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We consider the class of semi-Markovmodulated jump diffusions (sMMJDs)whose operator turns
out to be an integro-partial differential operator. We find conditions under which the solutions
of this class of switching jump-diffusion processes are almost surely exponentially stable and
moment exponentially stable. We also provide conditions that imply almost sure convergence of
the trivial solution when the moment exponential stability of the trivial solution is guaranteed. We
further investigate and determine the conditions under which the trivial solution of the sMMJD-
perturbed nonlinear system of differential equations dXt/dt = f(Xt) is almost surely exponentially
stable. It is observed that for a one-dimensional state space, a linear unstable system of differential
equations when stabilized just by the addition of the jump part of an sMMJD process does not get
destabilized by any addition of a Brownian motion. However, in a state space of dimension at least
two, we show that a corresponding nonlinear system of differential equations stabilized by jumps
gets destabilized by addition of Brownian motion.

1. Introduction

The stability of stochastic differential equations (SDEs) has a long history with some key
works being those of Arnold [1], Khasminskii [2], and Ladde and Lakshmikantham [3].
SDEs with switching have been applied in diverse areas such as finance (Deshpande and
Ghosh [4]) and biology (Hanson [5]). On the same note, the stability of these processes has
been much studied, in particular by Ji and Chizeck [6] and Mariton [7], who both studied
the stability of a jump-linear system of the form ẋt = A(rt)xt, where rt is a Markov chain.
Basak et al. [8] discussed the stability of a semilinear SDE with Markovian-regime switching
of the form ẋt = A(rt)xtdt + σ(rt, xt)dWt. Mao [9] studied the exponential stability of a
general nonlinear diffusion with Markovian switching of the form dxt = f(xt, t, rt)dt +
g(xt, t, rt)dWt. Yin and Xi [10] studied the stability of Markov-modulated jump-diffusion
processes (MMJDs).
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Consider the following jump-diffusion equation in which the coefficients are modulat-
ed by an underlying semi-Markov process:

dXt = b(Xt, θt)dt + σ(Xt, θt)dWt + dJt,

dJt =
∫
Γ
g
(
Xt, θt, γ

)
N
(
dt, dγ

)
,

X0 = x, θ0 = i,

(1.1)

where X(·) takes values in R
r and θt is a finite-state semi-Markov process taking values in

X = {1, . . . ,M}. Let Γ be a subset of R
r − 0; it is the range space of impulsive jumps. For any

set B in Γ, N(t, B) counts the number of jumps on [0, t] with values in B and is independent
of the Brownian motion Wt, b(·, ·) : R

r × X → R
r , σ(·, ·) : R

r × X → R
r × R

d, g(·, ·, ·) :
R

r × X × Γ → R
r . For future use we define the compensated Poisson measure Ñ(dt, dγ) =

N(dt, dγ) − λπ(dγ)dt, where π(·) is the jump distribution and 0 < λ < ∞ is the jump rate.
Equation (1.1) can be regarded as the result of the following M equations:

dXt = b(Xt, i)dt + σ(Xt, i)dWt +
∫
Γ
g
(
Xt, i, γ

)
N
(
dt, dγ

)

X0 = x, θ0 = θ,

(1.2)

which switch from one state to another according to the underlying movement of the semi-
Markov process.

Unlike the special Markov-modulated case in which the x-dependent diffusion is
a partial differential operator, the semi-Markov case is characterized by an integro-partial
differential operator. In this paper we study the asymptotic stability of sMMJDs. We also
investigate the perturbation of the nonlinear differential equation dXt/dt = f(Xt) by an
sMMJD. We determine the conditions under which the perturbed system is almost surely
exponentially stable. We show that for a one-dimensional state space, the deterministic linear
unstable system of differential equations that can be stabilized by the addition of a jump
component of the process Xt, surprisingly can never be destabilized by an addition of a
Brownian motion. An interesting question we may ask here is, can the similar inference hold
true for Xt in higher dimension? The answer is surprisingly no. We show that for a state
space with dimension greater than or equal to 2, a corresponding nonlinear system that is
stabilized by the jump component of the process Xt can in fact be destabilized by addition of
the Brownian motion part. We organize the paper as follows.

In Section 2, we briefly establish a representation of a class of semi-Markov processes
as a stochastic integral with respect to a Poisson random measure. We define the concepts
of almost sure exponential stability and moment exponential stability. In Section 3, we
present conditions that guarantee almost sure exponential stability and moment exponential
stability of the trivial solution of (1.1). In general, there is no connection between these two
stability criteria. However, under additional conditions one can say when does the moment
exponential stability guarantees or implies almost sure exponential stability. We elaborate on
this aspect while concluding this section. In Section 4, we provide some examples to illustrate
these two stability criterion in our context. In Section 5, we investigate the conditions for
which a nonlinear system of differential equation of the type dXt/dt = f(Xt) is almost surely
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exponentially stable. We then investigate its behavior in higher-dimensional state space, as
mentioned earlier. The paper ends with concluding remarks.

2. Preliminaries

We assume that the probability space (Ω,F, {Ft},P) is complete with filtration {Ft}t≥0 and is
right-continuous and F0 contains all P null sets. If v is some vector, then |v| is its Euclidean
norm and v′ is its transpose, while if A is a matrix then its trace norm is denoted as
||A|| =

√
tr(A′A). R+ stands for positive part of the real line while r is a positive integer.

Let C2,1(Rr × X × R+) denote the family of all functions on R
r × X × R+, which are twice

continuously differentiable in x and continuously differentiable in y. Consider {θt}t≥0 as a
semi-Markov process taking values in X with transition probability pi,j and conditional
holding time distribution F(t | i). Thus if 0 ≤ t0 ≤ t1 ≤ · · · are times when jumps occur,
then

P
(
θtn+1 = j, tn+1 − tn ≤ t | θtn = i

)
= pijF(t | i). (2.1)

Matrix [pij]{i,j=1,...,M} is irreducible and for each i, F(· | i) has continuously differentiable and
bounded density f(· | i). Embed X in R

r by identifying i with ei ∈ R
r . For y ∈ [0,∞)i, j ∈ X,

let

λij
(
y
)
= pij

f
(
y/i

)
1 − F

(
y/i

) ≥ 0, ∀i /= j, λii
(
y
)
= −

∑
j∈X,j /= i

λij
(
y
) ∀i ∈ X. (2.2)

Let the stationary distribution of the semi-Markov process be defined as νi � (1/t)
∫ t
0 Iθs=ids

where I· takes value 1 if θs = i and 0 otherwise for any i ∈ X.
For i /= j ∈ X, y ∈ R+, let Λij(y) be consecutive (with respect to lexicographic ordering

on X × X) left-closed, right-open intervals of the real line, each having length λij(y). Define
the functions h : X × R+ × R → R and g : X × R+ × R → R+ by

h
(
i, y, z

)
=

{
j − i if z ∈ Λij

(
y
)
,

0 otherwise,

g
(
i, y, z

)
=

{
y if z ∈ Λij

(
y
)
, j /= i,

0 otherwise.

(2.3)

LetM(R+×R) be the set of all nonnegative integer-valued σ-finite measures on a Borel
σ-field of (R+ × R). Define the process {θ′

t, Yt} described by the following stochastic integral
equations:

θ′
t = θ′

0 +
∫ t

0

∫
R

h(θu−, Yu−, z)N1(du, dz),

Yt = t −
∫ t

0

∫
R

g(θu−, Yu−, z)N1(du, dz),

(2.4)
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where N1(dt, dz) is an M(R+ × R)-valued Poisson random measure with intensity dtm(dz)
independent of the X-valued random variable θ′

0, where m(·) is a Lebesgue measure on
R. We define the corresponding compensated or centred Poisson measure as Ñ1(ds, dz) =
N1(ds, dz) − dsm(dz). It was shown in Theorem 2.1 of Ghosh and Goswami [11] that θ′

t

is a semi-Markov process with transition probability matrix [pij]{i,j=1,...,M} with conditional
holding time distributions F(y | i). Therefore, one can write θ′t = θt. We assume that
N(·, ·),N1(·, ·), and θ0,Wt, S0 defined on (Ω,F,P) are independent.

To ensure that zero is the only equilibrium point of (1.1), we need the following
assumption.

Assumption 2.1. Assume g(x, i, γ) is B(Rr ×X×(R−{0}))-measurable and that constants C > 0
exist such that for each i ∈ X, x1, x2 being R

r-valued and for each γ ∈ Γwe have

|b(x1, i) − b(x2, i)| + |σ(x1, i) − σ(x2, i)| ≤ C|x1 − x2|,∣∣g(x1, i, γ
) − g

(
x2, i, γ

)∣∣ ≤ C|x1 − x2|.
(2.5)

We also need the condition that the generatormatrixQ(·) is bounded and continuous. b(0, i) =
0, σ(0, i) = 0 and g(x, i, 0) = 0 and g(0, i, γ) = 0 for each x ∈ R

r , i ∈ X and each γ ∈ Γ.

The process (Xt, θt, Yt) defined on (Ω,F,P) in (1.1) and (2.4) is jointly Markov and has
a generator G given as follows. For f ∈ C2,1(Rr ,X,R+), we have

Gf
(
x, i, y

)
=

1
2

r∑
k,l=1

akl(x, i)
∂f

(
x, i, y

)
∂xk∂xl

+
r∑

k=1

bk(x, i)
∂f

(
x, i, y

)
∂xk

+
∂f

(
x, i, y

)
∂y

+
f
(
y | i)

1 − F
(
y | i)

∑
j /= i,j∈X

pij
[
f
(
x, j, 0

) − f
(
x, i, y

)]

+ λ

∫
Γ

(
f
(
x + g

(
x, i, γ

)
, i, y

) − f
(
x, i, y

))
π
(
dγ

)
,

(2.6)

where x ∈ R
r , a(x, i) = σ(x, i)σ ′(x, i) is an R

r×r matrix and akl(x, i) is the (k, l)th element of
the matrix a while bk(x, i) is the kth element of the vector b(x, i).

We define the jump times, that is, time epochs when jumps occur by {τNn }, where
τN1 < τN2 < · · · < τNn < · · ·, to be the enumeration of all elements in the domainDp of the point
process p(t) corresponding to the stationary Ft-Poisson point process N(dt, dγ). It is easy to
see that {τNn } is anFt-stopping time for each n. Moreover, we have limn→∞τNn = +∞ since the
characteristic measure m(·) is finite. Next, let us denote the successive switching instants of
the second component, which is the semi-Markov process θt that switches from one point on
the space X to another and is denoted by τθ0 = 0, τθn = inf{t : t > τθn−1, Xt /=Xτθn−1

}, n ≥ 1. Since
the Poisson random measure N(·, ·) is independent of N1(·, ·), one could adapt the proof of
Xi ([12]) to show that with probability 1, {τNn : n ≥ 1} and {τθn : n ≥ 1} are mutually disjoint.
Hence between two chain-switching epochs, the process Xt behaves like an ordinary jump-
diffusion process without switching, a fact that we will use below to show the existence and
uniqueness of the sMMJD processXt. Accordingly, we describe next the existence-uniqueness
theorem for (1.1).
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Theorem 2.2. Assume that Assumption 2.1 holds. Then there exists a unique solution (Xt, t ≥ 0)
with initial data (X0, θ0, Y0) to (1.1).

Proof. We only provide a sketch of the proof here. Consider [s, t], τθ1 , . . . , τ
θ
N ≤ t. Then as

described above, on each of the intervals between the chain switching times, that is, [s, τθ1 ),
. . . , (τθN, t], the sMMJD process Xt behaves like a jump-diffusion process. We can then use the
standard Picard iteration argument in Applebaum [13] to show the existence-uniqueness of
solution Xt.

Before we proceed with our main analysis concerning these two stability issues we
introduce a key Lemma.

Lemma 2.3. {P(Xt /= 0, t /= 0)} = 1 for any X0 = x /= 0, and θ0 = θ ∈ X. Thus almost all sample
paths of any solutions of (1.1) starting from a nonzero state will never reach the origin.

Proof. We show this in a simple way. From the condition on the coefficients, b(0, i) = 0,
σ(0, i) = 0, and g(0, i, 0) = 0. So (1.1) admits a trivial solution Xt = 0. From Theorem 2.2
above, due to the uniqueness of the solution of (1.1) the conclusion now follows.

We next have the following generalized Ito’s formula.

Lemma 2.4. Utilizing the operator G in (2.1), the generalized Ito’s formula is given by

f(Xt, θt, Yt) − f
(
x, θ, y

)
=
∫ t

0
Gf(Xs, θs, Ys)ds +

∫ t

0

(∇f(Xs, θs, Ys)
)′
σ(Xs, θs)dWs

+
∫ t

0

∫
Γ

[
f
(
Xs− + g

(
Xs−, θs−, γ

)
, θs, Ys−

) − f(Xs−, θs−, Ys−)
]
Ñ
(
ds, dγ

)

+
∫ t

0

∫
R

[
f
(
Xs−, θs− + h(θs−, Ys−, z),

Ys− − g(θs−, Ys−, z)
)
− f(Xs−, θs−, Ys−)

]
Ñ1(ds, dz),

(2.7)

where the local martingale terms are explicitly defined as

dM1(t) :=
(∇f(Xt, θt, Yt)

)′
σ(Xt, θt)dWt,

dM2(t) :=
∫
Γ

[
f
(
Xs− + g

(
Xs−, θs−, γ

)
, θs−, Ys−

) − f(Xs−, θs−, Ys−)
]
Ñ
(
ds, dγ

)
,

dM3(t) :=
∫

R

[
f
(
Xs−, θs− + h(θs−, Ys−, z), Ys− − g(θs−, Ys−, z)

)
− f(Xs−, θs−, Ys−)

]
Ñ1(ds, dz).

(2.8)

Proof. For details refer to Ikeda and Watanabe [14].

We now discuss the two criteria for stochastic stability that we intend to consider.
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Definition 2.5 (Almost sure exponential stability). The trivial solution of (1.1) is almost surely
exponentially stable if

lim sup
t→∞

1
t
log|Xt| < 0 a.s. ∀X0 ∈ R

r a.s. (2.9)

The quantity on the left-hand side of the above equation is termed as the sample Lyapunov
exponent.

Definition 2.6 (Moment exponential stability). Let p > 0. The trivial solution of (1.1) is said to
be pth moment exponentially stable if there exists a pair of constants λ > 0 and C > 0, such
that for any X0 ∈ R

r

E
[|Xt|p

] ≤ C|X0|p exp(−λt) ∀t ≤ 0. (2.10)

In the next section, we detail the proofs for obtaining the conditions under which the
trivial solution of (1.1) is almost surely exponentially stable andmoment exponentially stable.

3. Almost Sure Stability and Moment Exponential Stability

In the sequel we will always, as standing hypotheses, assume that Assumption 2.1 holds.
From Theorem 2.2 we deduce that there exists a unique solution to (1.1). By Lemma 2.3, we
know that Xt will never reach zero whenever X0 /= 0. So in what follows we will only need a
function V (x, i, y) ∈ C2,1(Rr × X × R+) defined on the domain of the deleted neighborhood
of zero. Our first main result provides conditions under which the trivial solution to (1.1) is
almost surely exponentially stable.

Theorem 3.1. Assume that there exist a function V ∈ C2,1(Rr ×X×R+) in any deleted neighborhood
of zero. Moreover, assume that there exist positive constants α, β, ρ1, ρ2, ρ1, and ρ2 for each x ∈
R

r , i ∈ X and for each γ ∈ Γ such that

G logV
(
x, i, y

) ≤ −α,
∣∣∣(∇xV

(
x, i, y

))′
σ(x, i)

∣∣∣ ≤ βV
(
x, i, y

)
,

ρ1 ≤
(

V
(
x + g

(
x, i, γ

)
, i, y

)
V
(
x, i, y

)
)

≤ ρ2,

ρ1 ≤

⎛
⎜⎝V

(
x, i + h

(
i, y, z

)
, y − g

(
i, y, z

))

V
(
x, i, y

)
⎞
⎟⎠ ≤ ρ2,

(3.1)

then the solution to (1.1) is almost surely exponentially stable.
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Proof. Note that

logV (Xt, θt, Yt) = logV (X0, θ0, Y0) +
∫ t

0
G logV (Xs, θs, Ys)ds

+M1(t) +M2(t) +M3(t).

(3.2)

Here the local martingale terms M1(t),M2(t), and M3(t) are, respectively,

M1(t) =
∫ t

0

(∇xV (Xs, θs, Ys))
′σ(Xs, θs)

V (Xs, θs, Ys)
dWs,

M2(t) =
∫ t

0

∫
Γ
log

(
V
(
Xs− + g

(
Xs−, θs−, γ

)
, θs−, Ys−

)
V (Xs−, θs−, Ys−)

)
Ñ
(
ds, dγ

)
,

M3(t) =
∫ t

0

∫
R

[
logV

(
Xs−, θs− + h(θs−, Ys−, z), Ys− − g(θs−, Ys−, z)

)

− logV (Xs−, θs−, Ys−)
]
Ñ1(ds, dz).

(3.3)

We deal with (3.2) term by term to derive an upper bound on lim supt→∞ logV (Xt, i, Yt)/t.
Consider first the drift term of (3.2). It is easy to see from the assumptions made that∫ t
0 G logV (Xs, θs, Ys)ds will be bounded above by −αt. Secondly, we now concentrate on the
local martingale terms of (3.2). First consider the quadratic variation of the M1(t) term. By
Ito’s isometry, we have

〈M1(t),M1(t)〉 =
∫ t

0

∣∣∣∣∣
(∇xV (Xs, θs, Ys))

′σ(Xs, θs)
V (Xs, θs, Ys)

∣∣∣∣∣
2

ds

≤
∫ t

0
β2ds ≤ β2t.

(3.4)

Next consider the quadratic variation of the local martingale term M2(t). Based on the fol-
lowing result presented in Kunita [15, page 323], and noting that the jump distribution π is a
probability measure that is,

∫
Γ π(dγ) = 1 we have

〈M2(t),M2(t)〉 =
∫ t

0

∫
Γ

(
log

[
V
(
Xs− + g

(
Xs−, θs−, γ

)
, θs−, Ys−

)
V (Xs−, θs−, Ys−)

])2

π
(
dγ

)
ds

≤ max
[(
log ρ1

)2
,
(
log ρ2

)2]
t.

(3.5)

On very similar lines, one can easily show that the quadratic variation of the local martingale
termM3(t) is given by

〈M3(t),M3(t)〉 ≤ max
[(
log ρ1

)2
,
(
log ρ2

)2]
t. (3.6)
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Thus by SLLN for local martingales (refer to Lipster and Shiryayev [16, page 140–141]), we
can say that

lim sup
t→∞

M1

t
= lim sup

t→∞

M2

t
= lim sup

t→∞

M3

t
= 0. (3.7)

Thus from (3.2) and the above discussion, one can infer that

lim sup
t→∞

logV
(
x, i, y

)
t

≤ −α. (3.8)

Thus, since by assumption α > 0, from the definition of almost sure exponential stability, the
trivial solution to (1.1) is almost surely exponentially stable.

We now provide conditions under which the trivial solution to (1.1) is moment expo-
nentially stable.

Theorem 3.2. Let p, α, α1, α2 > 0. Assume that there exists a function V (x, i, y) ∈ C2,1(Rr ,X,R+)
such that

α1|x|p ≤ V
(
x, i, y

) ≤ α2|x|p,
GV

(
x, i, y

) ≤ −α|x|p.
(3.9)

Then,

lim sup
t→∞

1
t
logE|Xt|p ≤ −α

α2
|X0|p. (3.10)

As a result the trivial solution of (1.1) is pth-moment exponentially stable under the conditions
discussed above and the pth-moment Lyapunov exponent should not be greater than −α/α2.

Proof. The proof is omitted as it is a simple extension of the Markov-modulated SDE case
discussed in Mao [9].

In the next theorem, we provide criteria to connect these two seemingly disparate
stabilty criteria. Specifically, we provide conditions under which the pth-moment exponential
stability for p ≥ 2 always implies almost sure exponential stability for (1.1).

Theorem 3.3. Assume that there exists a positive constant C such that for each i ∈ X

|b(x, i)| ∨ |σ(x, i)| ∨ ∣∣g(x, i, γ)∣∣ ≤ C|x|. (3.11)

If for all X0 = x0 ∈ R
r ,

lim sup
t→∞

1
t
logE

(|Xt|p
) ≤ −a, (3.12)
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then

lim sup
t→∞

1
t
log(|Xt|) ≤ −a

p
a.s. (3.13)

Then pth-moment exponential stability implies almost sure exponential stability.

We need the Burkholder-Davis-Gundy inequality which is detailed in the following
remark below.

Remark 3.4. Let us recall that [X] denotes the quadratic variation of a process say X, and
X∗

t ≡ sups≤t|Xs| is its maximum process. Then the Burkholder-Davis-Gundy theorem states
that for any 1 ≤ p < ∞, there exist positive constants cp, Cp such that, for all local martingales
X with X0 = 0 and stopping times τ , the following inequality holds:

cpE
[
[X]p/2τ

]
≤ E

[
(X∗

τ)
p] ≤ CpE

[
[X]p/2τ

]
. (3.14)

Furthermore, for continuous local martingales, this statement holds for all 0 < p < ∞. For its
proof refers to Theorem 3.28 page 166 in Karatzas and Shreve [17].

Proof of Theorem 3.3. Let X0 ∈ R
r . Let ε be arbitrarily small positive number. By the definition

of pth-moment exponential stability of (3.15), there exists a constant K such that

E|Xt|p ≤ Kexp−(a−ε)t, t ≥ 0. (3.15)

Let δ > 0 be sufficiently small such that,

5pCp
(
δp + Cpδ

p/2
)
<

1
4
. (3.16)

From (1.1)we have

Xt = X0 +
∫ t

0
b(Xs, θs)ds +

∫ t

0
σ(Xs, θs)dWs +

∫ t

0

∫
Γ
g
(
Xs−, θs−, γ

)
Ñ
(
ds, dγ

)

+ λ

∫ t

0

∫
Γ
g
(
Xs−, θs−, γ

)
π
(
dγ

)
ds.

(3.17)

Noting that for a, b, c, d, e ≥ 0

(a + b + c + d + e)p ≤ [5(a ∨ b ∨ c ∨ d ∨ e)]p = 5p(ap ∨ bp ∨ cp ∨ dp ∨ ep)

≤ 5p(ap + bp + cp + dp + ep),
(3.18)
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we have

E

[
sup

(k−1)δ≤t≤kδ
|Xt|p

]
≤ 5pE

[∣∣X(k−1)δ
∣∣p] + 5pE

(∫kδ

(k−1)δ
|b(Xs, θs)|ds

)p

+ 5pE

(
sup

(k−1)δ≤t≤kδ

∫ t

(k−1)δ
|σ(Xs, θs)dWs|p

)

+ 5pE

(
sup

(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Γ

∣∣∣g(Xs−, θs−, γ
)
Ñ
(
ds, dγ

)∣∣∣p
)

+ 5pλpE

(∫kδ

(k−1)δ

∫
Γ

∣∣g(Xs−, θs−, γ
)∣∣π(dγ)ds

)p

.

(3.19)

Noting that
∫
Γ π(dγ) = 1, we have

E

(
sup

(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Γ

∣∣∣g(Xs−, θs−, γ
)
Ñ
(
ds, dγ

)∣∣∣p
)

≤ CpE

(∫kδ

(k−1)δ

∣∣g(Xs−, θs−, γ
)∣∣2ds

)(p/2)

≤ CpE

(
δ sup
(k−1)δ≤s≤kδ

∣∣g(Xs−, θs−, γ
)∣∣2

)(p/2)

≤ CpC
pδp/2E

[
sup

(k−1)δ≤s≤kδ
|Xs|p

]
.

(3.20)

Similarly,

E

(∣∣∣∣∣
∫kδ

(k−1)δ

∫
Γ

∣∣∣∣∣g
(
Xs−, θs−, γ

)
π
(
dγ

)
ds

)p

≤ E

[
δ sup
(k−1)δ≤s≤kδ

∣∣g(Xs−, θs−, γ
)∣∣
]p

≤ CpδpE

(
sup

(k−1)δ≤s≤kδ
|Xs|p

)
.

(3.21)

From (3.15), one can easily show that

E
[∣∣X(k−1)δ

∣∣p] ≤ K exp−(a−ε)(k−1)δ, (3.22)

E

(∫kδ

(k−1)δ
|b(Xs, θs)|ds

)p

≤ CpδpE

[
sup

(k−1)δ≤s≤kδ
|Xs|p

]
, (3.23)

E

(
sup

(k−1)δ≤t≤kδ

∫ t

(k−1)δ
|σ(Xs, θs)|dWs

)p

≤ CpC
pδp/2E

[
sup

(k−1)δ≤s≤kδ

∣∣∣Xp
s

∣∣∣
]
. (3.24)
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Hence, substituting (3.20)–(3.23) in (3.19), we obtain

E

[
sup

(k−1)δ≤t≤kδ
|Xt|p

](
1 − 5p

(
Cpδp + CpC

pδp/2 + CpC
pδp/2 + Cpδp

))

≤ K5pexp−(a−ε)(k−1)δ.

(3.25)

From (3.16) we obtain that

E

[
sup

(k−1)δ≤t≤kδ
|Xt|p

]
≤ 2 × 5pK exp−(a−ε)(k−1)δ, (3.26)

and utilizing the Borel-Cantelli Lemma as in Mao [9]we deduce the desired implication that
pth-moment stability implies almost sure exponential stability.

4. Examples

We now provide some simple examples to illustrate both the almost surely exponential
stability and moment exponential stability. We start with an example on almost surely
exponential stability.

Consider a two state semi-Markov modulated Jump-diffusion problem with Xt ∈ R
r

and V (Xt, i, Yt) = |Xt| where the generator matrix is given by

Q =
∣∣∣∣−2 2
1 −1

∣∣∣∣. (4.1)

Let the holding time in each regime be assumed to follow f(y | i) = λie
−λiy, y > 0, i ∈ {1, 2}.

Note that with the choice of the holding time distribution, the sMMJD collapses to the MMJD
case in which case the generator G acting on V (x, i, y) is given by

GV
(
x, i, y

)
=

1
2
trace

[(
I

|x| −
xx′

|x|3
)
σ(x, i)σ ′(x, i)

]

+
x′

|x|b(x, i) + λ

∫
Γ

[∣∣x + g
(
x, i, γ

)∣∣ − |x|]π(dγ).
(4.2)

Now from Assumption 2.1 as

|σ(x, i)| = |σ(x, i) − σ(0, i)| ≤ C|x|
|b(x, i)| = |b(x, i) − b(0, i)| ≤ C|x|

(4.3)
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and |g(x, i, γ)| ≤ C|x|, we have

GV
(
x, i, y

) ≤ C|x| + C|x| + λ(2 + C)|x|
= (2C + λC + 2λ)|x|.

(4.4)

If we choose C and λ such that for any x ∈ R
r − {0}, there exists α := (2 + λ)C + 2λ) ≥ 0 such

that G logV (x, i, y) ≤ −α. Also |∇xV (x, i, y)′σ(x, i)/V (x, i, y)| ≤ C. Similarly, if there exist a
positive constant β such that for any x ∈ R

r , C ≤ β, then |∇xV (x, i, y)′σ(x, i)/V (x, i, y)| ≤ β. If
there exist constants ρ1 and ρ2 such that ρ1 ≤ g(x, i, γ) ≤ ρ2 for any x ∈ R

r , i ∈ X and γ ∈ Γ,
then it is easy to see that (ρ1) ≤ (V (x+g(x, i, γ), i, y)/V (x, i, y)) ≤ (ρ2). Thus in brief for certain
conditions on the growth of the drift, diffusion and the integrand of the jump component of
the process given by (1.1), we satisfy the conditions of Theorem 3.1 for the solution to (1.1)
to be almost surely exponentially stable.

We next provide a simple example to illustrate Theorem 3.2. Consider that x ∈ R and
V (x, i, y) = x2. Also assume that the conditional holding time distribution be f(y | i) = λie

−λiy

for i ∈ {1, 2}. Let g(x, i, γ) = x, λi = 1, b(x, i) = a1x, σ(x, i) = a2x for i ∈ {1, 2}. Then from
(2.4) we have GV (x, i, y) = (2a1 + a2 + 3)x2. If 2a1 + a2 + 3 < 0 and x /= 0, then condition (ii)
of Theorem 3.2 for p = 2 is satisfied. Moreso if we assume that there exist constants α1 and α2

such that α1|x|2 ≤ V (x, i, y) ≤ α2|x|2 is true, then condition (i) of Theorem 3.2 is satisfied. Thus
both conditions (i) and (ii) now guarantee that the solution of (1.1) is moment exponentially
stable.

Next we discuss the issue of stochastic stabilization and destabilization of nonlinear
systems.

5. Stochastic Stabilization and Destabilization of Nonlinear Systems

We now investigate the stability of the nonlinear deterministic system of differential
equations given by the following dynamics:

dXt

dt
= f(Xt) (5.1)

on t ≥ 0 with X0 = x0 ∈ R
r where f(x) : R

r → R
r is locally Lipschitz continuous and

furthermore there exists some constant K > 0 such that |f(x)| ≤ K|x| for all x ∈ R
r . When

perturbed by noise, the nonlinear system (5.1) is either stable if it originally unstable, in the
sense that by adding noise we can force the solution of the stochastic differential equation
to converge to the trivial solution as time increases indefinitely. This is the aim of stochastic
stabilization. Likewise if our original system in stable, then this system is said to destabilize
when perturbed by noise if the sample paths of the process escapes to infinity almost surely
instead of converging to the trivial solution as time tends to infinity. This is termed as
stochastic destabilization. Consequently, the system then becomes what is known as unstable.
Mao [9] and Applebaum and Siakalli [18] have established a general theory of stochastic
stabilization/destabilization of (5.1) using a Brownian motion and the general Levy process,
respectively. However, no specific work has been done so far for the case where Xt is an
sMMJD. In this paper we focus on the first-order nonlinear system of ODEs that is perturbed
by an sMMJD. In the following section, we show that an unstable linear system counterpart
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of (5.1) wherein dXt/dt = aXt for a > 0 can be stabilized just by the addition of a jump
component to the dynamics of the one-dimensional processXt. We observe that such a jump-
stabilized system of DEs cannot be destabilized by further addition of a Brownianmotion. On
the contrary, we show that such a jump-stabilized nonlinear system of differential equations
can surprisingly be destabilized by addition of Brownian motion if the dimension of the
state space is at least two. Before we go into the proofs of these statements, we begin by
mentioning the key dynamics of the sMMJD process {Xt, t ≥ 0} and some assumptions that
follow. Suppose we have an m-dimensional standard FT -adapted Brownian motion process
B = (B1(t), . . . , Bm(t)) for each t ≥ 0. The system (5.1) is perturbed by the following sMMJD
dynamics of Xt given by

dXt = f(Xt)dt +
m∑
k=1

Gk(θt)XtdBk(t) + λ

∫
Γ
D
(
θt−, γ

)
Xt−N

(
dt, dγ

) ∀t ≥ 0, (5.2)

where Gk(i) is R
r×r for each i ∈ X. Likewise D(i, γ) is an R

r×r-valued matrix for each i ∈ X
and γ ∈ Γ ⊂ R

r − {0}. We refer to a system (5.1) perturbed by the dynamics of Xt as in (5.2) as
just a perturbed system. We make the following key assumption that remains valid until the
end of this section.

Assumption 5.1. Assume that for each i ∈ X and γ ∈ Γ we have
∫
Γ(||D(i, γ)|| ∨ ||D(i, γ)||2)

π(dγ) < ∞ and that D(i, γ) does not have an eigenvalue equal to −1 π almost surely.

In the following, we will establish the conditions on the coefficients of (5.2) for the
trivial solution of the perturbed system to be almost surely exponentially stable. In particular,
this surprisingly demonstrates that the jump process can have a stabilizing effect, as for the
Brownian motion part as has been shown by Mao [9]. We state this formally as one of our
main theorems.

Theorem 5.2. Assume that Assumption 5.1 holds. Suppose that the following conditions are satisfied
for a(i) > 0, b(i) ≥ 0:

(i)
∑m

k=1 |Gk(i)x|2 ≤ a(i)|x|2,
(ii)

∑m
k=1 |x′Gk(i)x|2 ≥ b(i)|x|4 for each i ∈ X and x ∈ R

r .

Then the sample Lyapunov exponent of the solution of (5.2) exists and satisfies lim supt→∞ log |Xt| ≤
K−∑i∈X[(b(i)−a(i)/2−λ log(1+||D(i, γ)||))]νi for anyX0 /= 0. If −K+

∑
i∈X[b(i)−a(i)/2−λ log(1+

||D(i, γ)||)]νi > 0, then the trivial solution to the system in (5.2) is almost surely exponentially stable.

Proof.
Step 1. Define V (x, i, y) = log |x| for all i ∈ X. As V (x, i, y) is independent of states i

and y, the following terms in (2.4) are zero:

f
(
y | i)

1 − F
(
y | i)

∑
j /= i,j∈X

pij
[
V
(
x, j, 0

) − V
(
x, i, y

)]
= 0,

∂V
(
x, i, y

)
∂y

= 0.

(5.3)
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Hence as an application of the generalized Ito’s formula, we have for t > 0

log|Xt| = log|X0| +
∫ t

0

X′
s

|Xs|2
f(Xs)ds +

1
2

m∑
k=1

∫ t

0

[
|Gk(θs)Xs|2

|Xs|2
− 2|X′

sGk(θs)Xs|2
|Xs|4

]
ds

+ λ

∫ t

0

∫
Γ
log

(∣∣Xs− +D
(
θs−, γ

)
Xs−

∣∣
|Xs−|

)
π
(
dγ

)
ds +M1(t) +M2(t),

(5.4)

whereM1(t) =
∑m

k=1

∫ t
0 |X′

sGk(θs)Xs/|Xs|2|dBk(s) andM2(t) =
∫ t
0

∫
Γ log((|Xs−+D(θs−, γ)Xs−|)/

|Xs−|)Ñ(ds, dγ) are the two local martingale terms.
Step 2. Consider now the quadratic variation of the two martingale terms. From Ito’s

isometry and noting that

|X′
sGk(θs)Xs|2

|Xs|4
=

∣∣X′
s

(
G′

k(θs) +Gk(θs)
)
Xs

∣∣2
4|Xs|4

≤ ρ(Gk(θs))
2,

(5.5)

where ρ(Gk(θs)) is the spectral radius of the symmetric r × r matrix (Gk(θs) +G′
k
(θs))/2,

〈M1(t),M1(t)〉 ≤
m∑
k=1

∫ t

0

|X′
sGk(θs)Xs|2

|Xs|4
ds ≤ tm max

1≤k≤m,i=1,...,M
ρ(Gk(i)). (5.6)

Next, the quadratic variation of the process M2(t) is given by

〈M2(t),M2(t)〉 = 2
∫
Γ

∫ t

0
log

[(∣∣Xs− +D
(
θs−, γ

)
Xs−

∣∣)
|Xs−|

]
dsπ

(
dγ

)

≤ 2t log
(
1 + max

1≤i≤M

∥∥D(
i, γ

)∥∥).

(5.7)

Step 3. We work with the rest of the terms in the following way:

lim sup
t→∞

∣∣∣∣∣
1
t

∫ t

0

X′
sf(Xs)

|Xs|2
ds

∣∣∣∣∣ ≤ K, (5.8)



International Journal of Stochastic Analysis 15

also

lim sup
t→∞

1
t

∫ t

0

1
2

[
m∑
k=1

(
|Gk(θs)Xs|2

|Xs|2
− 2|XsGk(θs)Xs|2

|Xs|4
)]

ds

≤ 1
t

∑
i∈X

∫ t

0

[
a(i)
2

− b(i)
]
Iθs=ids

≤
∑
i∈X

[
a(i)
2

− b(i)
]
νi,

lim sup
t→∞

λ

t

∫ t

0

∫
Γ
log

(∣∣Xs− +D
(
θs−, γ

)
Xs−

∣∣
|Xs−|

)
π
(
dγ

)
ds

≤ λ
∑
i∈X

log
(
1 +

∥∥D(
i, γ

)∥∥)νi.

(5.9)

Thus, lim supt→∞(1/t) log |Xt| < 0 ifK +
∑

i∈X[(a(i)/2− b(i) + λ log(1+ ||D(i, γ)||))]νi < 0.

Remark 5.3. Consider a 1-D sMMJD with the dynamics

dXt = aXtdt + b(i)XtdBt + c
(
i, γ

)
XtdÑt, (5.10)

where b(x, i) > 0 and c(i, γ) > −1 for each x ∈ R, i ∈ {1, . . . ,M} and γ ∈ Γ. Bt is a 1D Brownian
motion and {Ñt, t ≥ 0} is a compensated Poisson process with Ñt = Nt − λt, where λ > 0 is
the intensity of the Poisson process. Assume that the processes Bt and Nt are independent.
Then one can show from the SLLN for a Brownian motion and for a Poisson process (refer to
Applebaum [13]) that for each i ∈ {1, 2, . . . ,M}

lim sup
t→∞

1
t
log|Xt| = a +

[
−λc(i, γ) − 1

2
b2(i) + λ log

(
1 + c

(
i, γ

))]
< 0 a.s. (5.11)

Note that b2(i) ≥ 0 for all i ∈ X and has a negative sign attached to it. Hence when the one-
dimensional perturbed system dXt/dt = aXt for a > 0 is stabilized by the addition of a jump
process infact can never be destabilized by the addition of a Brownian motion. An interesting
question we may ask here is: can the same inference hold true in higher dimensions? The
answer is surprisingly no. In the following theorem, we show that for a state space of
dimension greater than or equal to two, an unstable nonlinear system of differential equation
stabilized by a jump component can still be destabilized by the addition of the Brownian
motion. This surprising phenomenon was also observed by Applebaum and Siakalli [19] for
the Levy process case.

To prove this assertion, let us now consider system of nonlinear differential equation
(5.1) stabilized by (5.2) but with Gk(i) = 0 for each i = 1, . . . ,M and k = 1, . . . , m. We now
show that it gets destabilized by further addition of the m-dimensional Brownian motion to
(5.1). This corresponds to Gk(i)/= 0 for each i = 1, . . . ,M and k = 1, . . . , m.
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Theorem 5.4. Assume that matrix D is an r × r symmetric positive definite matrix. Now let

(i)
∑m

k=1 |Gk(i)x|2 ≥ a(i)|x|2,
(ii)

∑m
k=1 |x′Gk(i)x|2 ≤ b(i)|x|4,

for a(i) > 0, b(i) ≥ 0 for each i ∈ X, x ∈ R
r . Hence lim inft→∞(1/t) log |Xt| ≥ −K+

∑
i∈X[(a(i)/2−

b(i) + λ log(1 +min1≤i≤M||D(i, γ)||))]νi for any X0 /= 0. In particular if −K +
∑

i∈X[a(i)/2 − b(i) +
λ log(1 + min1≤i≤M||D(i, γ)||)]νi > 0, then the trivial solution of (5.2), tends to be infinity almost
surely exponentially fast.

Proof. Fix X0 /= 0. From Lemma 2.2, Xt /= 0 for all t ≥ 0. Applying Ito’s lemma to log |Xt|, for
t > 0 and for each i ∈ X,

log|Xt| = log|X0| +
∫ t

0

X′
s

|Xs|2
f(Xs)ds +

1
2

m∑
k=1

∫ t

0

[
|Gk(θs)Xs−|2

|Xs−|2
− 2|Xs−Gk(θs)Xs−|2

|Xs−|4
]
ds

+ λ

∫ t

0

∫
Γ
log

(
(|Xs− +D(θs− = i, Y )Xs−|)

|Xs−|
)
π
(
dγ

)
ds +M1(t) +M2(t),

(5.12)

where M1(t) =
∑m

k=1

∫ t
0(|X′

s−Gk(θs)Xs−|/|Xs−|2)dBk(s) and M2(t) =
∫
Γ

∫ t
0 log((|Xs− + D(θs− =

i, Y )Xs−|)/|Xs−|)Ñ(ds, dγ) are the two local martingale terms. Now using methodology
similar to Theorem 5.2 we find

lim inf
t→∞

1
t
log|Xt| ≥ −K +

∑
i∈X

[(
a(i)
2

− b(i) + λ log
(
1 + min

1≤i≤M

∥∥D(
i, γ

)∥∥))]νi (5.13)

for any X0 /= 0. In particular, if −K +
∑

i∈X[a(i)/2 − b(i) + λ log(1 +min1≤i≤M||D(i, γ)||)]νi > 0,
then the trivial solution of the Xt-perturbed system given by (5.2) tends to be infinity almost
surely exponentially fast.

6. Concluding Remarks

We presented conditions under which the solution of a semi-Markov Modulated jump
diffusion is almost surely exponentially stable and moment exponentially stable. We also
provide conditions that connect these two notions of stability. We further determine the
conditions under which the trivial solution of the sMMJD-perturbed nonlinear system of
differential equation dXt/dt = f(Xt) is almost surely exponentially stable. We show that
an unstable deterministic system can be stabilized by adding jumps. Such jump stabilized
system, however, can get de-stabilized by Brownian motion if the dimension of the state
space is at least two.
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diffeomorphisms,” in Real and Stochastic Analysis, M. M. Rao, Ed., pp. 305–373, 2004.
[16] R. S. Lipster and A. N. Shiryayev, Theory of Martingales, Horwood, Chichester, UK, 1989.
[17] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, NY, USA,

2nd edition, 1991.
[18] D. Applebaum and M. Siakalli, “Asymptotic stability of stochastic differential equations driven by
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