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The problem is a power-law asymptotics of the probability that a self-similar process does not
exceed a fixed level during long time. The exponent in such asymptotics is estimated for some
Gaussian processes, including the fractional Brownian motion (FBM) in (−T−, T), T ≥ T− � 1 and
the integrated FBM in (0, T), T � 1.

1. The Problem

Let x(t), x(0) = 0 be a real-valued stochastic process with the following asymptotics:

P(x(t) < 1, t ∈ ΔT ) = T−θx+o(1), T −→ ∞, (1.1)

where θx is the so-called survival exponent of x(t). Below we focus on estimating θx for some
self-similar Gaussian processes in extended intervals ΔT = (0, T) and (−T−, T), T ≥ T− � 1.
Usually the estimation of the survival exponents is based on Slepian’s lemma. The estimation
requires reference processes with explicit or almost explicit values of θ. Unfortunately, the list
of such processes is very short. This includes the fractional Brownian motion (FBM), wH(t),
of order 0 < H < 1 both with one- and multidimensional time. According to Molchan ([1])

θwH = 1 −H for ΔT = (0, T), θwH = d for ΔT = (−T, T)d. (1.2)

Another important example is the integrated Brownian motion I(t) =
∫ t
0w(s)ds with the

exponent

θI =
1
4
, ΔT = (0, T), (1.3)
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(Sinai [2]).
The nature of this result is best understood in terms of a series of generalizations

where the integrand is a random walk with discrete or continuous time (see, e.g., Isozaki
and Watanabe [3]; Isozaki and Kotani [4]; Simon [5]; Vysotsky [6, 7]; Aurzada and Dereich
[8]; Dembo et al. [9]; Denisov and Wachtel [10]. The extension of (1.3) to include the case of
the integrated fractional Brownian motion, IH(t) =

∫ t
0wH(s)ds, remains an important; but as

yet unsolved problem.
Below we consider the survival exponents for the following Gaussian processes:

IH(t), t ∈ (0, T); χH(t) = sign(t)wH(t), t ∈ (−T, T); FBM in ΔT = (−Tα, T), 0 ≤ α ≤ 1; the
Laplace transform of white noise with ΔT = (0, T); the fractional Slepian’s stationary process
whose correlation function is BSH (t) = (1 − |t|2H)+, 0 < H ≤ 1/2.

Our approach to the estimation of θ is more or less traditional. Namely, any self-similar
process x(t) in ΔT = (0, T) generates a dual stationary process x̃(s) = e−hsx(es), s < ln T := T̃ ,
where h is the self-similarity index of x(t). For a large class of Gaussian processes, relation
(1.1) induces the dual asymptotics

P
(
x̃(s) ≤ 0, 0 < s < T̃

)
= exp

(
−θ̃xT̃(1 + o(1))

)
, T̃ −→ ∞, (1.4)

with the same exponent θ̃x = θx, [1, 11]. More generally, the dual exponent is defined by the
asymptotics

P(x(t) ≤ 0, t ∈ ΔT \ (−1, 1)) = exp
(
−θ̃xT̃(1 + o(1))

)
. (1.5)

To formulate the simplest condition for the exponents to be equal, we define one more
exponent θ̆x by means of the asymptotics

P
(∣∣t∗T
∣∣ ≤ 1

)
= T−θ̆x+o(1), (1.6)

where t∗T is the position of the maximum of x(t) in ΔT , that is, x(t∗T ) = sup(x(t), t ∈ ΔT ).

Lemma 1.1 (see [1, 11]). Let x(t), x(0) = 0 be a self-similar continuous Gaussian process in ΔT =
(−T−, T), T− ≤ T and (Hx(ΔT ), ‖ ‖T ) be the reproducing kernel Hilbert space associated with x(t).
Suppose that there exists such an element ϕ of Hx(ΔT ) that ϕ(t) ≥ 1, |t| > 1 and ‖ϕ‖2T = o(ln T).
Then θx, θ̃x, and θ̆x can exist simultaneously only; moreover, the exponents are equal to each other.

The equality θ = θ̃ reduces the original problem to the estimation of θ̃. Nonnegativity
of the correlation function of x̃(s) guarantees the existence of the exponent θ̃, [12]. In turn, the
inequality of two correlation functions, B1(s) ≤ B2(s), Bi(0) = 1, implies, by Slepian’s lemma,
the inverted inequality for the corresponding exponents: θ̃1 ≥ θ̃2.

An essentially different approach is required to find the explicit value of θ for FBM
in ΔT = (−Tα, T) and to estimate θ̃ in (1.4) for the fractional Slepian process with a small
parameterH.
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Figure 1: The survival exponents θ̃IH for the integrated fractional Brownian motion in ΔT = (−T, T):
hypothetical values (parabolic line), empirical estimates (small circles, squares), and theoretical bounds
(shaded zone given by Proposition 2.1(b, c)). The empirical exponents are based on the model ((2.9),
α(H) = 0) in three time intervals of T̃ = ln T : ln(1/ε) ≤ T̃(1 −H)H ≤ ln(10/ε), where ε = 0.01, 0.003, and
0.001 (see more in [13]).

2. Examples

2.1. Integrated Fractional Brownian Motion

Consider the process

IH(t) =
∫ t

0
wH(s)ds, (2.1)

where wH(t) is the fractional Brownian motion, that is, a Gaussian random process with the
stationary increments: E|wH(t) −wH(s)|2 = |t − s|2H , wH(0) = 0. Molchan and Khokhlov [13,
14] analyzed the exponent θIH theoretically and numerically and formulated the following
Hypothesis: θIH = H(1 −H) for ΔT = (0, T)) and θIH = 1 −H for ΔT = (−T, T).

The unexpected symmetry θIH = θI1−H for ΔT = (0, T) caused some doubt as to the
numerical results. To support the hypothesis, Molchan [11] derived the following estimates
of θ for IH(t):

ρH(1 −H) ≤ θ+IH ≤ θ−/+IH
≤ (1 −H), (2.2)

where ρ is a small constant and (+) and (−/+) are indicators of the intervals ΔT = (0, T) and
ΔT = (−T, T), respectively. Note that, in the case ofH < 1/2 and ΔT = (−T, T), it is unknown
whether the exponent exists. In such cases we have to operate with upper θ and lower θ
exponents. Therefore, θ−/+IH

in (2.2) for H < 1/2 is any number from the interval (θ, θ). The
relation (2.2) can be improved as follows.

Proposition 2.1. For ΔT = (0, T), one has

(a) θIH ≥ θI1−H , 0 < H ≤ 0.5,

(b) 0.5(H ∧H) ≤ θIH ≤ H, H = 1 −H,
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(c) θIH ≤
√
(1 − (H ∧H)2)/12.

Proof. The identity of the dual exponents for IH(t) follows from [14]; the dual survival
exponent exists because the dual correlation function,

B̃IH (s) = (2 + 4H)−1
[
(2 + 2H)

(
eHs + e−Hs

)
− e(1+H)s − e−(1+H)s +

(
es/2 − e−s/2

)2H+2
]

(2.3)

is positive. The inequality (a) is a consequence of the relation

B̃IH (t) ≤ B̃I1−H (t), 0 < H ≤ 1
2
. (2.4)

To prove (b, c), we use the correlation function of the process Ĩ1/2(ps), that is,

B̃I1/2
(
ps
)
=

1
2

(
3 exp

(
−p|s|

2

)
− exp

(
−3p|s|

2

))
, (2.5)

and the respective exponent θ̃ = p/4 (see (1.3)). The relation

B̃IH (t) ≤ B̃I1/2
(
pt
)
, H ≥ 1

2
, p = 2(1 −H), (2.6)

implies θIH ≥ (1 −H)/2 for H ≥ 1/2. Using (a) in addition, we come to the lower bound in
(b) because θIH ≥ θI1−H ≥ H/2 forH ≤ 1/2.

Similarly, the relation

B̃IH (t) ≥ B̃I1/2
(
pt
)
, H ≤ 1

2
, p = 2

√
1 −H2

3
, (2.7)

implies (c) for allH. A test of the purely analytical facts (2.4), (2.6), and (2.7) is given in the
appendix.

Remark 2.2. Proposition 2.1(a) follows from the more informative relation:

P
(
ĨH(s) ≤ 0, s ∈

(
0, T̃
))

≤ P
(
Ĩ1−H(s) ≤ 0, s ∈

(
0, T̃
))
. (2.8)

This inequality is important for understanding the numerical result by Molchan and
Khokhlov [13] represented in the form of empirical estimates of θ̃IH in Figure 1. We can see
that the empirical estimates show small but one-sided deviations from the hypothetical curve
θ = H(1−H) before and afterH = 1/2. The signs of these deviations are consistent with (2.8),
while the amplitudes are compatible with the model

P
(
ĨH(s) ≤ 0, s ∈

(
0, T̃
))

≈ CT̃α(H) exp
(
−H(1 −H)T̃

)
, T̃ � 1, sgnα(H) = sign(H − 0.5),

(2.9)
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and α(H) = H − 0.5 (more can be found in [13]).

2.2. The Laplace Transform of White Noise

Consider the process L(t) = t
∫∞
0 e−tudw(u), where w(u) is Brownian motion. The dual

stationary process L̃(s) has the correlation function B̃L(s) = 1/ cosh(s/2). Using (2.5) as a
majorant of B̃L(s), we improve the lower bound of θ̃L as follows.

Proposition 2.3. 3−1/2 ≤ 4θ̃L ≤ 1.

Proof. That the exponents for the dual processes L and L̃ are equal follows from Lemma 1.1
with ϕ(t) = t(1 + εT )/(t + εT ), where εT = 1/

√
ln T . For indeed, ϕ(t) = EL(t)η, where η =

(1 + ε−1T )L(εT ). By definition of the Hilbert spaceHL(ΔT ), we have the desired estimate:

∥∥ϕ
∥∥2
T = Eη2 =

ε−1T (εT + 1)2

2
= O
(√

ln T
)
. (2.10)

By (1.3) and Slepian’s lemma, the relation

B̃I1/2(t) ≤ B̃L
(
pt
)
, p ≤ 1 (2.11)

has as a consequence the estimate 4pθ̃L ≤ 1. The opposite inequality

B̃I1/2(t) ≥ B̃L
(
pt
)
, p2 ≥ 3, (2.12)

implies 4pθ̃L ≥ 1. The test of ((2.11), p = 1) and ((2.12), p = 2) is very simple and yields the Li
and Shao [12, 15] estimates: 0.5 < 4θ̃L < 1. The appendix contains a proof of (2.11), (2.12) for
all interesting values of p: 1, 2, and

√
3.

Remark 2.4. The dual survival exponent of L(t) is of interest as a parameter of the following
asymptotic relation:

P

(
2n∑

0

ξix
i
/= 0, x ∈ R1

)

= (2n)−4θ̃L+o(1), n −→ ∞, (2.13)

for random polynomials with the standard Gaussian independent coefficients [16]. A
continuous analogue of the polynomial on any of four intervals 0 < ±x±1 ≤ 1 is the Laplace
transform of white noise, which partially explains the appearance of θ̃L in the asymptotic
relation (2.13). Simulations suggest 4θ̃L = 0.76 ± 0.03, [16] and 4θ̃L ≈ 0.75, [17].
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2.3. Fractional Slepian’s Process

We reserve this term for a Gaussian stationary process SH(t)with correlation function

BSH (t) =
(
1 − |t|2H

)

+
, 0 < H ≤ 1

2
, (2.14)

because S1/2(t) is known as the Slepian process and SH(t) − SH(0), 0 < t ≤ 1, is equal in
distribution to the fractional Brownianmotion on the interval (0,1). By the Polya criterion, the
fractional Slepian process exists because BSH (t) is a nonincreasing and a convex function on
the semiaxis. The fact of the correlation function being nonnegative guarantees the existence
of θ̃SH in (1.4). SH(t) can be useful as a reference process in estimation of the survival
exponents. Therefore it is important to have accurate estimates of the exponent for SH(t).
The case of smallH is the most interesting because it describes a transition of SH(t) to white
noise. Our estimates of θ̃SH are based on two lemmas, where we use the following notation:

θ̃
(
f,Δ
)
= −|Δ|−1 logP(x(t) ≤ f(t), t ∈ Δ

)
. (2.15)

Lemma 2.5 (see [12]). Let x(t) be a centered Gaussian stationary process with a finite nonnegative
correlation function, that is, Bx(t) ≥ 0 and Bx(t) = 0 for |t| ≥ T0. Then the limit

θ̃(a) = lim
T→∞

θ̃(a, (0, T)), (2.16)

exists for every a ∈ R1. Moreover,

(
1 +

1
k

)−1
θ̃(a, kΔ0) ≤ θ̃(a) ≤ θ̃(a, kΔ0), Δ0 = (0, T0). (2.17)

Remark 2.6. Lemma 1.1 was derived by Li and Shao [12] for the Slepian process, S1/2(t), but
the proof remains valid for the general case. There is an explicit but very complicated formula
for θ̃SH (0,Δ) withH = 1/2 [18]. In case of Δ = (0, 2), this result reduces to

P(S1/2(t) ≤ 0, t ∈ (0, 2)) =
1
6
− 2 +

√
3

8π
(2.18)

and gives 1.336 < θ̃S1/2 < 2.004.

Lemma 2.7 (see [8]). Let x(t) be a centered Gaussian process in an interval Δ with a correlation
function B(t, s) and (Hx(Δ), ‖ · ‖Δ) be the Hilbert space with the reproducing kernel B(t, s) onΔ×Δ.
If 0 < θ̃(a,Δ) <∞, then

∣∣∣∣

√
θ̃
(
a + f,Δ

) −
√
θ̃(a,Δ)

∣∣∣∣ ≤
∥∥f
∥∥
Δ√

2|Δ|
. (2.19)
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Remark 2.8. Lemma 2.7 is a version of Proposition 1.6 from the paper by Aurzada andDereich
[8]; relation (2.19) successfully supplements the original Lemma 1.1.

Proposition 2.9. The persistence exponent of process SH(t) has the following estimates:

−(1 −H)H−1 ln(2H) ≤ θ̃SH ≤ 49H−2, (2.20)

where the left inequality holds for 0 < H ≤ e−2/2.

Corollary 2.10. If w−
H(t) = (wH(t) − wH(−t))/2 is the odd component of the fractional Brownian

motion, then

θ̃w−
H
≤ (7/H)2

2
, 0 < H < 0.5. (2.21)

Proof. The dual stationary process w̃−
H has the correlation function

B̃w−
H
(t) =

(
cosh

t

2

)2H

−
(
sinh

t

2

)2H

, (2.22)

which is positive. Hence the exponent θ̃w−
H
exists. The inequality

B̃w−
H
(2t) = (cosh t)2H

(
1 − (tanh t)2H

)
≥ (cosh t)2H

(
1 − |t|2H

)

+
≥ B̃SH (t), (2.23)

and Proposition 2.9 immediately imply the corollary.

Remark 2.11. The following estimates of θ̃w−
H
are due to Krug et al. [19]:

θ̃w−
H
≥ min

(
(1 −H)2

H
, (1 −H)21/(2H)−1

)

, 0 < H < 0.5,

θ̃w−
H
≤ (1 −H)2

H
, 0.1549 < H < 0.5.

(2.24)

For smallH these estimates are one-sided only.

Remark 2.12. A considerable difference in the behavior of θ̃w−
H
and θ̃wH = 1 −H for small H

is expected. Heuristically this can be explained as follows. AsH → 0, the discrete processes
w̃−
H(kΔ) and w̃H(kΔ) have different weak limits: {ξk} and {ξk − η/

√
2}, respectively, where

{ξk} and η are independent standard Gaussian variables. The probability (1.4) for the limiting
processes is quite different:

P(ξk < 0, k = 1 ÷N) = 2−N, P
(
ξk − η ≤ 0, k = 1 ÷N) = (N + 1)−1. (2.25)

Unfortunately, this argument fails to predict the behavior of θ̃SH for smallH, because the step
Δ cannot be arbitrary and is a function ofH.
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2.4. Khanin’s Problem

The survival exponent for fractional Brownian motion in the intervals ΔT = (−T, T) is
independent of the parameter H: θwH = 1. This interesting fact follows from both self-
similarity of wH and the stationarity of its increments [1].

In the caseH < 0.5, the variableswH(t) andwH(−t) are positive correlated. Therefore,
a possible power-law asymptotics

P(wH(t) < 1,−wH(−t) < 1, t ∈ (0, T)) = T−θ+o(1), (2.26)

where we change sign before wH(t) for negative t only, may have a radically different
exponent compared with θwH = 1. The question of finding bounds on the exponent θχH for
the process

χH(t) = sign(t)wH(t), ΔT = (−T, T), (2.27)

was asked by K. Khanin. The next proposition contains a partial answer to this question.

Proposition 2.13. (1) In the case 0.5 ≤ H < 1, the exponent θχH for ΔT = (−T, T) exists and admits
of the following estimates:

1 < θχH (1 −H)−1 ≤ 2, 0.5 ≤ H < 1, (2.28)

in addition, θχ1/2 = 1.

(2) Let θχH be the lower exponent in (2.26), then

θχH (1 −H)−1 ≥
(
H−1 − 1

)
∧ 21/2H−1, 0 < H < 0.25,

θχH (1 −H)−1 ≥ 2 0.25 < H ≤ 0.5.
(2.29)

Remark 2.14. To clarify why θχH/θwH is unbounded for smallH in the case ΔT = (−T, T), we
consider again the limiting sequence forwH(kΔ) asH → 0. This is {(ξk − ξ0)/

√
2}, where the

{ξk} are independent standard Gaussian variables. The probability (1.1) for the limit sequence
is

P
{
ξk < ξ0 +

√
2, |k| ≤N

}
= (2N + 1)−1l(N), (2.30)

where l(N) is a slowly varying function, whereas for the limit sequence of χH(kΔ) we have

P
{
ξ−k −

√
2 < ξ0 < ξk +

√
2, 0 < k ≤N

}
≈ √

πeN−1/2Φ
(√

2
)2N

, (2.31)
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where Φ(x) is the Gaussian distribution function. As in Remark 2.12, we have nontrivial
exponential asymptotics where the threshold for {ξk} is constant or bounded. Indeed, if the
event in (2.31) is true, then

|ξ0| <
√
2 +

max
(∣∣
∣
∑N

1 ξ−k
∣
∣
∣,
∣
∣
∣
∑N

1 ξk
∣
∣
∣
)

N
=
√
2 +

Op(1)√
N

. (2.32)

2.5. An Explicit Value of θx

We have two explicit but isolated results for the fractional Brownian motion: θwH = (1 −H)
for ΔT = (0, T) and θwH = 1 for ΔT = (−T, T). These results can be combined as follows.

Proposition 2.15. If ΔT = (−Tα, T), 0 ≤ α ≤ 1, then θwH = αH + (1 −H).

Remark 2.16. The result is based on the following properties of the position t∗Δ of themaximum
of wH(t) in Δ = [0, 1]: t∗Δ has a continuous probability density f∗

Δ(t) in (0, 1) and f∗
Δ(t) ≈

O(t−H) as t → 0. In the case of multidimensional time, the behavior of f∗
Δ(t), Δ = (0, 1)d near

t = 0 is a key to the survival exponent of wH(t) for ΔT = (−Tα, T)d, 0 < α < 1 and H < 1. By
(1.2), θwH = d in the case α = 1, and θwH = αd in the degenerate case:H = 1.

3. Proofs

Proof of Proposition 2.9

Lower Bound. Let w̃H(t) be a dual fractional Brownian motion with the parameter H,
that is, a Gaussian stationary process with correlation function B̃wH (t) = cosh(Ht) −
0.5(2 sinh(t/2))2H . We prove in the appendix that for 0 < H ≤ e−2/2,

B̃wH

(
pt
) ≥ BSH (t), p = −H−1 ln(2H). (3.1)

Applying Slepian’s lemma, one has θ̃SH ≥ p(1 −H) because θ̃wH = (1 −H).
Upper Bound. The random variable η =

∫1
0 SH(t)dt corresponds to an element fη(t) of

the Hilbert space, HS(Δ),Δ = (0, 1), with the reproducing kernel B(t, s) = 1 − |t − s|2H . By
definition ofHS(Δ), we have

fη(t) = ESH(t)η = 1 − t1+2H + (1 − t)1+2H
1 + 2H

,

∥∥fη
∥∥2
Δ = Eη2 = H(3 + 2H)(1 +H)−1(1 + 2H)−1.

(3.2)

It is easy to see that fη(0) ≤ fη(t) ≤ fη(1/2). Therefore,

H < fη(t) < 2H ln(2e),
4H
3

<
∥∥fη
∥∥2
Δ < 3H. (3.3)
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Let mH be the median of the random variable M = max{SH(t), t ∈ Δ}, where Δ = (0, 1).
Then

0.5 = P(SH(t) < mH, t ∈ Δ) < P
(
SH(t) < mHH

−1fη(t), t ∈ Δ
)
, (3.4)

becauseH−1fη(t) > 1. Setting x(t) = SH(t) in Lemma 2.5 and using notation (2.15), one has

θ̃
(
mHH

−1fη(t),Δ
)
< ln 2,

√
θ̃(0,Δ) <

√
ln 2 +

mHH
−1∥∥fη

∥
∥
Δ√

2
.

(3.5)

Using Lemma 1.1 and the inequality ‖fη‖Δ <
√
3H, we have

θ̃SH < θ̃(0,Δ) <

⎛

⎝
√
ln 2 +mH

√
1.5
H

⎞

⎠

2

. (3.6)

It is well known (see, e.g., [20]) thatmH < 4
√
2D(Δ, σ/2), where σ2 = maxΔESH(t) and D is

the Dudley entropy integral related to the semimetrics on Δ: ρ2(t, s) = E(SH(t) − SH(s))2.
In our case ρ(t, s) =

√
2|t − s|H, σ = 1 and therefore

mH <
cH√
H
, (3.7)

where

cH = 4
√
(1 −H) ln 2 + 23−H

√
πΦ
(
−
√
1 −H ln 4

)
< 5.36, H <

1
2
, (3.8)

and Φ(x) is the standard Gaussian distribution. Hence,

θ̃SH <

(
√
ln 2 +

5.36
√
1.5

H

)2

<

(
7
H

)2

. (3.9)

Proof of Proposition 2.13

Part (1). In the case ofH ≥ 0.5, the process χH(t) = sign(t)wH(t) has nonnegative correlations
on R1. In the standard manner, this implies the existence of θχH for ΔT = (−T, T). More
precisely, starting from a self-similar 2D process x(t) = (wH(t),−wH(−t)) on R1

+, we consider
the dual 2D stationary process x̃(t) = x(et) exp(−Ht) whose correlation matrix has positive
elements. By [12], we conclude that the exponent θ̃χH for x̃(t) exists.

The equality θ̃χH = θχH for ΔT = (−T, T). We will use Lemma 1.1. By the relation
χH(t) = sign(t)wH(t), the map ϕ(t) → sign(t)ϕ(t) is an isometry between the Hilbert spaces
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HχH (ΔT ) and HwH (ΔT ) associated with χH(t) and wH(t) on ΔT = (−T, T), respectively. To
prove the equality of the dual exponents, it is enough to find ϕ(t) ∈ (HwH (R

1), ‖ · ‖R) such
that sgn(t)ϕ(t) ≥ 1 for |t| ≥ 1. We can use

ϕ(t) = sgn(t)min(|t|, 1) =
∫(

eitλ − 1
)sinλ
iπλ2

dλ, (3.10)

because

∥
∥ϕ
∥
∥2
R = kH

∫
(sinλ)2

(πλ2)2
|λ|1+2Hdλ <∞, (3.11)

(see [14]).
Estimation of θχH , H > 1/2. Since EχH(t)χH(s) ≥ 0 for any t, s, we have, by Slepian’s

lemma,

pT := P(wH(t) < 1, −wH(−t) < 1, t ∈ (0, T)) ≥ [P(wH(t) < 1, t ∈ (0, T))]2. (3.12)

Using (1.2), one has θχH ≤ 2(1 −H).
Obviously, pT ≤ P(wH(t) < 1, t ∈ (0, T)). Therefore, θχH ≥ (1 −H) for anyH.
Part (2). Let 0 < H ≤ 1/2, then EwH(t)(−wH(−s)) ≤ 0 for t, s > 0. Hence,

pT ≤ [P(wH(t) < 1, t ∈ (0, T))]2, θχH ≥ 2(1 −H). (3.13)

Finally,

pT ≤ P(wH(t) −wH(−t) < 2, t ∈ (0, T)) = P
(
w−
H(t) < 1, t ∈ (0, T)

)
. (3.14)

But then, θχH ≥ θw−
H
for allH. If θw−

H
= θ̃w−

H
, then we get a lower bound of θ̃χH for 0 < H ≤ 1/4.

The equality θw−
H

= θ̃w−
H
.Let Hw−

H
(Δ) and HwH (Δ) be the reproducing Kernel Hilbert

spaces associated with wH(t) and wH(t), respectively. By the definition of wH(t), the map
(ϕ(t), t > 0) → (sign(t)ϕ(|t|), |t| < ∞) is an isometric embedding of Hw−

H
(R1

+) in HwH (R
1). To

prove that the exponents are equal, it is enough to find ϕ(t), t ≥ 0 such that sign(t)ϕ(|t|) ∈
(HwH (R

1), ‖ · ‖R), ϕ(t) ≥ 1 for t ≥ 1, and ‖ϕ‖R < ∞. As we showed above, this can be ϕ(t) =
min(t, 1), t > 0.

Proof of Proposition 2.15

Consider the fractional Brownian motion in ΔT = (−Tα, T), 0 ≤ α ≤ 1. By Lemma 1.1, we can
focus on the exponent related to the position of the maximum of wH(t) in ΔT , t

∗
ΔT
.

Distribution of t∗Δ. We remind the main properties of the distribution function, F∗(x),
of t∗Δ related to the normalized interval Δ = (0, 1) (see [1, 14]):

(i) F∗(x) has a continuous density fΔ
∗(x) > 0, 0 < x < 1 such that (1 − x)fΔ

∗(x)
decreases and xfΔ

∗(x) increases on Δ;
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(ii) F∗(x) have the following estimates:

x1−Hl−1(x) ≤ F∗(x) ≤ x1−Hl(x), (3.15)

where l(x) = exp(c
√
− lnx), c > 0.

Due to monotonicity of (1 − x)f∗
Δ(x) and xf

∗
Δ(x), one has

(1 − x)f∗
Δ(x) ≤ x−1

∫x

0
(1 − u)f∗

Δ(u)du ≤ x−1F∗(x), (3.16)

xf∗
Δ(x) ≥ x−1

∫x

xq

uf∗
Δ(u)du ≥ q(F∗(x) − F∗(xq

))
, 0 < q < 1. (3.17)

By (3.15), (3.16),

f∗
Δ(x) ≤ x−Hl(x)(1 − x)−1. (3.18)

Using (3.15), (3.17), one has

f∗
Δ(x) ≥ qx−Hl−1(x)

(
1 − l(x)l(xq)q1−H

)
. (3.19)

If we set q1−H = l−2(x)/2, then

f∗
Δ(x) ≥

qx−Hl−1(x)
2

= cHx−Hl−νH (x), (3.20)

where νH = (3 −H)/(1 −H), cH = 2−(2−H)/(1−H).
Distribution of t∗ΔT

. Let T1 = T− + T , where T− = Tα, then the processes wH(T1τ − T−) −
wH(−T−) andwH(τ)TH1 on Δ = (0, 1) are equal in distribution. Hence, t∗ΔT

and T1t∗Δ − T− have
the same distribution as well. Therefore,

pT := P
(∣∣∣t∗ΔT

∣∣∣ ≤ 0.5
)
= P
(∣∣∣∣t

∗
Δ − T−

T1

∣∣∣∣ ≤
0.5
T1

)
= T−1

1 f∗
Δ

(
T− + ε
T1

)
, (3.21)

where |ε| ≤ 0.5. We have used here the existence and continuity of f∗
Δ(x).

Exponent θ̆wH . Set α = 1. Then (3.21) implies limT→∞TpT = 0.5f∗
Δ(0.5).

Let α < 1, then (T− + ε)/T1 = o(1) as T → ∞, and (3.20), (3.21) give a lower bound on
pT :

T1pT ≥ cH
(
a+T
)−H

l−νH
(
a+T
)
. (3.22)

Here and below a±T = (T− ± 0.5)/T1.
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Using (3.18), (3.21), we get an upper bound on pT :

T1pT = f∗
Δ

(
Tα + ε
T1

)
≤
(
a−T
)−H

l
(
a−T
)
T1

T + 1
≤ 2
(
a−T
)−H

l
(
a−T
)
. (3.23)

By substituting T− = Tα, we have

lna±T = −(1 − α) ln T +O
(
T−β
)
, β = α ∧ (1 − α), ln l

(
a±T
)
= O
(√

ln T
)
. (3.24)

Hence,

− ln pT = (1 − (1 − α)H) ln T +O
(√

ln T
)
, (3.25)

that is, θ̆wH = αH + (1 −H).
The equality θ̆wH = θwH . Consider the Hilbert space (HwH (R

1), ‖ · ‖R) related to FBM
and a function

ϕ(t) = min(|t|, 1) =
∫(

eitλ − 1
)( sinλ/2√

2πλ/2

)2

dλ. (3.26)

The standard spectral representation of the kernelEwH(t)wH(s) and the representation (3.26)
yield

∥∥ϕ
∥∥2
R = kH

∫ (
sinλ/2√
2π λ/2

)4

|λ|1+2Hdλ <∞, (3.27)

where kH =
∫ |eiλ − 1|2|λ|−1−2H . Setting ϕT := {ϕ(t), t ∈ ΔT}, the desired statement follows

from Lemma 1.1 because ϕT ∈ (HwH (ΔT ), ‖ · ‖T ) and ‖ϕT‖T ≤ ‖ϕ‖R.

Appendix

Relation (2.4). (B̃IH (t) ≤ B̃I1−H (t)).
By (2.3), one has for small and large t

B̃IH (t) = 1 −
(
1 −H2)t2

2
+ (2 + 4H)−1t2+2H(1 + o(1)), t −→ 0,

B̃IH (t) = (1 +H)(1 + 2H)−1e−Ht(1 − e−t)

+ 0.5(1 +H)e−Ht(1 +O
(
e−t
))
, t −→ ∞,

(A.1)
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whereH = 1 −H. Therefore, we have the following asymptotics for Δ(t) = B̃IH (t) − B̃IH (t):

Δ(t) = − (1 − 2H)t2

2
+O
(
t2+2H

)
, t −→ 0,

Δ(t) = −(1 − 2H)H(2 + 4H)−1e−Ht −
(
1 − 2H

)
H
(
2 + 4H

)−1
e−Ht +O

(
e−t
)
, t −→ ∞.

(A.2)

These relations support (2.4) both for small and large enough t. To verify (2.4) in the general
case, we consider the following test function: (2 + 4H) (2 + 4H)Δ(t) exp(−1.5t). Using new
variables: x = exp(−t), α = 1 − 2H, the test function is transformed to a function ψ on the
square S = (0, 1) × (0, 1). Namely, ψ = U(x, α) −U(x,−α), where

U(x, α) =
(
4 − α2

)
xα/2(3 − α)

∫x

0

[
(x − u)

(
(1 − u)1−α − u1−α

)
+ u1−α

]
du. (A.3)

We have to show that ψ ≤ 0. It is easy to see that ψ = 0 at the boundary of S. By (A.1), ψ ≤ 0
in vicinities of two sides of S: x = 0 and x = 1. The same is true for the other sides: α = 0 and
α = 1 because

∂ψ

∂α
(x, 0) = −4

(
1 − x2

)∫1

1−x
ln
(
1
u

)
du < 0,

∂ψ

∂α
(x, 1) = (1 − x)x−1/2f(x) > 0.

(A.4)

Here

f(x) = −x(1 − x) + x3 ln
1
x
+
(
1 − x3

)
ln

1
(1 − x) . (A.5)

To verify f(x) > 0, 0 < x < 1, note that f ′(x) = 3x2(1 + v + lnv), where v = (1 − x)/x.
Obviously, f ′ has a single zero in (0,1), that is, f has a single extreme point. But f(0) = 0 =
f(1) andf(x) > 0 for small x. Therefore, f(x) ≥ 0, 0 < x < 1.

Numerical testing supports the desired inequality ψ < 0 for interior points of S.

Comment 1. Our preliminary numerical test was concerned with points on a grid with a step
of 0.005. The first derivatives of ψ are uniformly bounded from above on S. This fact helps us
to find the final grid step to prove ψ < 0 for all interior points of S. The relevant analysis is
cumbersome and so has been omitted.
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Relation (2.6). (B̃IH (t) ≤ B̃I1/2(pt), H ≥ 1/2, p = 2(1 −H)).

To verify the inequalityΔ(t) = B̃IH (t) − B̃I1/2(2(1 − H)t) ≤ 0, we consider the following test
function: (2 + 4H)Δ(t) exp(−(1 +H)t). Using (2.3), (2.5), and new variables (x = exp(−t), α =
2H − 1) ∈ S = (0, 1) × (0, 1), we will have the following representation for the test function:

ψ(x, α) = (3 + α)
(
x + xα+2

)
− 1 − xα+3 + (1 − x)α+3

− 3(α + 2)x2 + (α + 2)x3−α.
(A.6)

One has ψ(x, α) ≤ 0 in vicinities of two sides of S: x = 0 and x = 1, because

ψ(x, α) = − (α + 2)(3 − α)x2

2
+O
(
x(α+2)∧(3−α)

)
< 0, x −→ 0,

ψ(x, α) = −2α(1 − α)(3 − α)(1 − x)
2

2
+O
(
(1 − x)3

)
≤ 0, x −→ 1.

(A.7)

The same is true for the other sides: α = 0 and α = 1.

Side α = 0

One has ψ(x, 0) = 0 and

∂ψ

∂α
(x, 0) = (1 − x)

[
x(1 − x) + 3x2 lnx + (1 − x)2 ln(1 − x)

]
:= (1 − x)ϕ3(x) ≤ 0 (A.8)

because

ϕa(x) = x(1 − x) + ax2 lnx + (1 − x)2 ln(1 − x) ≤ 0, a > 1. (A.9)

To prove (A.9), note that ϕa(0) = ϕa(1) = 0 and ϕa(x) = ax2 lnx+O(x2) ≤ 0 as x → 0. Hence,
(A.9) holds if ϕa(x) has a single extremum in (0,1). By

ϕ
(4)
a (x) = −2ax−2 − 2(1 − x)−2 ≤ 0, (A.10)

we conclude that

ϕ′′
a(x) = (3a + 1) + 2a lnx + 2 ln(1 − x), (A.11)

is a concave function with two zeroes in (0,1), because ϕ′′
a(1/2) > 0 and ϕ′′

a(x) → −∞ as
x → 0 or 1.

This means that

ϕ′
a(x) = (a − 1)x + 2ax lnx − 2(1 − x) ln(1 − x), (A.12)
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has two extremums in (0,1) only. But ϕ′
a(0) = 0, ϕ′

a(1) = a − 1 > 0, and ϕ′
a(x) ≤ 0 for small x

because ϕ′′
a(x) → −∞ as x → 0. Hence ϕ′

a(x) has a single zero in (0,1) and ϕa(x) has a single
extremum.

We have proved that ψ(x, α) ≤ 0 for small α.

Side α = 1

Here ψ(x, 1) = 0 and

∂ψ

∂α
(x, 1) = (1 − x)(3 − x)x2 ln

(
1
x

)
+ (1 − x)2

[
x + (1 − x)2 ln(1 − x)

]
≥ 0, (A.13)

because [x + (1 − x)2 ln(1 − x)] ≥ x + (1 − x) ln(1 − x) = − ∫x0 ln(1 − u)du ≥ 0.
Hence, ψ(x, α) = ψ ′

α(x, 1) (α − 1) (1 + o(1 − α)) ≤ 0, α → 1.
As a result ψ(x, α) ≤ 0 near the boundary of S = (0, 1) × (0, 1). Numerical testing

supports the desired inequality ψ < 0 for the interior of S (see more in the Comment 1 from
the appendix section “Relation (2.4)”).

Relation (2.7). (B̃IH (t) ≥ B̃I1/2(pt), H ≤ 1/2, p = 2
√
(1 −H2)/3).

Let ψ = (2 + 4H)(B̃IH (t) − B̃I1/2(pt))e−(1+H)t. By change of variables: x = exp(−t) and α = 2H,
we get a test function

ψ(x, α) = (2 + α)
(
x + xα+1

)
− 1 − xα+2 + (1 − x)α+2

− 3(α + 1)x1+(α+p)/2 + (α + 1)x1+(α+3p)/2,

(A.14)

on S = (0, 1) × (0, 1) and the relation between p and α is

3
(p
2

)2
+
(α
2

)2
= 1. (A.15)

One has

ψ(x, α) = (2 + α)x1+α − 3(1 + α)x1+(p+α)/2 +O
(
x2
)
≥ 0, x −→ 0,

ψ(x, α) = (1 − x)2+α +O
(
(1 − x)3

)
≥ 0, x −→ 1.

(A.16)

In addition,

ψ(x, 0) = x
(
2 − 3x3−1/2 + x31/2

)
≥ 0. (A.17)

Finally, ψ(x, 1) = 0 and

∂ψ

∂α
(x, 1) = x

(
xx + 2x2 lnx + x2 lnx

)
= xϕ2(x), (A.18)
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where x = 1 − x. By (A.9), ϕ2(x) ≤ 0.
Therefore ψ(x, α) ≤ 0 near the boundary of S = (0, 1) × (0, 1). The numerical testing

supports this conclusion for the interior of S (see more in the Comment 1 from the appendix
section “Relation (2.4)”).

Relations (2.11), (2.12)

Consider Δ(t) = B̃I1/2(t) − B̃L(pt), where B̃L(t) = 1/ cosh(t/2) and B̃I1/2(t) is given in (2.5). By
the change of variables x = e−t/2, we transform the test function 2(1 + e−pt)Δ(t) to a function
ψ on (0, 1) such that

ψ(x) =
(
3x − x3

)(
1 + x2p

)
− 4xp. (A.19)

Taking into account the asymptotics of ψ near 0, we come to a necessary condition for ψ to be
negative, namely, p ≤ 1. Let p = 1, then ψ = −(1 − x2)2x ≤ 0, that is, 4θL ≤ 1.

The Case p > 1. Here, ψ ≥ 0 as x → 0. An additional condition on p > 1 we can get
from the relation ψ ≥ 0 as x → 1. One has ψ = xQ(x), where

Q(x) =
(
3 − x2

)(
1 + x2p

)
− 4xp−1. (A.20)

By Q(0) = 3, Q(1) = Q′(1) = 0, we have Q(x) = (1 − x)2P(x) and P(1) = 0.5Q′′(1) = 2(p2 − 3).
Thus Q(1) ≥ 0 if p2 ≥ 3.

The Case p = 2. Here, P(x) is a polynomial, P(x) = 3 + 2x − 2x3 − x4, and P ′′(x) =
−12x(1+x) ≤ 0, that is, P(x) is a concave function with P(0) = 3, P(1) = 2. Therefore, P(x) ≥ 0
and as a result, 4θL ≥ 1/p = 0.5.

Consider p =
√
3. One hasQ(x) = 8(1−x)3(1+o(1)), x → 1 andQ(0) = 3 > 0. Therefore,

Q(x) ≥ 0, if Q(x) is convex, that is, Q′′(x) ≥ 0. To verify this property, note that

0.5x2Q′′(x) = 2
(
3p − 5

)
xp−1 + 3

(
6 − p)x2p − x2 − (7 + 3p

)
x2+2p

=
(
7 + 3p

)
x2p
(
1 − x2

)
+ ρxp−1 +

(
1 − ρ)x2p − x2 := ϕ(x),

(A.21)

where ρ = 6p − 10.
Obviously, ϕ(x) ≥ 0 if pxα−1 − x2 ≥ 0. This holds for 0< x < x0 = 0.478.
For x > x0,

ρxp−1 +
(
1 − ρ)x2p − x2 ≥

(
ρ +
(
1 − ρ)xp+10

)
xp−1 − x2. (A.22)

The right part here is positive for x < 0.55, that is, ϕ(x) ≥ 0 for x ≤ 0.5.
Let x > 0.5. Then

ϕ(x) ≥ (7 + 3p
)
2−2p
(
1 − x2

)
+ ρxα−1 +

(
1 − ρ)x2p − x2

= C − (C + 1)x2 + ρxp−1 +
(
1 − ρ)x2p := u(x),

(A.23)
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where C = (7 + 3p)2−2p. We have u(0) = C, u(1) = 0 and

u′(x) = − 2(C + 1)x + ρ
(
p − 1

)
xp−2 + 2

(
1 − ρ)px2p−1

= −
(
C + 1 − 2

(
1 − ρ)px2p−2

)
x −
(
(C + 1)x3−p − ρ(p − 1

))
xp−2.

(A.24)

It is easy to see that both terms in parentheses are positive on (0.5, 1).
Thus, u(x) decreases to u(1) = 0. This means that Q′′(x) ≥ 0.

Relation (3.1). (B̃wH
(pt) ≥ BSH (t), pH = − ln(2H), 0 < H < e−2/2).

The difference between the correlation functions is

Δ(t) =

(

cosh
(
Hpt

) − 0.5
(
2 sinh

(
pt

2

))2H
)

−
(
1 − |t|2H

)

+
. (A.25)

Let t > 1, then Δ(t) = B̃wH (pt) ≥ 0.
Let 2H < t < 1. It is enough to show that the first term, ϕ, in the following

representation:

Δ(t) =
[
0.5e−Hpt − 1 + t2H

]
+ 0.5eHpt

(
1 − (1 − e−pt)2H

)
:= ϕ + R, (A.26)

is nonnegative. SettingHp = − ln(2H), α = 2H one has

ϕ(t) = 0.5αt + tα − 1. (A.27)

Let us show that ϕ is decreasing. In this case ϕ is positive because ϕ(1) = α/2.
We have

ϕ′(t) = αt
(
−0.5 ln

(
1
α

)
+ ψ(t)

)
, (A.28)

where ψ(t) = α1−t/t1−α. The function ψ(t) has a single extreme point in the interval: t∗ =
(1 − α)/ ln(1/α). But ψ(t∗) = min, because ψ(t) decreases near t = α:

ψ(α) = 1, ψ ′(α) =
(α ln(e/α) − 1)

α
≤ 0 for 0 < α < 1. (A.29)

Hence, ψ(t) ≤ max(ψ(α), ψ(1)) = 1. As a result,

ϕ′(t) ≤ αt
(
−0.5 ln

(
1
α

)
+ 1
)

≤ 0. (A.30)
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The last inequality holds for 0 < α < e−2, so we have

Δ(t) ≥ 0, 2H < t < 1 for 0 < α < e−2. (A.31)

Let 0 < t < 2H. Use

Δ(t) = cosh
(
Hpt

) − 1 + t2H
[

1 − 0.5
(
2t−1 sinh

(
pt

2

))2H
]

, (A.32)

then Δ(t) ≥ 0 if

21/(2H) ≥ max(0,2H)

(
2t−1 sinh

(
pt

2

))
= H−1 sinh

(
pH
)
= (2H)−2 − 1. (A.33)

This inequality holds for 0 < 2H < 1/4.
Combining the above inequalities, we get (3.1) for 2H ≤ e−2 ∧ 1/4.
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