(d+4-2 p) / 2}(-\lambda)^{(d+4-2 p) / 2} r^{-2}(1+o(1)), \tag{2.25}
\end{equation*}
$$

where C_{2} denotes the constant in the r.h.s of (2.5).
(iii) When $\lambda \rightarrow 0-$ and $(-\lambda)^{(d+2-p) / 2} / \gamma$ is bounded away both from 0 and from ∞,

$$
\begin{equation*}
\log N^{\bar{V}}(\lambda, \gamma)=-\left(\frac{(d-p) C_{\psi}}{p}\right)^{-p /(d-p)}\left(\frac{(d-p)}{d}\right)^{d /(d-p)}(-\lambda)^{d /(d-p)} r^{-p /(d-p)}(1+o(1)), \tag{2.26}
\end{equation*}
$$

where C_{ψ} denotes the constant in the right hand side of (2.4) with $\alpha=1$.
Note that under the assumptions of Theorem 2.8, the right hand sides of (2.24), (2.25), and (2.26) tend to $-\infty$. So, Theorem 2.8 controls the exponential decay of the IDS field, similarly to Theorem 2.7. What may look nontypical in this theorem when compared with
other references in the field is that some part of the statements are formulated when $\mathcal{\lambda} \rightarrow 0-$. This in general reflects the fact that for $\gamma \rightarrow 0+$ the negative part of the spectrum becomes negligible. Theorem 2.8, in particular, quantifies such a negligibility.

3. Classic Regime

In this section, we prove Theorem 2.4, which includes Statement (i) of Theorem 2.1 as a partial case. For a given $h>0$, denote

$$
\begin{equation*}
\xi^{h}(t, x)=\int_{0}^{t}(K(y-x)-h)_{+} d s, \quad \xi_{h}(t, x)=\int_{0}^{t}(K(y-x) \wedge h) d s \tag{3.1}
\end{equation*}
$$

Similarly to (1.21), we have

$$
\begin{array}{r}
\mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V\left(B_{\kappa s}\right) d s\right]=\mathbb{E}_{0} \exp \left[-\int_{\mathbb{R}^{d}} \varphi\left(\frac{1}{\alpha_{t}} \xi(t, x)\right) d x\right] \\
\mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V^{h}\left(B_{\kappa s}\right) d s\right]=\mathbb{E}_{0} \exp \left[\int_{\mathbb{R}^{d}} \Xi\left(\frac{1}{\alpha_{t}} \xi_{h}(t, x), \frac{1}{\alpha_{t}} \xi^{h}(t, x)\right) d x\right] . \tag{3.3}
\end{array}
$$

The first relation is provided by Proposition 2.7 and Proposition 3.1 in [7], the proof for the second one is completely analogous and is omitted.

In what follows, we analyse the Wiener integrals in the r.h. sides of (1.21) and (3.2). However, (3.3) appears not to be well designed for an immediate analysis, which motivates the following auxiliary construction. Instead of V^{h}, we consider a partially renormalized Poisson potential with the properly chosen renormalization level, dependent on t. Let $g>0$ and $h_{t}=g \alpha_{t} / t$. Then, assuming $p=d,(2.6)$ and (1.18), we will prove that

$$
\begin{align*}
& \lim _{t \rightarrow \infty}\left(\frac{\alpha_{t}}{t}\right) \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} V^{h_{t}}\left(B_{\kappa s}\right) d s\right] \tag{3.4}\\
& \quad=v \int_{\mathbb{R}^{d}} \Xi\left(\left(\theta|x|^{-d}\right) \wedge g,\left(\theta|x|^{-d}-g\right)_{+}\right) d x=v \omega_{d} \theta[\log g+\mathrm{Eu}]
\end{align*}
$$

Note that by Proposition 6.1 in [7],

$$
\begin{equation*}
V^{h^{\prime}}(x)-V^{h}(x)=v \int_{\mathbb{R}^{d}}\left(\min (K(y), h)-h^{\prime}\right)_{+} d y \tag{3.5}
\end{equation*}
$$

for any $h \geq h^{\prime}$ such that $V^{h}, V^{h^{\prime}}$ is well defined. Henceforth, changing a renormalization level just multiplies respective exponential moment by an explicit constant. Therefore, (2.12) is provided by (3.4).

In Sections 3.1 and 3.2, we prove, respectively, upper and lower bounds in (2.3), (2.11), and (3.4) with the constants represented in an integral form. Calculation of the integrals is postponed to Section 3.3.

3.1. Proof of the Upper Bound

For any convex function ϱ, by the Jensen inequality, we have

$$
\begin{equation*}
\varrho\left(\frac{1}{\alpha_{t}} \xi(t, x)\right)=\varrho\left(\int_{0}^{t}\left(\frac{1}{\alpha_{t}} K\left(B_{\kappa s}-x\right)\right) d s\right) \leq \frac{1}{t} \int_{0}^{t} \rho\left(\frac{t}{\alpha_{t}} K\left(B_{\kappa s}-x\right)\right) d s \tag{3.6}
\end{equation*}
$$

Denote $\lambda_{t}=\left(t / \alpha_{t}\right)^{1 / p}, K(x, \lambda)=\lambda^{p} K(\lambda x)$. By the inequality above, one has the following estimate with nonrandom right hand side:

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \rho\left(\frac{1}{\alpha_{t}} \xi(t, x)\right) d x & \leq \frac{1}{t} \int_{\mathbb{R}^{d}} \int_{0}^{t} \varphi\left(\frac{t}{\alpha_{t}} K\left(B_{\kappa s}-x\right)\right) d s d x \\
& =\int_{\mathbb{R}^{d}} \rho\left(\frac{t}{\alpha_{t}} K(-x)\right) d x=\left(\frac{t}{\alpha_{t}}\right)^{d / p} \int_{\mathbb{R}^{d}} \rho\left(K\left(x, \lambda_{t}\right)\right) d x \tag{3.7}
\end{align*}
$$

Assumption (1.18) yields $\lambda_{t} \rightarrow \infty$. Therefore, in order to prove the upper bound either in (2.3) or in (2.11), it is sufficient to apply (3.7) to either ψ or $-\varphi$ and then prove, respectively,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \psi(K(x, \lambda)) d x \longrightarrow \int_{\mathbb{R}^{d}} \psi(K(x)) d x \text { or } \int_{\mathbb{R}^{d}} \varphi(K(x, \lambda)) d x \longrightarrow \int_{\mathbb{R}^{d}} \varphi(K(x)) d x \tag{3.8}
\end{equation*}
$$

$\lambda \rightarrow \infty$. By assumption (2.6), for every $\varepsilon>0$, there exists λ^{ε} such that

$$
\begin{equation*}
K(x, \lambda)|x|^{p} \in[\theta-\varepsilon, \theta+\varepsilon], \quad|x|>\varepsilon, \lambda>\lambda^{\varepsilon} \tag{3.9}
\end{equation*}
$$

When $p>d$, this easily provides

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \int_{|x|>\varepsilon} \varphi(K(x, \lambda)) d x=\int_{|x|>\varepsilon} \varphi(K(x)) d x, \quad \varepsilon>0 \tag{3.10}
\end{equation*}
$$

Since φ is bounded on \mathbb{R}^{+}, (3.10) provides the second relation in (3.8).
When $p \in(d / 2, d)$, similar argument leads to the relation analogous to (3.10) with φ replaced by ψ. Consequently, with condition (2.10) in mind, it remains to prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \limsup _{\lambda \rightarrow \infty} \int_{|x| \leq \varepsilon} \psi(K(x, \lambda)) d x=0 \tag{3.11}
\end{equation*}
$$

To that end, we choose r_{1}, θ_{1} such that $K(x) \leq \theta_{1}|x|^{-p},|x|>r$ and write for λ large enough

$$
\begin{align*}
\int_{|x| \leq \varepsilon} \psi(K(x, \lambda)) d x & =\left[\int_{|x| \leq r_{1} / \lambda}+\int_{r_{1} / \lambda<|x| \leq \varepsilon}\right] \psi(K(x, \lambda)) d x \tag{3.12}\\
& \leq \lambda^{-d} \int_{|x| \leq r_{1}} \psi\left(\lambda^{p} K(x)\right) d x+\int_{|x| \leq \varepsilon} \psi\left(\theta_{1}|x|^{-p}\right) d x
\end{align*}
$$

Recall that $p<d, \psi(u)$ is dominated by u, and K is locally integrable under condition (2.10). Then, the first term in the above sum is negligible when $\lambda \rightarrow \infty$. This proves (3.10) and completes the proof.

Similarly, for $p=d$ from the Jensen's inequality for the convex function $\Xi: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
\Xi\left(\frac{1}{\alpha_{t}} \xi_{h}(t, x), \frac{1}{\alpha_{t}} \xi^{h}(t, x)\right) \leq \frac{1}{t} \int_{0}^{t} \Xi\left(\frac{t}{\alpha_{t}}\left(K\left(B_{\kappa s}-x\right) \wedge h\right), \frac{t}{\alpha_{t}}\left(K\left(B_{\kappa s}-x\right)-h\right)_{+}\right) d s \tag{3.13}
\end{equation*}
$$

and consequently, for $h_{t}=g \alpha_{t} / t$

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \Xi\left(\frac{1}{\alpha_{t}} \xi_{h_{t}}(t, x), \frac{1}{\alpha_{t}} \xi^{h_{t}}(t, x)\right) d x & \leq \int_{\mathbb{R}^{d}} \Xi\left(\frac{t}{\alpha_{t}}\left(K(-x) \wedge h_{t}\right), \frac{t}{\alpha_{t}}\left(K(-x)-h_{t}\right)_{+}\right) d x \\
& =\left(\frac{t}{\alpha_{t}}\right)^{d / p} \int_{\mathbb{R}^{d}} \Xi\left(K\left(x, \lambda_{t}\right) \wedge g_{,}\left(K\left(x, \lambda_{t}\right)-g\right)_{+}\right) d x \tag{3.14}
\end{align*}
$$

Similarly to (3.8), one can prove

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \Xi\left(K(x, \lambda) \wedge g^{\prime}(K(x, \lambda)-g)_{+}\right) d x \longrightarrow \int_{\mathbb{R}^{d}} \Xi\left(K(x, \lambda) \wedge g,(K(x, \lambda)-g)_{+}\right) d x, \quad \lambda \longrightarrow \infty \tag{3.15}
\end{equation*}
$$

which provides the upper bound in (3.4).

3.2. Proof of the Lower Bound

For a fixed $\varepsilon>0$, take R fixed but large enough so that

$$
\begin{equation*}
(\theta-\varepsilon)|x|^{-p} \leq K(x) \leq(\theta+\varepsilon)|x|^{-p}, \quad|x| \geq R \tag{3.16}
\end{equation*}
$$

Take $\beta>0$ and consider the set

$$
\begin{equation*}
A_{t, \beta}=\left\{\sup _{s \leq t}\left|B_{\kappa s}\right| \leq \beta \lambda_{t}\right\} \tag{3.17}
\end{equation*}
$$

keeping the notation $\lambda_{t}=\left(t / \alpha_{t}\right)^{1 / p}$. By the scaling property and the well-known small balls probability asymptotics for the Brownian motion, we have, for t large enough,

$$
\begin{equation*}
\log \mathbb{P}_{0}\left(A_{t, \beta}\right) \geq-c t\left(\beta \lambda_{t}\right)^{-2} \tag{3.18}
\end{equation*}
$$

with some constant $c>0$. Therefore, condition $\alpha_{t}=o\left(t^{(d+2-p) /(d+2)}\right)$ yields

$$
\begin{equation*}
\left(\frac{\alpha_{t}}{t}\right)^{d / p} \log \mathbb{P}_{0}\left(A_{t, \beta}\right) \longrightarrow 0, \quad t \longrightarrow+\infty \tag{3.19}
\end{equation*}
$$

Take $\gamma>2 \beta$. On the set $A_{t, \beta}$, one has

$$
\begin{equation*}
\left|B_{\kappa s}-x\right| \geq \beta\left(\frac{t}{\alpha_{t}}\right)^{1 / p}, \quad s \in[0, t], \quad|x| \geq \gamma \lambda_{t} \tag{3.20}
\end{equation*}
$$

Then, for t large enough to provide $\beta \lambda_{t}>R$, we have

$$
\begin{equation*}
(\theta-\varepsilon)\left|B_{\kappa s}-x\right|^{-p} \leq K\left(B_{\kappa s}-x\right) \leq(\theta+\varepsilon)\left|B_{\kappa s}-x\right|^{-p}, \quad s \in[0, t], \quad|x| \geq \gamma \lambda_{t} \tag{3.21}
\end{equation*}
$$

Therefore, a two-sided estimate

$$
\begin{equation*}
(\theta-\varepsilon)\left(1+\frac{\beta}{\gamma}\right)^{-p}|x|^{-p} \leq K\left(B_{\kappa s}-x\right) \leq(\theta+\varepsilon)\left(1-\frac{\beta}{\gamma}\right)^{-p}|x|^{-p}, \quad s \in[0, t] \tag{3.22}
\end{equation*}
$$

is valid on the set $A_{t, \beta}$ for every x with $|x|>\gamma \lambda_{t}$. Observe that (3.22) is a pointwise estimate for a Brownian trajectory from a "small ball" $A_{t, \beta}$ and for a point x outside a "large ball" $\left\{y:|y| \leq r \lambda_{t}\right\}$. On the other hand, (3.19) shows the "small Brownian ball" $A_{t, \beta}$ is "heavy" in the sense that its probability is sufficiently large, in respective logarithmic scale. These observations provide a straightforward tool for proving lower bounds in (2.3)-(3.4).

Since ψ is nonnegative and nondecreasing, (3.22) yields

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \psi\left(\frac{1}{\alpha_{t}} \xi(t, x)\right) d x \geq \int_{|x|>\gamma \lambda_{t}} \psi\left(\frac{t}{\alpha_{t}}(\theta-\varepsilon)\left(1+\frac{\beta}{\gamma}\right)^{-p}|x|^{-p}\right) d x=\left(\frac{t}{\alpha_{t}}\right)^{d / p} I_{\varepsilon, \beta, \gamma^{\prime}}^{\psi} \tag{3.23}
\end{equation*}
$$

on $A_{t, \beta}$ with

$$
\begin{equation*}
I_{\varepsilon, \beta, \gamma}^{\psi}=\int_{|x|>\gamma} \psi\left((\theta-\varepsilon)\left(1+\frac{\beta}{\gamma}\right)^{-p}|x|^{-p}\right) d x \tag{3.24}
\end{equation*}
$$

Together with (1.21) and (3.19), this inequality provides

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty}\left(\frac{\alpha_{t}}{t}\right)^{d / p} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \geq I_{\varepsilon, \beta, \gamma^{\prime}}^{\psi} \tag{3.25}
\end{equation*}
$$

for every $\varepsilon>0, \beta>0, \gamma>0$. Since

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{\gamma \rightarrow 0} \lim _{\beta \rightarrow 0} I_{\varepsilon, \beta, \gamma}^{\psi}=\int_{\mathbb{R}^{d}} \psi\left(\theta|x|^{-p}\right) d x \tag{3.26}
\end{equation*}
$$

this completes the proof of the lower bound in (2.3).

Since $(-\varphi)$ is nonincreasing and satisfies $-\varphi \geq-1$, (3.22) yields

$$
\begin{equation*}
-\int_{\mathbb{R}^{d}} \varphi\left(\frac{1}{\alpha_{t}} \xi(t, x)\right) d x \geq-\int_{|x| \leq \gamma \lambda_{t}} d x-\int_{|x|>\gamma \lambda_{t}} \varphi\left(\frac{t}{\alpha_{t}}(\theta+\varepsilon)\left(1-\frac{\beta}{\gamma}\right)^{-p}|x|^{-p}\right) d x=\left(\frac{t}{\alpha_{t}}\right)^{d / p} I_{\varepsilon, \beta, \gamma^{\prime}}^{\varphi} \tag{3.27}
\end{equation*}
$$

on $A_{t, \beta}$ with

$$
\begin{equation*}
I_{\varepsilon, \beta, \gamma}^{\varphi}=-\int_{|x| \leq r} d x-\int_{|x|>\gamma} \varphi\left((\theta+\varepsilon)\left(1-\frac{\beta}{\gamma}\right)^{-p}|x|^{-p}\right) d x \tag{3.28}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{\gamma \rightarrow 0} \lim _{\beta \rightarrow 0} I_{\varepsilon, \beta, \gamma}^{\varphi}=-\int_{\mathbb{R}^{d}} \varphi\left(\theta|x|^{-p}\right) d x \tag{3.29}
\end{equation*}
$$

this provides the lower bound in (3.5).
Finally, Ξ is nondecreasing in first coordinate and nonincreasing in second coordinate. In addition, $\Xi \geq-1$, and hence (3.22) yields in the case $d=p$

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} \Xi\left(\frac{1}{\alpha_{t}} \xi_{h_{t}}(t, x), \frac{1}{\alpha_{t}} \xi^{h_{t}}(t, x)\right) d x \\
& \geq \int_{|x|>\gamma \lambda_{t}} \Xi\left(\frac{t}{\alpha_{t}}\left[\left\{(\theta-\varepsilon)\left(1+\frac{\beta}{\gamma}\right)^{-d}|x|^{-d}\right\} \wedge\left\{\frac{g \alpha_{t}}{t}\right\}\right],\right. \tag{3.30}\\
&\left.\frac{t}{\alpha_{t}}\left[\left\{(\theta+\varepsilon)\left(1-\frac{\beta}{\gamma}\right)^{-d}|x|^{-d}\right\}-\frac{t g \alpha_{t}}{t}\right]_{+}\right) d x=\left(\frac{t}{\alpha_{t}}\right) I_{\varepsilon, \beta, \gamma^{\prime}}^{\Xi}
\end{align*}
$$

on $A_{t, \beta}$ with

$$
\begin{equation*}
I_{\varepsilon, \beta, \gamma}^{\Xi}=-\int_{|x| \leq \gamma} d x+\int_{|x|>\gamma} \Xi\left(\left[(\theta-\varepsilon)\left(1+\frac{\beta}{\gamma}\right)^{-d}|x|^{-d}\right] \wedge g,\left[(\theta+\varepsilon)\left(1-\frac{\beta}{\gamma}\right)^{-d}|x|^{-d}-g\right]_{+}\right) d x \tag{3.31}
\end{equation*}
$$

Together with (3.2) and (3.19), this inequality provides

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty}\left(\frac{\alpha_{t}}{t}\right) \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \geq I_{\varepsilon, \beta, \gamma^{\prime}}^{\Xi} \tag{3.32}
\end{equation*}
$$

for every $\varepsilon>0, \beta>0, \gamma>0$. Since

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{\gamma \rightarrow 0} \lim _{\beta \rightarrow 0} I_{\varepsilon, \beta, \gamma}^{\Xi}=\int_{\mathbb{R}^{d}} \Xi\left(\left(\theta|x|^{-d}\right) \wedge g,\left(\theta|x|^{-d}-g\right)_{+}\right) d x \tag{3.33}
\end{equation*}
$$

this completes the proof of the lower bound in (3.4).

3.3. Calculation of the Integrals

In the above proof, we have obtained (2.3), (2.11), and (3.4) with the constants represented as certain integrals. Explicit calculation of these integrals can be made in easy and standard way, using sphere substitution and integration by parts. For such a calculation of the integral (2.3), we refer to Lemma 7.1 in [8]; calculation of the integral (2.11) is completely analogous and omitted. Here, we calculate the integral in (3.4) and prove (2.13).

By sphere substitution, and change of variables,

$$
\begin{align*}
\int_{\mathbb{R}^{d}} \Xi\left(\left(\theta|x|^{-d}\right) \wedge g^{\prime}\left(\theta|x|^{-d}-g\right)_{+}\right) d x & =\omega_{d} \int_{0}^{\infty} \Xi\left(\left(\frac{\theta}{r}\right) \wedge g,\left(\frac{\theta}{r}-g\right)_{+}\right) d x \\
& =\omega_{d} \int_{0}^{\infty}\left[e^{-\theta / r}-1-\left(\frac{\theta}{r}\right) \wedge g\right] d r \tag{3.34}\\
& =\theta \omega_{d} \int_{0}^{\infty} \frac{e^{-s}-1-s \wedge g}{s^{2}} d s \\
& =\omega_{d} \theta\left[\int_{0}^{\infty} \frac{e^{-s}-1-s \wedge 1}{s^{2}} d s+\log g\right]
\end{align*}
$$

in the last identity we have used an elementary relation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{s \wedge g-s \wedge 1}{s^{2}} d s=\log g \tag{3.35}
\end{equation*}
$$

Integration by parts and n. 538 in [47] gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-s}-1-s \wedge 1}{s^{2}} d s=\int_{0}^{t} \frac{1-e^{-s}}{s} d s-\int_{0}^{\infty} \frac{e^{-s}}{s} d s=\mathrm{Eu} \tag{3.36}
\end{equation*}
$$

which completes calculation of the integral in (3.4).
Finally, let K has the form (1.5). Take $h_{t}=\alpha_{t} / t$, then $h_{t}<h$ for t large enough, and

$$
\begin{align*}
\int_{\mathbb{R}^{d}}\left(\min (K(y), h)-\frac{\alpha_{t}}{t}\right)_{+} d y & =\int_{\mathbb{R}^{d}}\left(\theta|x|^{-d} \wedge h-h_{t}\right)_{+} d x \\
& =\omega_{d} \theta \int_{0}^{\infty} \frac{s \wedge h-s \wedge h_{t}}{s^{2}} d s \tag{3.37}\\
& =\omega_{d} \theta\left[\log h-\log h_{t}\right]=\omega_{d} \theta\left[\log h+\log \left(\frac{t}{\alpha_{t}}\right)\right]
\end{align*}
$$

Combined with (2.12), this calculation provides (2.13).

4. Quantum Regime

4.1. Large Deviations

Our analysis of the asymptotic behavior of the Brownian motion in a renormalized Poisson integral in the quantum regime (i.e., in the critical and heavy-scale cases) is based on the following large deviations result. Consider some function $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$and denote

$$
\begin{equation*}
\eta(t, x)=\int_{0}^{t} L\left(B_{\kappa s}-x\right) d x . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let, for some sequence $L_{n}, n \geq 1$ of nonnegative continuous compactly supported functions,

$$
\begin{equation*}
L(x)=\sup _{n \geq 1} L_{n}(x), \tag{4.2}
\end{equation*}
$$

for a.a. $x \in \mathbb{R}^{d}$. Let $v: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be an increasing convex function with $v(0)=0$, and

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} v(L(x)) d x<+\infty . \tag{4.3}
\end{equation*}
$$

Then,

$$
\begin{align*}
\lim _{t \rightarrow \infty} & \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& =\sup _{g \in \mathcal{F}_{d}}\left\{\int_{\mathbb{R}^{d}} v\left(\int_{\mathbb{R}^{d}} g^{2}(y) L(x-y) d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} . \tag{4.4}
\end{align*}
$$

Proof of Theorem 4.1: the lower bound. By Jensen's inequality,

$$
\begin{equation*}
v\left(\frac{1}{t} \eta(t, x)\right)=v\left(\frac{1}{t} \int_{0}^{t} L\left(B_{\kappa s}-x\right) d s\right) \leq \frac{1}{t} \int_{0}^{t} v\left(L\left(B_{\kappa s}-x\right)\right) d s, \tag{4.5}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x \leq \frac{1}{t} \int_{0}^{t} \int_{\mathbb{R}^{d}} v\left(L\left(B_{\kappa s}-x\right)\right) d x d s=\int_{\mathbb{R}^{d}} v(L(x)) d x<+\infty . \tag{4.6}
\end{equation*}
$$

For every $R>0$, we write

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x \geq \int_{[-R, R]^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x \tag{4.7}
\end{equation*}
$$

and note that (4.6) provides $(1 / t) \eta(t, \cdot) \in \mathcal{L}_{1}\left([-R, R]^{d}\right)$, because v has at least linear growth at $+\infty$.

For a fixed R, denote

$$
\begin{equation*}
\mathscr{L}_{1, R}^{+}=\left\{h \in \mathscr{L}_{1}\left([-R, R]^{d}\right), h \geq 0\right\} \tag{4.8}
\end{equation*}
$$

and consider a convex function $\Upsilon_{R}: \mathscr{L}_{1, R}^{+} \rightarrow[0,+\infty]$

$$
\begin{equation*}
\Upsilon_{R}(h)=\int_{[-R, R]^{d}} v(h(x)) d x \tag{4.9}
\end{equation*}
$$

Denote by B_{R} the class of bounded measurable functions $f:[-R, R]^{d} \rightarrow \mathbb{R}$, and put

$$
\begin{equation*}
C_{\Upsilon, f, R}=\sup \left\{C: C+\int_{[-R, R]^{d}} f(x) h(x) d x \leq \Upsilon_{R}(h), h \in \mathcal{L}_{1, R}^{+}\right\}, \quad f \in B_{R} \tag{4.10}
\end{equation*}
$$

Lemma 4.2. For every $h \in \mathcal{L}_{1, R}^{+}$with $\Upsilon_{R}(h)<+\infty$,

$$
\begin{equation*}
\Upsilon_{R}(h)=\sup _{f \in B_{R}}\left(C_{Y, f, R}+\int_{[-R, R]^{d}} f(x) h(x) d x\right) \tag{4.11}
\end{equation*}
$$

Remark 4.3. This statement is a version of the classic theorem in the finite-dimensional convex analysis about representation of the epigraph of a convex function as an intersection of upper half-spaces; see Theorem 12.1 in [48]. The idea of the proof, in our case, is principally the same, but we have to take care about topological aspects and about the fact that in general, Υ_{R} is an improper function.

Proof. Consider the set

$$
\begin{equation*}
\operatorname{epi} \Upsilon_{R}=\left\{(h, t): h \in \mathcal{L}_{1, R^{\prime}}^{+}, t \geq \Upsilon_{R}(h)\right\}, \tag{4.12}
\end{equation*}
$$

clearly, epi Υ_{R} is a convex subset of the Banach space $\mathscr{L}_{1}\left([-R, R]^{d}\right) \times \mathbb{R}$. In addition, this subset is closed by the Fatou lemma. Therefore, the separation theorem (Theorem 9.2 in [49], Chapter II) provides that epi Υ_{R} is the intersection of all the closed half-spaces containing epi Υ_{R}. Note that every continuous linear functional on the space $\perp_{1}\left([-R, R]^{d}\right) \times \mathbb{R}$ has the form (f, a) with $f \in B_{R}, a \in \mathbb{R}$ and

$$
\begin{equation*}
\langle(h, t),(f, a)\rangle=\int_{[-R, R]^{d}} h(x) f(x) d x+a t \tag{4.13}
\end{equation*}
$$

Take $h_{*} \in \perp_{v}^{+}$with $\Upsilon_{R}\left(h_{*}\right)<+\infty$, and $t_{*}<\Upsilon_{R}\left(h_{*}\right)$. Then $\left(h_{*}, t_{*}\right) \notin$ epi Υ_{R}, and therefore, there exists (f, a) and $c \in \mathbb{R}$ such that

$$
\begin{equation*}
\left\langle\left(h_{*}, t_{*}\right),(f, a)\right\rangle<c, \quad\langle(h, t),(f, a)\rangle \geq c, \quad(h, t) \in \operatorname{epi} \Upsilon_{R} . \tag{4.14}
\end{equation*}
$$

By the definition of epi Υ_{R}, if $(h, t) \in$ epi Υ_{R}, then $\left(h, t^{\prime}\right) \in$ epi Υ_{R} for every $t^{\prime}>t$, hence (4.14) is impossible if either $a=0$ or $a<0$. Divide (4.14) by a and denote $f_{a}=-f / a, c_{a}=c / a$. Then,

$$
\begin{equation*}
c_{a}+\int_{[-R, R]^{d}} h^{*}(x) f_{a}(x) d x>t_{*}, h s p a c e 10 p t c_{a}+\int_{[-R, R]^{d}} h(x) f_{a}(x) d x \leq t, \quad(h, t) \in \operatorname{epi} \Upsilon_{R} \tag{4.15}
\end{equation*}
$$

Take $t=\Upsilon_{R}(h)$ in the second inequality in (4.15); this yields $c_{a} \leq C_{Y, f_{a}, R}$. Consequently,

$$
\begin{equation*}
t_{*} \leq \sup _{f \in B_{R}}\left(C_{\Upsilon, f, R}+\int_{[-R, R]^{d}} f(x) h_{*}(x) d x\right) \tag{4.16}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\Upsilon_{R}\left(h_{*}\right) \leq \sup _{f \in B_{R}}\left(C_{Y, f, R}+\int_{[-R, R]^{d}} f(x) h_{*}(x) d x\right) \tag{4.17}
\end{equation*}
$$

because $t_{*}<\Upsilon_{R}\left(h_{*}\right)$ is arbitrary. The inverse inequality is obvious.
Take $f \in B_{R}$, then

$$
\begin{equation*}
\mathbb{E}_{0} \exp \left\{t \int_{[-R, R]^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \geq e^{C_{\gamma, f, R} t} \mathbb{E}_{0} \exp \left\{\int_{[-R, R]^{d}} f(x) \eta(t, x) d x\right\} \tag{4.18}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\int_{[-R, R]^{d}} f(x) \eta(t, x) d x=\int_{0}^{t} \widehat{f}\left(B_{\kappa s}\right) d s \tag{4.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{f}(y)=\int_{[-R, R]^{d}} f(x) L(y-x) d x \tag{4.20}
\end{equation*}
$$

is a bounded function. Henceforth, by the large deviations result by Kac [50] (see also Theorem 4.1.6 in [51]), we have

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{t \int_{[-R, R]^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \geq C_{Y, f, R}+\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{\int_{0}^{t} \widehat{f}\left(B_{\kappa s}\right) d s\right\} \tag{4.21}\\
& \quad \geq C_{Y, f, R}+\sup _{g \in \mathscr{\Psi}_{d}}\left\{\int_{\mathbb{R}^{d}} \widehat{f}(x) g^{2}(x) d x-\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla g(x)|^{2} d x\right\}
\end{align*}
$$

Note that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \widehat{f}(x) g^{2}(x) d x=\int_{[-R, R]^{d}} f(x)\left[\int_{\mathbb{R}^{d}} g^{2}(y) L(x-y) d y\right] d x \tag{4.22}
\end{equation*}
$$

Summarizing our proof,

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \geq \sup _{g \in \mathcal{F}_{d}}\left\{C_{\Upsilon, f, R}+\int_{[-R, R]^{d}} f(x)\left[\int_{\mathbb{R}^{d}} g^{2}(y) L(x-y) d y\right] d x-\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla g(x)|^{2} d x\right\} \tag{4.23}
\end{align*}
$$

for every $R>0, f \in B_{R}$. We take supremum over $f \in B_{R}$ and get, by Lemma 4.2,

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \geq \sup _{g \in \mathcal{F}_{d}}\left\{\Upsilon_{R}\left(\int_{\mathbb{R}^{d}} g^{2}(y) L(\cdot-y) d y\right)-\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla g(x)|^{2} d x\right\} \tag{4.24}
\end{align*}
$$

Note that by Jensen's inequality, for every $g \in \mathcal{F}_{d}$,

$$
\begin{align*}
\Upsilon_{R}\left(\int_{\mathbb{R}^{d}} g^{2}(y) L(\cdot-y) d y\right) & =\int_{[-R, R]^{d}} v\left(\int_{\mathbb{R}^{d}} g^{2}(y) L(x-y) d y\right) d x \\
& \leq \int_{[-R, R]^{d}} \int_{\mathbb{R}^{d}} g^{2}(y) v(L(x-y)) d y d x \leq \int_{\mathbb{R}^{d}} v(L(x)) d x<+\infty, \tag{4.25}
\end{align*}
$$

which makes it possible to apply Lemma 4.2. Finally, taking supremum over $R>0$, we obtain the lower bound in (4.4).

Proof of Theorem 4.1 (the upper bound). Assume first that L is continuous and supported by some cube $[-M, M]^{d}$. In that case, we reduce the proof of the upper bound to application of the large deviation principle for empirical measures of the Brownian motion on a torus. Such a reduction is standard, for example, [46]; the projection on the torus is required in order to make it possible to use Donsker-Varadhan's large deviation principle for empirical measures of a Markov process with a compact state space, [52].

Note that $v(u+v)-v(u) \geq v(v)-v(0)$ because of the convexity, and $v(0)=0$. Hence, the function v satisfies

$$
\begin{equation*}
v(u+v) \geq v(u)+v(v), \quad u, v \geq 0 \tag{4.26}
\end{equation*}
$$

Thus, for any $N>M$,

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x=\sum_{z \in \mathbb{Z}^{d}} \int_{[-N, N]^{d}} v\left(\frac{1}{t} \eta(t, 2 N z+x)\right) d x \\
& \quad \leq \int_{[-N, N]^{d}} v\left(\frac{1}{t} \sum_{z \in \mathbb{Z}^{d}} \eta(t, 2 N z+x)\right) d x=\int_{[-N, N]^{d}} v\left(\frac{1}{t} \widetilde{\eta}(t, x)\right) d x \tag{4.27}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\eta}(t, x)=\int_{0}^{t} \widetilde{L}\left(B_{\kappa s}-x\right) d s, \quad \widetilde{L}(x)=\sum_{z \in \mathbb{Z}^{d}} L(2 N z+x) \tag{4.28}
\end{equation*}
$$

Denote by T_{d}^{N} the torus of the size $2 N$, that is, the cube $[-N, N]^{d}$ with the sides identified. Let us denote by J_{N} the projection on this torus: by definition, for $x \in \mathbb{R}^{d}$ its projection $J_{N}(x)$ is the unique point $\tilde{x} \in T_{d}^{N}$ such that $x-\tilde{x} \in 2 N \mathbb{Z}^{d}$. Denote $B_{s}^{N}=J_{N}(B$.), the Brownian motion on the torus T_{d}^{N}. With this notation in mind, we rewrite the right hand side term in (4.27)

$$
\begin{equation*}
\int_{[-N, N]^{d}} v\left(\frac{1}{t} \tilde{\eta}(t, x)\right) d x=\int_{T_{d}^{N}} v\left(\frac{1}{t} \eta^{N}(t, x)\right) d x, \quad \eta^{N}(t, x)=\int_{0}^{t}\left(L \circ J_{N}\right)\left(B_{\kappa s}-x\right) d s \tag{4.29}
\end{equation*}
$$

Consider the empirical measures for the Brownian motion on the torus T_{d}^{N}

$$
\begin{equation*}
Q_{t}^{N}(A)=\frac{1}{t} \int_{0}^{t} 1_{B_{\kappa s}^{N} \in A} d s, \quad A \in B\left(T_{d}^{N}\right) \tag{4.30}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{1}{t} \eta^{N}(t, x)=\int_{T_{d}^{N}}\left(L \circ J_{N}\right)(y-x) Q_{t}^{N}(d y) \tag{4.31}
\end{equation*}
$$

and the mapping

$$
\begin{equation*}
\mu \longrightarrow \int_{T_{d}^{N}} v\left(\int_{T_{d}^{N}}\left(L \circ J_{N}\right)(y-x) \mu(d y)\right) d x \tag{4.32}
\end{equation*}
$$

is continuous and bounded on the space of all probability distributions on T_{d}^{N} with the metrics of weak convergence. Hence, combination of (4.27), the large deviation principle for Q_{t}^{N} (Theorem 3 in [52]), and Varadhan's lemma (Proposition 3.8 in [53]) yields

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{0} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \leq \sup _{g \in \mathscr{\Phi}_{d}^{N}}\left\{\int_{T_{d}^{N}} v\left(\int_{T_{d}^{N}}\left(L \circ J_{N}\right)(x-y) g^{2}(y) d y\right) d x-\frac{\kappa}{2} \int_{T_{d}^{N}}|\nabla g(y)|^{2} d y\right\} \tag{4.33}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{F}_{d}^{N}=\left\{g \in W_{2}^{1}\left(T_{d}^{N}\right): \int_{T_{d}^{N}} g^{2}(x) d x=1\right\} \tag{4.34}
\end{equation*}
$$

By smooth truncation, it is easy to verify that

$$
\begin{align*}
& \sup _{g \in \mathscr{F}_{d}}\left\{\int_{\mathbb{R}^{d}} v\left(\int_{\mathbb{R}^{d}} L(x-y) g^{2}(y) d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} \\
& \quad \leq \liminf _{N \rightarrow \infty} \sup _{g \in \mathscr{F}_{d}^{N}}\left\{\int_{T_{d}^{N}} v\left(\int_{T_{d}^{N}}\left(L \circ J_{N}\right)(x-y) g^{2}(y) d y\right) d x-\frac{\kappa}{2} \int_{T_{d}^{N}}|\nabla g(y)|^{2} d y\right\} \tag{4.35}
\end{align*}
$$

which completes the proof.
Finally, we remove the additional regularity assumption on L. Recall the assumption (4.2) and note that one can assume the sequence $L_{n}, n \geq 1$ to be pointwise increasing, because otherwise, one can take $\widetilde{L}_{n}=\max _{k \leq n} L_{n}$ instead.

Write $\Delta_{n}=L-L_{n}$ and

$$
\begin{equation*}
\eta(t, x)=\eta_{n}(t, x)+\zeta_{n}(t, x), \quad \zeta_{n}(t, x)=\int_{0}^{t} \Delta_{n}\left(B_{\kappa s}-x\right) d s \tag{4.36}
\end{equation*}
$$

For every $\gamma \in(0,1)$, we have by convexity

$$
\begin{equation*}
v\left(\frac{1}{t} \eta(t, x)\right) \leq \gamma v\left(\frac{1}{\gamma t} \eta_{n}(t, x)\right)+(1-\gamma) v\left(\frac{1}{(1-\gamma) t} \zeta_{n}(t, x)\right) \tag{4.37}
\end{equation*}
$$

The Jensen inequality, analogously to (4.6), provides that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma) t} \zeta_{n}(t, x)\right) d x \leq \int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma)} \Delta_{n}(x)\right) d x \tag{4.38}
\end{equation*}
$$

Then, from the upper bound with a regular kernel L_{n}, we obtain

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{0} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \leq \sup _{g \in \mathcal{F}_{d}}\left\{r \int_{\mathbb{R}^{d}} v\left(\frac{1}{r} \int_{\mathbb{R}^{d}} L_{n}(x-y) g^{2}(y) d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} \tag{4.39}\\
& \quad+\int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma)} \Delta_{n}(x)\right) d x,
\end{align*}
$$

for any $n \geq 1$ and $\gamma \in(0,1)$. Passing to the limit first as $n \rightarrow \infty$ and then as $\gamma \rightarrow 1$ completes the proof.

4.2. Proof of Theorem 2.1: Critical Case

The kernel (1.5) has the following scaling property: $K(x)=\tau^{-p / 2} K\left(\tau^{-1 / 2} x\right)$ for any $\tau>0$. Then, by the scaling property of the Brownian motion,

$$
\begin{align*}
\xi(t, x) & \stackrel{d}{=} \int_{0}^{t} K\left(\tau^{-1 / 2} B_{s \tau}-x\right) \\
& =\tau^{p /(2-1)} \int_{0}^{t \tau} K\left(B_{\kappa s}-\tau^{1 / 2} x\right) d s=\tau^{p /(2-1)} \xi\left(t \tau, x \tau^{1 / 2}\right) \tag{4.40}
\end{align*}
$$

Henceforth, the integral under the exponent in the right-hand side of (1.21), after the variable change $\tau^{1 / 2} x \mapsto x$, can be written as

$$
\begin{equation*}
\tau^{-d / 2} \int_{\mathbb{R}^{d}} \psi\left(\frac{\tau^{p / 2-1}}{\alpha_{t}} \xi(t \tau, x)\right) d x \tag{4.41}
\end{equation*}
$$

We take $\tau_{t}=t^{-2 / d+2}$. Under such a choice, $\tau_{t}^{-d / 2}=t \tau_{t}=t^{d / d+2}$. Observe that

$$
\begin{equation*}
\frac{\tau^{p / 2-1}}{\alpha_{t}} \sim \frac{1}{\alpha^{\prime}} \quad t \longrightarrow \infty \tag{4.42}
\end{equation*}
$$

because of (1.20). By monotonicity of ψ, we can change the variables $t^{d / d+2} \mapsto t$ and, applying Theorem 4.1 with $L=K, v(u)=\psi(u /(\alpha \pm \varepsilon))$, obtain

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} t^{-d /(d+2)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{o}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \\
& \quad \leq \sup _{g \in \mathscr{\mathscr { F }}_{d}}\left\{v \int_{\mathbb{R}^{d}} \psi\left(\frac{\theta}{(\alpha-\varepsilon)} \int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\}, \tag{4.43}\\
& \liminf _{t \rightarrow \infty} t^{-d /(d+2)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{o}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \\
& \quad \geq \sup _{g \in \mathscr{\Psi}_{d}}\left\{v \int_{\mathbb{R}^{d}} \psi\left(\frac{\theta}{(\alpha+\varepsilon)} \int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\}
\end{align*}
$$

Passing to the limit as $\varepsilon \rightarrow \infty$ completes the proof of Statement (ii) of Theorem 2.1.

4.3. Proof of Theorem 2.1: Heavy Scale Case

Let us proceed with further transformations of the expression (4.41) for the integral under the exponent in the right hand side of (1.21). Denote $\psi_{c}(u)=c^{-2} \psi(c u), c>0$ and $\psi_{0}(u)=u^{2} / 2$.

It can be verified that $\psi_{c}(u) \uparrow \psi_{0}(u)$ when $c \downarrow 0$. In particular, $\psi=\psi_{1} \leq \psi_{0}$, and hence

$$
\begin{align*}
\tau^{-d / 2} \int_{\mathbb{R}^{d}} \psi\left(\frac{\tau^{p / 2-1}}{\alpha_{t}} \xi(t \tau, x)\right) d x & \leq \frac{1}{2} \frac{\tau^{p-2-d / 2}}{\alpha_{t}^{2}} \int_{\mathbb{R}^{d}} \xi^{2}(t \tau, x) d x \tag{4.44}\\
& =\frac{1}{2} \frac{t^{2} \tau^{p-d / 2}}{\alpha_{t}^{2}} \int_{\mathbb{R}^{d}}\left(\frac{1}{t \tau} \xi(t \tau, x)\right)^{2} d x
\end{align*}
$$

Choose τ_{t} in such a way that

$$
\begin{equation*}
\frac{t^{2} \tau_{t}^{p-d / 2}}{\alpha_{t}^{2}}=t \tau_{t} \tag{4.45}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\tau_{t}=\alpha_{t}^{-4 /(d+2-2 p)} t^{2 /(d+2-2 p)} \tag{4.46}
\end{equation*}
$$

Under such a choice,

$$
\begin{equation*}
t \tau_{t}=\alpha_{t}^{-4 /(d+2-2 p)} t^{(d+4-2 p) /(d+2-2 p)} \tag{4.47}
\end{equation*}
$$

and the upper bound in (2.5) follows from the upper bound in (4.4) with $v(u)=v u^{2} / 2$. Note that Theorem 4.1 cannot be applied to this function v, because (4.3) fails. We refer here to Theorem 1.1 in [45], which, together with the Varadhan's lemma, provides (2.5).

To get the lower bound, take τ_{t} from (4.46) and write

$$
\begin{equation*}
\tau_{t}^{-d / 2} \int_{\mathbb{R}^{d}} \psi\left(\frac{\tau_{t}^{p / 2-1}}{\alpha_{t}} \xi\left(t \tau_{t}, x\right)\right) d x=\frac{\tau_{t}^{p-2-d / 2}}{\alpha_{t}^{2}} \tau^{-d / 2} \int_{\mathbb{R}^{d}} \psi_{c_{t}}\left(\frac{1}{t \tau_{t}} \xi\left(t \tau_{t}, x\right)\right) d x \tag{4.48}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{t}=\alpha_{t}^{-1} t \tau_{t}^{p / 2}=\alpha_{t}^{2 p /(d+2-2 p)-1} t^{1-p /(d+2-2 p)}=t^{(d+2-p) /(d+2-2 p)} \alpha_{t}^{-(d+2) /(d+2-2 p)} \tag{4.49}
\end{equation*}
$$

Condition (1.19) and assumption $p<(d+2) / 2$ provide $c_{t} \rightarrow 0$. Then, for every fixed $c>0$, we have $c_{t}<c$ for t large enough, and therefore,

$$
\begin{align*}
& \liminf _{t \rightarrow \infty} \alpha_{t}^{4 /(d+2-2 p)} t^{-(d+4-2 p) /(d+2-2 p)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right] \tag{4.50}\\
& \quad \geq \sup _{g \in \mathcal{F}_{d}}\left\{v \int_{\mathbb{R}^{d}} \psi_{c}\left(\frac{\theta}{\alpha} \int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\},
\end{align*}
$$

by the lower bound in (4.4) with $v(u)=v \psi_{c}(u)$. Since $\psi_{c}(x) \rightarrow \psi_{0}(x)=x^{2} / 2$ monotonously, this proves the lower bound in (2.5).

4.4. Brownian Motion in a Wiener Sheet Potential

Let us recall briefly the construction of the Brownian motion in a Wiener sheet potential, introduced in [45]. Let W be a Wiener sheet on \mathbb{R}^{d}, independent on B. Write, for a given shape function K,

$$
\begin{equation*}
U(x)=\int_{\mathbb{R}^{d}} K(y-x) W(d y), \quad \mathbf{U}_{t}=\int_{0}^{t} U\left(B_{\kappa s}\right) d s=\int_{\mathbb{R}^{d}} \xi(t, x) W(d x) \tag{4.51}
\end{equation*}
$$

for the Wiener sheet potential and respective total net attraction, obtained by a Brownian particle from this potential. If K is of the form (1.5), the potential U is not well defined in mean square sense, because $K \notin \mathscr{L}_{2}\left(\mathbb{R}^{d}\right)$ for any p. On the other hand, for $p \in(d / 2,(d+2) / 2)$, one has

$$
\begin{equation*}
\mathbb{E}_{0} \int_{\mathbb{R}^{d}} \xi^{2}(t, x) d x<+\infty \tag{4.52}
\end{equation*}
$$

and consequently \mathbf{U}_{t} is well defined.

It follows from [45, Corollary 1.5] (with $\beta=2$) and the variation relation derived in [54, Theorem 1.5] (with p there equal to 1) that under conditions of Statement (iii) of Theorem 2.1,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \alpha_{t}^{4 /(d+2-2 p)} t^{-(d+4-2 p) /(d+2-2 p)} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \mathbf{U}_{t}\right] \\
&=\sup _{g \in \mathcal{F}_{d}}\left\{\frac{\theta^{2}}{2} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \frac{g^{2}(y)}{|x-y|^{p}} d y\right)^{2} d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} \tag{4.53}
\end{align*}
$$

Comparing (4.53) and Statement (iii) of Theorem 2.1 below, we see that in the quantum regime, asymptotic behavior of the Brownian motion in a renormalized Poisson potential is principally determined by respective asymptotics of the Brownian motion in a Wiener sheet potential. Such a relation between these random potentials is quite natural, according to the following version of the central limit theorem.

Proposition 4.4. Let K have the form (1.5) with $p \in(d / 2,(d+2) / 2)$. Then, for every $t>0$, the distribution of

$$
\begin{equation*}
v^{-1 / 2} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s \tag{4.54}
\end{equation*}
$$

w.r.t. $\mathbb{P} \otimes \mathbb{P}_{0}$ weakly converges as $v \rightarrow \infty$ to the distribution of \mathbf{U}_{t} w.r.t. $\mathbb{P}^{W} \otimes \mathbb{P}_{0}$, where \mathbb{P}^{W} denotes the distribution of the Wiener sheet W.

Proof. Characteristic function of (4.54) is equal

$$
\begin{equation*}
\mathbb{E}_{0} \exp \left[v \int_{\mathbb{R}^{d}}\left(e^{i z v^{-1 / 2} \xi(t, x)}-1-i \mathbf{z} v^{-1 / 2} \xi(t, x)\right) d x\right] \tag{4.55}
\end{equation*}
$$

see Proposition 2.2 in [7]. For every $z \in \mathbb{C}, t>0, x \in \mathbb{R}^{d}$,

$$
\begin{equation*}
v\left(e^{i z v^{-1 / 2} \xi(t, x)}-1-i z \mathcal{v}^{-1 / 2} \xi(t, x)\right) \longrightarrow-\frac{z^{2}}{2} \xi^{2}(t, x), \quad v \longrightarrow \infty \tag{4.56}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
v\left|e^{i z v^{-1 / 2} \xi(t, x)}-1-i z v^{-1 / 2} \xi(t, x)\right| \leq C_{0} z^{2} \xi^{2}(t, x) \tag{4.57}
\end{equation*}
$$

with some constant C_{0}. Since for $p \in(d / 2,(d+2) / 2)$

$$
\begin{equation*}
\mathbb{E}_{0} e^{C \int_{\mathbb{R}^{d}} \xi^{2}(t, x) d x}<\infty, \quad t>0, C>0 \tag{4.58}
\end{equation*}
$$

(see [45]), we have by the dominated convergence theorem that the characteristic functions (4.55) converge pointwise to

$$
\begin{equation*}
\mathbb{E}_{0} \exp \left[-\frac{z^{2}}{2} \int_{\mathbb{R}^{d}} \xi^{2}(t, x) d x\right], \tag{4.59}
\end{equation*}
$$

which is just the characteristic function of \mathbf{U}_{t}.

5. The integrated Density of States

5.1. Proof of Proposition 2.6

Statement A. We proceed in two steps. First, we show that under conditions of the proposition, almost all realizations of Q are bounded from below on a given cube. We consider the case $Q=\bar{V}$; the case of a partially renormalized potential is quite analogous. To simplify notation, we assume in the sequel $v=1$.

Write

$$
\begin{equation*}
\bar{V}(x)=\int_{\mathbb{R}^{d}} K^{g}(x-y)[\omega(d y)-d y]+\int_{\mathbb{R}^{d}} K_{g}(x-y)[\omega(d y)-d y] \tag{5.1}
\end{equation*}
$$

The function K^{g} is supported by some ball $\{x:|x| \leq R\}$, which brings the lower bound $-\omega_{d} R^{d}$ for the first summand. Henceforth, without loss of generality, we can remove this term. In what follows, we consider a renormalized Poisson potential with K_{g} instead of K. To simplify the notation, we just consider \bar{V} assuming that K is bounded, Lipschitz, and belongs to $W_{2}^{1}\left(\mathbb{R}^{d}\right)$.

It is a simple observation that for a smooth compactly supported function $L: \mathbb{R}^{d} \rightarrow \mathbb{R}$, every realization of respective renormalized Poisson potential belongs to $W_{2}^{1}\left(\mathbb{R}^{d}\right)$, and

$$
\begin{equation*}
\nabla \int_{\mathbb{R}^{d}} L(x-y)[\omega(d x)-d y]=\int_{\mathbb{R}^{d}} \nabla L(x-y)[\omega(d y)-d y] . \tag{5.2}
\end{equation*}
$$

This, by usual approximation argument, provides that almost all realizations of the renormalized Poisson potential with kernel K belong to $W_{2}^{1}\left(\mathbb{R}^{d}\right)$, and (5.2) holds true in Sobolev sense for $K=L$.

Since K is Lipschitz, ∇K is bounded; the function K is bounded, as well. Then, Proposition 2.7 in [7] provides

$$
\begin{equation*}
\mathbb{E} \exp (|\bar{V}(0)|+|\nabla \bar{V}(0)|)<+\infty . \tag{5.3}
\end{equation*}
$$

By shift invariance, this gives

$$
\begin{equation*}
\mathbb{E} \int_{U} \exp (|\bar{V}(x)|+|\nabla \bar{V}(x)|) d x<+\infty \tag{5.4}
\end{equation*}
$$

Therefore, almost all realizations of \bar{V} belong to $W_{\infty}^{1}(U)=\bigcap_{p>1} W_{p}^{1}(U)$ and henceforth are continuous by Sobolev's inclusion theorem (e.g., [55]). In particular, these realizations are bounded.

The second part of the proof is represented by the following deterministic lemma.
Lemma 5.1. Let $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function bounded from below and U a given cube.
Denote

$$
\begin{equation*}
Q_{N}=Q \wedge N, \tag{5.5}
\end{equation*}
$$

and consider the Schrödinger operators $H_{U}^{Q_{N}}, N \geq 1$ with the Dirichlet boundary conditions, defined by (2.14) with Q replaced by Q_{N}.

Then,
(i) $R_{t, U}^{Q_{N}}=e^{-t H_{U}^{Q_{N}}}, t \geq 0$ converge strongly as $N \rightarrow \infty$ to a continuous semigroup $R_{t, U^{\prime}}^{Q}, t \geq 0$ of self-adjoint operators in $L_{2}(U, d x) . R_{t, U^{\prime}}^{Q} t \geq 0$ admits the Feynman-Kac representation (2.15),
(ii) every operator $R_{t, U}^{Q}, t \geq 0$ is of trace class,
(iii) for the generator H_{U}^{Q} of the semigroup $R_{t, U^{\prime}}^{Q}, t \geq 0$, the function (2.17) is well defined, and its Laplace transform admits the representation

$$
\begin{equation*}
\int_{\mathbb{R}} e^{-\lambda t} d N_{U}^{Q}(\lambda)=(2 \pi \kappa t)^{-d / 2} \frac{1}{|U|} \int_{U} \mathbb{E}_{0,0}^{\kappa t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}+x\right) d s\right] X U_{, t}(B .+x)\right) d x \tag{5.6}
\end{equation*}
$$

Proof. For every N, the semigroup $R_{t, U}^{Q_{N}}=e^{-t H_{u}^{Q_{N}}, t \geq 0 \text { admits the Feynman-Kac repre- }}$ sentation (2.15). An alternative form of this representation ([1, page 13]) is that $R_{\mathrm{t}, U}^{Q_{N}}$ is an integral operator with the kernel

$$
\begin{equation*}
r_{t, U}^{Q_{N}}(x, y)=p_{t}(x, y) \mathbb{E}_{x, y}^{t}\left(\exp \left[-\int_{0}^{t} Q_{N}\left(B_{\kappa s}\right) d s\right] X U, t(B .)\right) \tag{5.7}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{t}(x, y)=(2 \pi \kappa t)^{-d / 2} e^{-|x-y|^{2} / 2 \kappa t} \tag{5.8}
\end{equation*}
$$

is the transition probability density for the process $B_{\kappa s}, s \geq 0$, and $\mathbb{E}_{x, y}^{t}$ denotes the expectation w.r.t. law of the Brownian bridge which takes values x and y at $s=0$ and $s=t$, respectively. By Propositions 3.2 and 3.5 in [1], for a given N, the function $r_{t, U}^{Q_{N}}$ is continuous and symmetric. Then, by the monotone convergence theorem, there exists a monotonous limit

$$
\begin{equation*}
r_{t, U}^{Q}(x, y)=\lim _{N \rightarrow \infty} r_{t, U}^{Q_{N}}(x, y)=(2 \pi \kappa t)^{-d / 2} e^{-|x-y|^{2} /(2 \kappa t)} \mathbb{E}_{x, y}^{t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right] X U, t(B .)\right), \tag{5.9}
\end{equation*}
$$

which is bounded and symmetric. Integral operators $R_{t, U}^{Q_{N}}$ converge to the operator $R_{t, U}^{Q}$ with kernel $r_{t, L}^{Q}$ in the Hilbert-Schmidt norm, because respective kernels converge in $L_{2}(U \times U, d x)$. This proves Statement (i) immediately. Since

$$
\begin{equation*}
R_{t, U}^{Q}=R_{t / 2, U}^{Q} R_{t / 2, U^{\prime}}^{Q} \tag{5.10}
\end{equation*}
$$

and every $R_{t / 2, U}^{Q}$ is a Hilbert-Schmidt operator, the operator $R_{t, U}^{Q}$ is of trace class. This proves Statement (ii).

We have just proved that $R_{t, U}^{Q}$ is of trace class, which means that it has a purely point spectrum and

$$
\begin{equation*}
\text { Trace } R_{t, U}^{Q}=\sum_{k} \lambda_{k, Q, t}<+\infty \tag{5.11}
\end{equation*}
$$

where $\left\{\lambda_{k, Q, t}\right\}$ denote eigenvalues of $R_{t, U}^{Q}$, counted with their multiplicities. By the spectral decomposition theorem, this yields that the generator H_{U}^{Q} of the semigroup $R_{t, U}^{Q}, t \geq 0$ has a purely point spectrum locally finite on every interval $(-\infty, \lambda]$. In addition, $\lambda_{k, Q, t}=e^{-\lambda_{k, Q} t}$, where $\left\{\lambda_{k, Q}\right\}$ are respective eigenvalues of H_{U}^{Q}, counted with their multiplicities. Therefore, the function (2.17) is well defined, and its Laplace transform has the form

$$
\begin{equation*}
\int_{\mathbb{R}} e^{-\lambda t} d N_{U}^{Q}(\lambda)=\frac{1}{|U|} \sum_{k} e^{-t \lambda_{k}, U}=\frac{1}{|U|} \operatorname{Trace} R_{t, U}^{Q}=\frac{1}{|U|} \int_{U \times U} r_{t / 2, U}^{Q}(x, y) r_{t / 2, U}^{Q}(y, x) d x d y \tag{5.12}
\end{equation*}
$$

in the last equality, we have used the standard relation (e.g., [56, Chapter III, Section 9])

$$
\begin{equation*}
\text { Trace } A^{*} A=\|A\|_{\mathrm{HS}}^{2} \tag{5.13}
\end{equation*}
$$

with the Hilbert-Shmidt norm of the operator A in the right hand side. By the Feynman-Kac representation (2.15) and the Markov property of the Brownian bridge, the last integral can be written as

$$
\begin{equation*}
(2 \pi \kappa t)^{-(d / 2)} \frac{1}{|U|} \int_{U} \mathbb{E}_{x, x}^{\kappa t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right] X U, t(B .)\right) d x \tag{5.14}
\end{equation*}
$$

which completes the proof of the lemma.
Statement B (sketch of the proof). In the second part of the proposition, the classic argument which goes back to [21] is applicable. In order to keep the exposition self-sufficient, we give a brief sketch of this argument here.

The random fields $Q=\bar{V}$ and $Q=V^{h}$ are ergodic (or metrically transitive) in the sense that the σ-algebra generated by functionals, invariant w.r.t. the transformations

$$
\begin{equation*}
S_{h}: Q(\cdot) \longmapsto Q(\cdot+h), \quad h \in \mathbb{R}^{d} \tag{5.15}
\end{equation*}
$$

is degenerate. The argument here is a straightforward modification of the classic one for onedimensional moving average integrals; see Theorem 1.1 and Example 3 in Chapter XI, [57]. Then, the Birkhoff's ergodic theorem (its modification for random fields, e.g., Chapter 6.5 in [58]) yields that for any integrable function f on the space of realizations of the field Q,

$$
\begin{equation*}
\lim _{U \uparrow \mathbb{R}^{d}} \frac{1}{|U|} \int_{U} f(Q(\cdot+x)) d x=\mathbb{E} f(Q) \tag{5.16}
\end{equation*}
$$

both almost surely and in mean sense.
By Proposition 2.7 in [7], $\mathbb{E} e^{-c Q(0)}<+\infty$ for every $c>0$. This, by the Jensen inequality, provides

$$
\begin{equation*}
\mathbb{E} \otimes \mathbb{E}_{0,0}^{\kappa t} \exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right]<+\infty, \quad t \geq 0 \tag{5.17}
\end{equation*}
$$

the argument here is the same as at the beginning of Section 3.1. Then, (5.16) applied to the function

$$
\begin{equation*}
f: q \longmapsto \mathbb{E}_{0,0}^{\kappa t} \exp \left[-\int_{0}^{t} q\left(B_{\kappa s}\right) d s\right] \tag{5.18}
\end{equation*}
$$

yields

$$
\begin{equation*}
\lim _{U \uparrow \mathbb{R}^{d}} \frac{1}{|U|} \int_{U} \mathbb{E}_{0,0}^{\kappa t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}+x\right) d s\right]\right) d x=\mathbb{E} \otimes \mathbb{E}_{0,0}^{\kappa t} \exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}\right) d s\right] \tag{5.19}
\end{equation*}
$$

both in mean and in a.s. sense. Straightforward calculation shows that with probability 1,

$$
\begin{equation*}
\lim _{U \uparrow \mathbb{R}^{d}} \frac{1}{|U|} \int_{U} x_{U, t}(B .+x) d x=1 \tag{5.20}
\end{equation*}
$$

Together with mean convergence (5.19), this provides

$$
\begin{equation*}
\lim _{U \uparrow \mathbb{R}^{d}} \frac{1}{|U|} \int_{U} \mathbb{E}_{0,0}^{\kappa t}\left(\exp \left[-\int_{0}^{t} Q\left(B_{\kappa s}+x\right) d s\right](1-X U, t(B .+x))\right) d x=0 \tag{5.21}
\end{equation*}
$$

which completes the proof.

5.2. Proof of Theorem 2.5

5.2.1. Classic Regime

Arguments in Section 3.1 are process insensitive. Henceforth, the upper bounds in (2.3), (2.11), and (3.4) hold true with \mathbb{E}_{0} replaced by $\mathbb{E}_{0,0}^{\kappa t}$.

On the other hand, Brownian bridge measures enjoy the scaling property similar to the Brownian one ([1, page 140]): its law $\mathbb{P}_{0,0}^{t}$ is the image of measure of $\mathbb{P}_{0,0}^{1}$ under the map

$$
\begin{equation*}
w(\cdot) \longmapsto \sqrt{t} w\left(\frac{\cdot}{t}\right) \tag{5.22}
\end{equation*}
$$

In addition, the Brownian bridge measure $\mathbb{P}_{0,0}^{1}$ has the small balls asymptotics similar to the Brownian one [59]

$$
\begin{equation*}
\varepsilon^{2} \log \mathbb{P}_{0,0}^{1}\left(\sup _{s \in[0,1]}|B(s)| \leq \varepsilon\right) \longrightarrow-\frac{1}{2} j_{(d-2) / 2}^{2} \tag{5.23}
\end{equation*}
$$

where $j_{(d-2) / 2}$ is the smallest positive root of the Bessel function $J_{(d-2) / 2}$. Henceforth, the heavy small ball argument from Section 3.2 can be applied to get the lower bounds in (2.3), (2.11), and (3.4) with $\mathbb{E}_{0,0}^{\kappa t}$ instead of \mathbb{E}_{0}.

The argument which deduce (2.12) from (3.4) is process insensitive.

5.2.2. Quantum Regime

The upper bound in (4.4) with $\mathbb{E}_{0,0}^{\kappa t}$ instead of \mathbb{E}_{0} can be deduced from the same upper bound in its original form. In the proof, we combine the standard trick based on the Markov property of the Brownian bridge (e.g., Lemma 3 in [27]) with the "universal" upper bound provided by the convexity; see the end of Section 4.1.

Write

$$
\begin{equation*}
\eta(t, x)=\eta(t-1, x)+\zeta(t, x), \quad \zeta(t, x)=\int_{t-1}^{t} L\left(B_{\kappa s}-x\right) d s \tag{5.24}
\end{equation*}
$$

For every $\gamma \in(0,1)$, we have by convexity

$$
\begin{equation*}
v\left(\frac{1}{t} \eta(t, x)\right) \leq \gamma v\left(\frac{1}{\gamma t} \eta(t-1, x)\right)+(1-\gamma) v\left(\frac{1}{(1-\gamma) t} \zeta(t, x)\right) \tag{5.25}
\end{equation*}
$$

Analogously to (4.6), we have

$$
\begin{align*}
\int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma) t} \zeta(t, x)\right) d x & \leq \int_{t-1}^{t} \int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma) t} L\left(B_{\kappa s}-x\right)\right) d x d s \tag{5.26}\\
& =\int_{\mathbb{R}^{d}} v\left(\frac{1}{(1-\gamma) t} L(x)\right) d x
\end{align*}
$$

The last term vanishes when $t \rightarrow \infty$. Therefore, for every $\gamma \in(0,1)$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{0,0}^{\kappa t} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \leq \limsup \frac{1}{t \rightarrow \infty} \mathbb{E}_{0,0}^{\kappa t} \exp \left\{\gamma t \int_{\mathbb{R}^{d}} v\left(\frac{1}{\gamma t} \eta(t-1, x)\right) d x\right\} \tag{5.27}
\end{align*}
$$

On the other hand, applying the Markov property at time $t-1$, we arrive at

$$
\begin{align*}
\mathbb{E}_{0,0}^{\kappa t} \exp \left\{\gamma t \int_{\mathbb{R}^{d}} v\left(\frac{1}{\gamma t} \eta(t-1, x)\right) d x\right\} & =\mathbb{E}_{0} \exp \left\{\gamma t \int_{\mathbb{R}^{d}} v\left(\frac{1}{\gamma t} \eta(t-1, x)\right) d x\right\} p_{1}\left(B_{\kappa(t-1)}, 0\right) \\
& \leq \mathbb{E}_{0} \exp \left\{\gamma t \int_{\mathbb{R}^{d}} v\left(\frac{1}{\gamma t} \eta(t, x)\right) d x\right\} p_{1}\left(B_{\kappa(t-1)}, 0\right) \tag{5.28}
\end{align*}
$$

Because

$$
\begin{equation*}
p_{1}(x, y) \leq(2 \pi \kappa)^{-d / 2}, \quad x, y \in \mathbb{R}^{d} \tag{5.29}
\end{equation*}
$$

we get from the upper bound in (4.4) that for every $\gamma \in(0,1)$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{0,0}^{\kappa t} \exp \left\{t \int_{\mathbb{R}^{d}} v\left(\frac{1}{t} \eta(t, x)\right) d x\right\} \\
& \quad \leq \sup _{g \in \mathcal{F}_{d}}\left\{r \int_{\mathbb{R}^{d}} v\left(\frac{1}{r} \int_{\mathbb{R}^{d}} L(x-y) g^{2}(y) d y\right) d x-\frac{\kappa}{2} \int_{\mathbb{R}^{d}}|\nabla g(y)|^{2} d y\right\} \tag{5.30}
\end{align*}
$$

Passing to the limit $\gamma \rightarrow 1$ completes the proof of the upper bound.
The lower bound in (4.4) with $\mathbb{E}_{0,0}^{\kappa t}$ instead of \mathbb{E}_{0} can be obtained by almost the same argument, as it was used to prove lower bound in (4.4) in its initial form. Only minor changes of the argument are required; let us discuss these changes.

Consider the large deviation result by Kac, which was the basic point in the proof of the lower bound

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}_{0} \exp \left\{\int_{0}^{t} \widehat{f}\left(B_{\kappa s}\right) d s\right\} \tag{5.31}\\
& \quad \geq C_{\Upsilon, f, R}+\sup _{g \in \mathcal{F}_{d}}\left\{\int_{\mathbb{R}^{d}} \widehat{f}(x) g^{2}(x) d x-\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla g(x)|^{2} d x\right\}
\end{align*}
$$

Note that under \mathbb{P}_{0},

$$
\begin{equation*}
B_{\kappa s}-\frac{s}{\kappa t} B_{\kappa t} \tag{5.32}
\end{equation*}
$$

is a Gaussian process with the covariance $\kappa\left(s \wedge s^{\prime}\right)-\kappa\left(s s^{\prime} / t\right)$ and, therefore, has the distribution $\mathbb{P}_{0,0}^{t}([1$, page 140]). Then, for any Lipschiz continuous bounded function $\widehat{f},(5.31)$ holds true with $\mathbb{E}_{0,0}^{\kappa t}$ instead of \mathbb{E}_{0}.

Note that the statement of the Lemma 4.2 still holds true when B_{R} is replaced with any class of functions $K \subset B_{R}$ separating points in $\mathscr{L}_{1}\left([-R, R]^{d}\right)$; in particular, one can take $K=B L_{R}$, the class of Lipschitz continuous bounded functions. Clearly, for $f \in B L_{R}$ the function

$$
\begin{equation*}
\widehat{f}(y)=\int_{[-R, R]^{d}} f(x) L(y-x) d x \tag{5.33}
\end{equation*}
$$

is Lipschitz continuous and bounded. Applying the modified (5.31) and proceeding literally as in the proof of the lower bound in Theorem 4.1, we get the required lower bound.

Once we have proved the modified large deviation asymptotics (4.4), we can repeat the arguments from Sections 4.2 and 4.3 (with the the scaling property of the Brownian bridge used instead of the same property of the Brownian motion) and deduce (2.4), (2.5) with \mathbb{E}_{0} replaced by $\mathbb{E}_{0,0}^{\kappa t}$.

5.3. Proof of Theorem 2.7

Theorem 9.7 in [42], Chapter IV gives (2.20) as a straightforward corollary of (2.3). Because $t \mapsto t \log t$ is a regularly varying function of the order 1 , this theorem is not applicable when (2.21) is considered.

From (2.13) (with $\mathbb{E}_{0,0}^{\kappa t}$ instead of \mathbb{E}_{0}), we have

$$
\begin{equation*}
\log \int_{\mathbb{R}} e^{-\left(\lambda+\nu \omega_{d} \theta(\log h+E u)\right) t} d N^{V^{h}}(\lambda)=v \omega_{d} \theta t \log t+o(t), \quad t \longrightarrow+\infty \tag{5.34}
\end{equation*}
$$

Henceforth, the proof of (2.21) by elementary transformations can be reduced to the proof of the following lemma.

Lemma 5.2. Let, for a nonnegative and nondecreasing function $N(\lambda), \lambda \in \mathbb{R}$,

$$
\begin{equation*}
\log \int_{\mathbb{R}} e^{-\lambda t} d N(\lambda)=a t \log t+o(t), \quad t \longrightarrow+\infty \tag{5.35}
\end{equation*}
$$

with some $a>0$.
Then,

$$
\begin{equation*}
\log N(\lambda)=-a \exp \left[-\frac{\lambda}{a}-1\right](1+o(1)), \quad \lambda \longrightarrow-\infty \tag{5.36}
\end{equation*}
$$

Proof. The upper bound, in a standard way, is provided by the Chebyshev inequality: for every $t>0, \lambda<0$,

$$
\begin{equation*}
\log N(\lambda) \leq \lambda t+\log \int_{\mathbb{R}} e^{-x t} d N(x) \tag{5.37}
\end{equation*}
$$

Take $t_{\lambda}=\exp [-\lambda / a-1]$, the solution of the minimization problem

$$
\begin{equation*}
t_{\lambda}=\arg \min (\lambda t+a t \log t) \tag{5.38}
\end{equation*}
$$

Clearly, $t_{\lambda} \rightarrow+\infty, \lambda \rightarrow-\infty$. By (5.35) and (5.37),

$$
\begin{equation*}
\log N(\lambda) \leq-a t_{\lambda}+o\left(t_{\lambda}\right), \quad \lambda \longrightarrow-\infty \tag{5.39}
\end{equation*}
$$

which gives the upper bound in (5.36).
Assume that the lower bound in (5.36) fails; that is, there exist $b>a$ and a sequence $\lambda_{n} \rightarrow-\infty$ such that

$$
\begin{equation*}
\log N\left(\lambda_{n}\right) \leq-b \exp \left[-\frac{\lambda_{n}}{a}-1\right], \quad n \geq 1 \tag{5.40}
\end{equation*}
$$

Fix $c<a$ and $\delta>0$, which will be specified below. Since the upper bound in (5.36) is already proved, there exists $\Lambda_{c}<0$ such that

$$
\begin{equation*}
\log N(\lambda) \leq-c \exp \left[-\frac{\lambda}{a}-1\right], \quad \lambda<\Lambda_{c} \tag{5.41}
\end{equation*}
$$

Let n be large enough for $\lambda_{n}<\Lambda_{c}$. Denote $t_{n}=e^{-\left(\lambda_{n}-\delta\right) / a-1}$ and write

$$
\begin{align*}
\int_{\mathbb{R}} e^{-\lambda t_{n}} d N(\lambda)= & \int_{-\infty}^{\Lambda_{c}} e^{-\lambda t_{n}} N(\lambda) d \lambda+\left[e^{-\Lambda_{c} t_{n}}+\int_{\Lambda_{c}}^{\infty} e^{-\lambda t_{n}} d N(\lambda)\right] \\
= & \int_{-\infty}^{\lambda_{n}-2 \delta} e^{-\lambda t_{n}} N(\lambda) d \lambda+\int_{\lambda_{n}-2 \delta}^{\lambda_{n}} e^{-\lambda t_{n}} N(\lambda) d \lambda+\int_{\lambda_{n}}^{\Lambda_{c}} e^{-\lambda t_{n}} N(\lambda) d \lambda \tag{5.42}\\
& +\left[e^{-\Lambda_{c} t_{n}}+\int_{\Lambda_{c}}^{\infty} e^{-\lambda t_{n}} d N(\lambda)\right] \\
= & I_{n}^{1}+I_{n}^{2}+I_{n}^{3}+I_{n}^{4}
\end{align*}
$$

Let us estimate $I_{n}^{1}-I_{n}^{4}$. Clearly,

$$
\begin{equation*}
I_{n}^{4} \leq C e^{-\Lambda_{c} t_{n}} \tag{5.43}
\end{equation*}
$$

with appropriate constant C. Assumption (5.40) yields, via monotonicity,

$$
\begin{align*}
I_{n}^{2} & \leq 2 \delta \exp \left[-\left(\lambda_{n}-2 \delta\right) t_{n}-b e^{-\lambda_{n} /(a-1)}\right] \\
& =2 \delta \exp \left[\left(\delta+a \log t_{n}+a\right) t_{n}-b e^{-\delta / a_{n}}\right] \tag{5.44}\\
& =2 \delta \exp \left[a t_{n} \log t_{n}-\left(b e^{-\delta / a}-a-\delta\right) t_{n}\right],
\end{align*}
$$

here we have used the relation

$$
\begin{equation*}
\lambda_{n}=-a \log t_{n}-a+\delta, \tag{5.45}
\end{equation*}
$$

which comes from the definition of t_{n}.
Consider the function $\Theta: \lambda \mapsto-\lambda t_{n}-c e^{-\lambda / a-1}$. Straightforward computation shows that assuming

$$
\begin{equation*}
c>a e^{-\delta / a} \tag{5.46}
\end{equation*}
$$

its derivative is increasing on $\left(-\infty, \lambda_{n}-2 \delta\right]$, and

$$
\begin{equation*}
\Theta_{n}^{\prime}\left(\lambda_{n}-2 \delta\right)=\left(\frac{c}{a} e^{\delta / a}-1\right) t_{n}>1 \tag{5.47}
\end{equation*}
$$

for n large enough. Then, with (5.41) in mind, we get

$$
\begin{equation*}
I_{n}^{1} \leq \int_{-\infty}^{\lambda_{n}-2 \delta} e^{\lambda-\lambda_{n}+2 \delta} e^{\Theta_{n}\left(\lambda_{n}-2 \delta\right)} d \lambda=e^{\Theta_{n}\left(\lambda_{n}-2 \delta\right)}=\exp \left[a t_{n} \log t_{n}-\left(c e^{\delta / a}-a-\delta\right) t_{n}\right] \tag{5.48}
\end{equation*}
$$

Similar argument leads to

$$
\begin{equation*}
I_{n}^{3} \leq \int_{\lambda_{n}}^{+\infty} e^{-\lambda+\lambda_{n}} e^{\Theta_{n}\left(\lambda_{n}\right)} d \lambda=e^{\Theta_{n}\left(\lambda_{n}\right)}=\exp \left[a t_{n} \log t_{n}-\left(\delta+c e^{\delta / a}-a\right) t_{n}\right] \tag{5.49}
\end{equation*}
$$

Now, we can finalize the proof. Take $\delta>0$ such that $b e^{-\delta / a}-a-\delta>0$. Note that

$$
\begin{equation*}
a e^{\delta / a}-a-\delta>0, \quad \delta+a e^{\delta / a}-a>0 \tag{5.50}
\end{equation*}
$$

Therefore, $c<a$ can be chosen in such a way that (5.46) holds true and

$$
\begin{equation*}
c e^{\delta / a}-a-\delta>0, \quad \delta+c e^{\delta / a}-a>0 \tag{5.51}
\end{equation*}
$$

Under such a choice of the constants δ and c, (5.43), (5.44) (5.48), and (5.49) provide that for n large enough,

$$
\begin{equation*}
\log \int_{\mathbb{R}} e^{-\lambda t_{n}} d N(\lambda) \leq a t_{n} \log t_{n}-\varepsilon t_{n} \tag{5.52}
\end{equation*}
$$

with some positive ε. This contradicts to (5.35) and proves that assumption (5.40) is impossible.

Remark 5.3. In the proof of the lower bound in Lemma 5.2, we have combined the upper bound from the same lemma with the estimates, typical for the Laplace method (e.g., [60]). Note that such a structure of the proof is similar to the one for the Gärtner-Ellis theorem (see Section 1.1 in [51]) although we cannot deduce the statement of the lemma from the Gärtner-Ellis theorem directly.

5.4. Proof of Theorem 2.8

Our argument is based on the following version of the Gärtner-Ellis theorem.
Lemma 5.4. Consider a sequence $N_{n}, n \geq 1$ of nonnegative monotonous functions on \mathbb{R}, which vanish at $-\infty$, and assume that there exist $a>1, c>0$, and a sequence $\Upsilon_{n} \rightarrow+\infty$ such that

$$
\begin{equation*}
\frac{1}{\Upsilon_{n}} \log \int_{\mathbb{R}} e^{-\mu \Upsilon_{n} x} d N_{n}(x) \longrightarrow I(\mu)=c \mu^{a}, \quad n \longrightarrow \infty, \mu>0 \tag{5.53}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{1}{\Upsilon_{n}} \log N_{n}(-x)=-I^{*}(x)(1+o(1)), \quad n \longrightarrow \infty \tag{5.54}
\end{equation*}
$$

uniformly by $x \in[A, B]$ for every $[A, B] \subset(0,+\infty)$. Here,

$$
\begin{equation*}
I^{*}(x)=\sup _{\mu>0}[\mu x-I(\mu)]=(c(a-1))^{-1 /(a-1)}\left(\frac{a-1}{a}\right)^{a /(a-1)} x^{a /(a-1)} \tag{5.55}
\end{equation*}
$$

The only difference between conditions of Lemma 5.4 and standard assumptions of the Gärtner-Ellis theorem is that functions N_{n} are not assumed to be distribution functions and are allowed to define nonprobability measures. One can see easily that this difference is inessential, and Lemma 5.4 can be proved in the same way with the Gärtner-Ellis theorem (or with Lemma 5.2 above).

Corollary 5.5. Let the field $\{N(\lambda, \gamma), \lambda \in \mathbb{R}, \gamma>0\}$ be such that
(a) every function $N(\cdot, \gamma), \gamma>0$ is nonnegative and nondecreasing,
(b) for every $t>0$,

$$
\begin{equation*}
\widetilde{N}(t, \gamma):=\int_{\mathbb{R}} e^{-\lambda t} N(d \lambda, \gamma)<\infty \tag{5.56}
\end{equation*}
$$

(c) for given $a>1, b \in \mathbb{R}, c>0$, and given sequences $\lambda_{n}>0, \gamma_{n}>0, n \geq 1$ with $\lambda_{n}^{a} \gamma_{n}^{-b} \rightarrow \infty$,

$$
\begin{align*}
& \log \widetilde{N}\left(\mu \lambda_{n}^{1 /(a-1)} r_{n}^{-b /(a-1)}, \gamma_{n}\right) \tag{5.57}\\
& \quad=c \mu^{a} \lambda_{n}^{a /(a-1)} r_{n}^{-b /(a-1)}(1+o(1)), \quad n \rightarrow \infty, \mu>0
\end{align*}
$$

Then,

$$
\begin{align*}
& \log N\left(-\lambda_{n} x, \gamma_{n}\right) \\
& \quad=(c(a-1))^{-1 /(a-1)}\left(\frac{a-1}{a}\right)^{a /(a-1)} \lambda_{n}^{a /(a-1)} \gamma_{n}^{-b /(a-1)} x^{a /(a-1)}(1+o(1)), \quad n \rightarrow \infty, \tag{5.58}
\end{align*}
$$

uniformly by $x \in[A, B]$ for every $[A, B] \subset(0,+\infty)$.
Proof. Put $\Upsilon_{n}=\lambda_{n}^{a /(a-1)} \gamma_{n}^{-b /(a-1)}$,

$$
\begin{equation*}
N_{n}(x)=N\left(\lambda_{n} x, \gamma_{n}\right), \quad x \in \mathbb{R} \tag{5.59}
\end{equation*}
$$

Because $a>1$ and $\lambda_{n}^{a} \gamma_{n}^{-b} \rightarrow \infty$, we have $\Upsilon_{n} \rightarrow \infty$. Condition (5.57) provides (5.53). Henceforth, (5.58) follows by Lemma 5.4.

Now, we can finalize the proof of Theorem 2.8.

Statement (i)

Take

$$
\begin{equation*}
a=b=\frac{d}{p}, \quad c=v \omega_{d} \theta^{d / p}\left(\frac{p}{d-p}\right) \Gamma\left(\frac{2 p-d}{p}\right) \tag{5.60}
\end{equation*}
$$

For given sequences $\lambda_{n}<0, \gamma_{n}>0, n \geq 1$ and arbitrary $\mu>0$ denote

$$
\begin{equation*}
t_{n}=\mu\left(-\lambda_{n}\right)^{1 /(a-1)} \gamma_{n}^{-b /(a-1)}, \quad \alpha_{t_{n}}=\frac{1}{\gamma_{n}} \tag{5.61}
\end{equation*}
$$

Condition $\left(-\lambda_{n}\right)^{p / d} / \gamma_{n} \rightarrow \infty$ yields $t_{n} \rightarrow \infty$, and condition $\left(-\lambda_{n}\right)^{(d+2-p) / 2} / \gamma_{n} \rightarrow \infty$ yields $\alpha_{t_{n}}=o\left(t_{n}\right)$. Therefore, (5.57) is provided by (2.3). In addition, we have $\left(-\lambda_{n}\right) / \gamma_{n} \rightarrow \infty$ because $p / d<1,(d+2-p) / 2>1$, and consequently $\left(-\lambda_{n}\right)^{a} r_{n}^{-b} \rightarrow \infty$. Applying Corollary 5.5 with $x=-1$ and λ_{n} replaced by $-\lambda_{n}$, we obtain the required statement.

Statement (ii)

Take

$$
\begin{equation*}
a=\frac{d+4-2 p}{d+2-2 p}, \quad b=\frac{4}{d+2-2 p}, \quad c=\mathrm{C}_{2} \tag{5.62}
\end{equation*}
$$

and keep the notation (5.58). Condition $\left(-\lambda_{n}\right)^{(d+4-2 p) / 4} / \gamma_{n} \rightarrow \infty$ yields $\left(-\lambda_{n}\right)^{a} \gamma_{n}^{-b} \rightarrow \infty$. Condition $\left(-\lambda_{n}\right)^{(d+2-p) / 2} / \gamma_{n} \rightarrow 0$ yields $t_{n}^{(d+2-p) /(d+2)}=o\left(\alpha_{t_{n}}\right)$. Finally, these two conditions yield $\lambda_{n} \rightarrow 0-$, and consequently $\left(-\lambda_{n}\right)^{(d+2-2 p) / 4} / \gamma_{n} \rightarrow \infty$ which is equivalent to $t_{n} \rightarrow \infty$.

Therefore, (5.57) is provided by (2.5). Applying Corollary 5.5 with $x=-1$ and λ_{n} replaced by $-\lambda_{n}$, we obtain the required statement.

Statement (iii)

In the critical case, one can transform easily (2.4) to

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(\frac{\alpha_{t}}{t}\right)^{d / p} \log \mathbb{E} \otimes \mathbb{E}_{0} \exp \left[-\frac{1}{\alpha_{t}} \int_{0}^{t} \bar{V}\left(B_{\kappa s}\right) d s\right]=C_{\psi} . \tag{5.63}
\end{equation*}
$$

Using this relation and following the proof of Statement (i) with appropriate modifications, we obtain the required statement.

Acknowledgments

The authors are grateful for the referee for useful comments. Xia Chen Research partially supported by NSF Grant no. DMS-0704024. Alexey Kulik Research partially supported by Ukrainian Nat. Acad. of Sciences, Grant no. 0107U002029.

References

[1] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, Germany, 1998.
[2] T. Komorowski, "Brownian motion in a Poisson obstacle field," Séminaire Bourbaki, vol. 1998/9, no. 853, pp. 91-111, 2000.
[3] S. Bezerra, S. Tindel, and F. Viens, "Superdiffusivity for a Brownian polymer in a continuous Gaussian environment," The Annals of Probability, vol. 36, no. 5, pp. 1642-1675, 2008.
[4] M. van den Berg, E. Bolthausen, and F. den Hollander, "Brownian survival among Poissonian traps with random shapes at critical intensity," Probability Theory and Related Fields, vol. 132, no. 2, pp. 163202, 2005.
[5] F. Germinet, P. D. Hislop, and A. Klein, "Localization for Schrödinger operators with Poisson random potential," Journal of the European Mathematical Society, vol. 9, no. 3, pp. 577-607, 2007.
[6] T. Povel, "Confinement of Brownian motion among Poissonian obstacles in $\mathbb{R}^{d}, d \geq 3$, " Probability Theory and Related Fields, vol. 114, no. 2, pp. 177-205, 1999.
[7] X. Chen and A. M. Kulik, "Brownian motion and parabolic Anderson model in a renormalized Poisson potential," Annales de l'Institut Henry Poincare. Accepted.
[8] X. Chen, "Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models," to appear in Annals of Probability.
[9] P. W. Anderson, "Absence of diffusion in certain random lattices," Physical Review, vol. 109, no. 5, pp. 1492-1505, 1958.
[10] R. A. Carmona and S. A. Molchanov, Parabolic Anderson Problem and Intermittency, vol. 108 of Memoirs of the American Mathematical Society, 1994.
[11] M. Biskup and W. König, "Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model," Journal of Statistical Physics, vol. 102, no. 5-6, pp. 1253-1270, 2001.
[12] R. A. Carmona and F. G. Viens, "Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter," Stochastics and Stochastics Reports, vol. 62, no. 3-4, pp. 251-273, 1998.
[13] M. Cranston, D. Gauthier, and T. S. Mountford, "On large deviations for the parabolic Anderson model," Probability Theory and Related Fields, vol. 147, no. 1-2, pp. 349-378, 2010.
[14] R. C. Dalang and C. Mueller, "Intermittency properties in a hyperbolic Anderson problem," Annales de l'Institut Henri Poincaré Probabilités et Statistiques, vol. 45, no. 4, pp. 1150-1164, 2009.
[15] I. Florescu and F. Viens, "Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space," Probability Theory and Related Fields, vol. 135, no. 4, pp. 603-644, 2006.
[16] J. Gärtner, F. den Hollander, and G. Maillard, "Intermittency on catalysts: symmetric exclusion," Electronic Journal of Probability, vol. 12, no. 18, pp. 516-573, 2007.
[17] J. Gärtner and W. König, "Moment asymptotics for the continuous parabolic Anderson model," The Annals of Applied Probability, vol. 10, no. 1, pp. 192-217, 2000.
[18] J. Gärtner, W. König, and S. A. Molchanov, "Almost sure asymptotics for the continuous parabolic Anderson model," Probability Theory and Related Fields, vol. 118, no. 4, pp. 547-573, 2000.
[19] J. Gärtner and S. A. Molchanov, "Parabolic problems for the Anderson model. I. Intermittency and related topics," Communications in Mathematical Physics, vol. 132, no. 3, pp. 613-655, 1990.
[20] G. Stolz, "Non-monotonic random Schrödinger operators: the Anderson model," Journal of Mathematical Analysis and Applications, vol. 248, no. 1, pp. 173-183, 2000.
[21] L. A. Pastur, "Spectra of random selfadjoint operators," Uspekhi Matematicheskikh Nauk, vol. 28, no. 1(169), pp. 3-64, 1973.
[22] W. Kirsch and F. Martinelli, "On the density of states of Schrödinger operators with a random potential," Journal of Physics A, vol. 15, no. 7, pp. 2139-2156, 1982.
[23] I. Lifshitz, "Structure of the energy spectrum of impurity bands in disordered solid solutions," Soviet Physics, vol. 17, pp. 1159-1170, 1963.
[24] I. M. Lifshitz, "Energy spectrum structure and quantum states of disordered condensed systems," Soviet Physics. Uspekhi, vol. 7, pp. 549-573, 1965.
[25] L. Erdős, "Lifschitz tail in a magnetic field: the nonclassical regime," Probability Theory and Related Fields, vol. 112, no. 3, pp. 321-371, 1998.
[26] L. Erdős, "Lifschitz tail in a magnetic field: coexistence of classical and quantum behavior in the borderline case," Probability Theory and Related Fields, vol. 121, no. 2, pp. 219-236, 2001.
[27] R. Fukushima, "Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential," http://arxiv.org/abs/arXiv:1010.3875.
[28] D. Hundertmark, W. Kirsch, and S. Warzel, "Classical magnetic Lifshits tails in three space dimensions: impurity potentials with slow anisotropic decay," Markov Processes and Related Fields, vol. 9, no. 4, pp. 651-660, 2003.
[29] O. Khorunzhiy, W. Kirsch, and P. Müller, "Lifshitz tails for spectra of Erdős-Rényi random graphs," The Annals of Applied Probability, vol. 16, no. 1, pp. 295-309, 2006.
[30] W. Kirsch and F. Martinelli, "On the spectrum of Schrödinger operators with a random potential," Communications in Mathematical Physics, vol. 85, no. 3, pp. 329-350, 1982.
[31] W. Kirsch and F. Martinelli, "Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians," Communications in Mathematical Physics, vol. 89, no. 1, pp. 27-40, 1983.
[32] W. Kirsch and B. Metzger, "The integrated density of states for random Schrödinger operators," in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, vol. 76 of Proc. Sympos. Pure Math., pp. 649-696, Amer. Math. Soc., Providence, RI, USA, 2007.
[33] W. Kirsch and B. Simon, "Lifshitz tails for periodic plus random potentials," Journal of Statistical Physics, vol. 42, no. 5-6, pp. 799-808, 1986.
[34] W. Kirsch and S. Warzel, "Lifshits tails caused by anisotropic decay: the emergence of a quantumclassical regime," Mathematical Physics, Analysis and Geometry, vol. 8, no. 3, pp. 257-285, 2005.
[35] W. Kirsch and S. Warzel, "Anderson localization and Lifshits tails for random surface potentials," Journal of Functional Analysis, vol. 230, no. 1, pp. 222-250, 2006.
[36] F. Klopp, "Weak disorder localization and Lifshitz tails: continuous Hamiltonians," Annales Henri Poincaré, vol. 3, no. 4, pp. 711-737, 2002.
[37] F. Klopp and L. Pastur, "Lifshitz tails for random Schrödinger operators with negative singular Poisson potential," Communications in Mathematical Physics, vol. 206, no. 1, pp. 57-103, 1999.
[38] H. Leschke and S. Warzel, "Quantum-classical transitions in Lifshitz tails with magnetic fields," Physical Review Letters, vol. 92, no. 8, Article ID 086402, 4 pages, 2004.
[39] S. Nakamura, "Lifshitz tail for Schrödinger operator with random magnetic field," Communications in Mathematical Physics, vol. 214, no. 3, pp. 565-572, 2000.
[40] H. Ôkura, "An asymptotic property of a certain Brownian motion expectation for large time," Proceedings of the Japan Academy, Series A, vol. 57, no. 3, pp. 155-159, 1981.
[41] L. A. Pastur, "The behavior of certain Wiener integrals as $t \rightarrow 1$ and the density of states of Schrödinger equations with random potential," Teoreticheskaya i Matematicheskaya Fizika, vol. 32, no. 1, pp. 88-95, 1977.
[42] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, vol. 297 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1992.
[43] B. Simon, "Lifschitz tails for the Anderson model," Journal of Statistical Physics, vol. 38, no. 1-2, pp. 65-76, 1985.
[44] P. Stollmann, "Lifshitz asymptotics via linear coupling of disorder," Mathematical Physics, Analysis and Geometry, vol. 2, no. 3, pp. 279-289, 1999.
[45] X. Chen and J. Rosen, "Large deviations and renormalization for Riesz potentials of stable intersection measures," Stochastic Processes and their Applications, vol. 120, no. 9, pp. 1837-1878, 2010.
[46] M. D. Donsker and S. R. S. Varadhan, "Asymptotics for the Wiener sausage," Communications on Pure and Applied Mathematics, vol. 28, no. 4, pp. 525-565, 1975.
[47] G. Fikhtengoltz, A Course in Differential and Integral Calculus, Gostekhizdat, Moscow, Russia, 1948.
[48] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, USA, 1970.
[49] H. H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Springer, New York, NY, USA, 1971.
[50] M. Kac, "On some connections between probability theory and differential and integral equations," in Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 189-215, University of California Press, Berkeley and Los Angeles, 1950.
[51] X. Chen, Random Walk Intersections: Large Deviations and Related Topics, vol. 157 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2010.
[52] M. D. Donsker and S. R. S. Varadhan, "Asymptotic evaluation of certain Markov process expectations for large time. I. II," Communications on Pure and Applied Mathematics, vol. 28, pp. 1-47, 1975.
[53] J. Feng and T. G. Kurtz, Large Deviations for Stochastic Processes, vol. 131 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2006.
[54] R. Bass, X. Chen, and J. Rosen, "Large deviations for Riesz potentials of additive processes," Annales de l'Institut Henri Poincaré Probabilités et Statistiques, vol. 45, no. 3, pp. 626-666, 2009.
[55] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 6, Academic Press, London, UK, 1975.
[56] I. C. Gohberg and M. G. Krĕn, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, USA, 1969.
[57] J. L. Doob, Stochastic Processes, John Wiley \& Sons, New York, NY, USA, 1953.
[58] R. J. Adler, The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistic, John Wiley \& Sons, Chichester, UK, 1981.
[59] Z. Shi, "Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times," Journal of Theoretical Probability, vol. 9, no. 4, pp. 915-929, 1996.
[60] E. T. Copson, Asymptotic Expansions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 55, Cambridge University Press, New York, NY, USA, 1965.

