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We consider a one-dimensional stochastic equation dXt = b(t, Xt−)dZt + a(t, Xt)dt, t ≥ 0, with
respect to a symmetric stable process Z of index 0 < α ≤ 2. It is shown that solving this equation is
equivalent to solving of a 2-dimensional stochastic equation dLt = B(Lt−)dWt with respect to the
semimartingale W = (Z, t) and corresponding matrix B. In the case of 1 ≤ α < 2 we provide new
sufficient conditions for the existence of solutions of both equations with measurable coefficients.
The existence proofs are established using themethod of Krylov’s estimates for processes satisfying
the 2-dimensional equation. On another hand, the Krylov’s estimates are based on some analytical
facts of independent interest that are also proved in the paper.

1. Introduction

Let Z be a one-dimensional symmetric stable process of index 0 < α ≤ 2 with Z0 = 0. In this
paper we will study the existence of solutions of the equation

dXt = b(t, Xt−)dZt + a(t, Xt)dt, t ≥ 0, X0 = x0 ∈ R, (1.1)

where a, b : [0,∞)×R → R aremeasurable functions. The existence of solutions is understood
in weak sense. In the case of 1 ≤ α ≤ 2, the coefficients a and b are assumed to be only
measurable satisfying additionally some conditions of boundness.
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Two important particular cases of (1.1) are the equations

dXt = b(t, Xt−)dZt, t ≥ 0, X0 = x0 ∈ R, (1.2)

dXt = dZt + a(t, Xt)dt, t ≥ 0, X0 = x0 ∈ R. (1.3)

If α = 2, then Z is a Brownian motion, and this case has been extensively studied
by many authors. The multidimensional analogue of (1.1) with only measurable (instead of
continuous) coefficients was first studied by Krylov [1]who proved the existence of solutions
assuming the boundness of a and b and nondegeneracty of b. The approach he used was
based on Lp-estimates for stochastic integrals of processesX satisfying (1.1). Later, the results
of Krylov were generalized to the case of nonbounded coefficients in various directions. We
mention here only the results of Rozkosz and Slomiński [2, 3] who replaced, in particular,
the assumption of boundness by the assumption of at most linear growth of the coefficients.
The linear growth condition guaranteed the existence of nonexploding solutions. The case of
exploding solutions was studied in [4] under assumptions of some local integrability of the
coefficients a and b.

In the one-dimensional case with α = 2, the results are even stronger. For example, for
the time-independent case of the coefficients Engelbert and Schmidt obtained very general
existence and uniqueness results in [5]. For the case of the time-independent equation (1.2),
one had found even sufficient and necessary conditions for the existence and uniqueness (in
general, exploding) solutions [6]. The time-dependent equation (1.2) was studied by several
authors; we mention here [2, 7] only.

There is less known in the case α < 2. The time-independent equation (1.1)with 1 < α <
2 was considered in [8] using the method of L2-estimates for stable stochastic integrals with
drift. To our knowledge, (1.1) in its general form and with measurable coefficients has not
been studied except the particular cases (1.2) and (1.3). Thus, (1.2) in the case of b(t, x) = b(x)
with arbitrary index αwas studied by Zanzotto in [9]where he, in particular, generalized the
results of Engelbert and Schmidt to the case of 1 < α ≤ 2. The time-dependent equation (1.2)
with the index 1 < α < 2 was treated in [10] using the method of Krylov’s estimates combined
with the time change method. The time change method was also used in [11] where one
obtained the sufficient conditions for the existence of solutions for the case of 0 < α < 2
different from those in [10].

On another hand, the time-independent case of (1.3), that is when a(t, x) = a(x), was
studied by Tanaka et al. in [12]. One obtained there the sufficient existence and uniqueness
conditions assuming the drift coefficient a to be bounded plus satisfying some additional
conditions depending on the case whether 0 < α < 1, α = 1, or 1 < α < 2. The method used
by them was a purely analytical one relying on some properties of homogeneous Markov
processes X satisfying (1.3). More recently, Portenko [13] obtained a new existence result for
the time-independent equation (1.3) for the case of 1 < α < 2 assuming the function a to be
integrable on R of the power p > 1/(α − 1). The general case of (1.3) with 1 < α < 2 was
studied in [14] assuming a being bounded.

The goal of this paper is to prove the existence of solutions of (1.1).
The paper is organized as follows. In Section 2 we recall the definitions and basic facts

needed in the forthcoming sections. We also show that the existence of solutions of (1.1) is
equivalent to the existence of solutions of a 2-dimensional stochastic equation driven by the
semimartingale Wt = (Zt, t) with a corresponding matrix B. The approach is based on time
change method. Section 3 is devoted to obtaining of various estimates. First, we will derive
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an analytic estimate for the value function associated with the control problem determined
by solutions of the 2-dimensional equation. Using this estimate, we prove some variants of
Krylov’s estimates for solutions of the 2-dimensional equation. The results of Section 3 apply
to the case with 1 ≤ α ≤ 2. Finally, in Section 4 we prove the existence of solutions of (1.1)
combining the ideas of time change method with the results of Section 3.

2. Preliminaries and Time Change Method

We shall denote byD[0,∞)(R) the Skorokhod space, that is, the set of all real-valued functions
z : [0,∞) → R with right-continuous trajectories and with finite left limits (also called cádlag
functions). For simplicity, we shall write D instead of D[0,∞)(R). We will equip D with the
σ-algebra D generated by the Skorokhod topology. Under Dn we will understand the n-
dimensional Skorokhod space defined as Dn = D × · · · ×D with the corresponding σ-algebra
Dn being the direct product of n one-dimensional σ-algebras D.

Let (Ω,F,P) be a complete probability space carrying a process Z with Z0 = 0, and
let F = (Ft) be a filtration on (Ω,F,P). The notation (Z,F) means that Z is adapted to the
filtration F. We call (Z,F) a symmetric stable process of index α ∈ (0, 2] if trajectories of Z
belong toD and

E
(
eiξ(Zt−Zs) | Fs

)
= e−(t−s)|ξ|

α

(2.1)

for all t > s ≥ 0 and ξ ∈ R. If α = 2, Z is a process of Brownian motion with the variance 2t.
For α = 1 we have a Cauchy process with unbounded second moment. In general, E|Zt|β <∞
for β < α. The explicit form of the probability density function is known only for three values
of α ∈ {1/2, 1, 2}.

For all 0 < α ≤ 2, Z is a Markov process and can be characterized in terms of analytic
characteristics of Markov processes. First, for any function f ∈ L∞(R) and t ≥ 0, we can define
the operator

(
Ptf
)
(x) :=

∫

Ω
f(x + Zt)dP(ω), (2.2)

where L∞(R) is the Banach space of functions f : R → Rwith the norm ‖f‖∞ = ess sup |f(x)|.
The family (Pt)t≥0 is called the family of convolution operators associated with Z. Formally,
for a suitable class of functions g(x), let

(Lg)(x) = lim
t↓0

(
Ptg
)
(x) − g(x)
t

, (2.3)

called the infinitesimal generator of the process Z.
On another hand, in the case of α ∈ (0, 2), Z is a purely discontinuous Markov process

that can be described by its Poisson jump measure (jump measure of Z on interval [0, t])
defined as

μ(U × [0, t]) =
∑
s≤t

1U(Zs − Zs−), (2.4)
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the number of times before the time t that Z has jumps whose size lies in the set U. The
compensating measure of μ, say ν, is given (see, e.g., [15, Propostion 13.9],) by

ν(U) = Eμ(U × [0, 1]) =
∫

U

1

|x|1+α
dx. (2.5)

It is known that for α < 2

(Lg)(x) =
∫

R\{0}

[
g(x + z) − g(x) − 1{|z|<1}g ′(x)z

] cα

|z|1+α
dz (2.6)

for any g ∈ C2, where C2 is the set of all bounded and twice continuously differentiable
functions g : R → R and cα is a suitable constant. In contrary to the case of α ∈ (0, 2), the
infinitesimal generator of a Brownian motion process (α = 2) is the Laplacian, that is, the
second derivative operator.

We notice also that the use of Fourier transform can simplify calculations when
working with infinitesimal generator L. Let g ∈ L1(R2) and

ĝ(ξ1, ξ2) :=
∫

R2
eiz1ξ1+iz2ξ2g(z1, z2)dz1dz2 (2.7)

be the Fourier transform of g. Clearly, the function ĝ(ξ1, ξ2) can be seen as the result of taking
the Fourier transform from the function g(z1, z2) first in one variable and then in another (in
any order). The following facts will be used later (cf. [14, Proposition 2.1]).

Proposition 2.1. Let L be the infinitesimal generator of a symmetric stable process Z. We have he
following.

(i) Assume that g ∈ C2(R) and Lg ∈ L1(R). Then

(̂Lg)(ξ) = −|ξ|αĝ(ξ). (2.8)

(ii) Let g be absolutely continuous on every compact subset of R and g ′ ∈ L1(R). Then

ĝ ′(ξ) = −iξĝ(ξ). (2.9)

Finally, let us discuss how one can construct a solution of (1.1) for any α ∈ (0, 2] using
the time change method. By the definition, a process T is called a F-time change if it is an
increasing right-continuous process with T0 = 0 such that Tt is a F-stopping time for any t ≥ 0
(cf. [15, chapter 6]). DefineAt =: inf{s ≥ 0 : Ts > t} called the right-continuous inverse process
to T . It follows that A is an increasing process starting at zero. Moreover, A is a F-adapted
process if and only if T is a F-time change.
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We shall here also recall the concept of exploding solutions for (1.1). Let (R̂,B(R̂)) be
the one-point compactification R̂ = R∪{Δ} of R equipped with the σ-algebra B(R̂) of its Borel
subsets. For any function z : [0,+∞) → R̂ we set

τΔ(z) = inf{t ≥ 0 : z(t) = Δ} (2.10)

called the explosion time of the trajectory z and define D̂([0,+∞)) (or simply D̂) to be the
Skorohod space of exploding functions z : [0,+∞) → R̂ such that z is right-continuous with
finite left-hand limits on the interval [0, τΔ(z)) and z(t) = Δwhenever t ≥ τΔ(z).

We say that a stochastic process (X,F), defined on a probability space (Ω,F,P) with
filtration F = (Ft)t≥0 and with trajectories in D̂, is a weak solution of (1.1) with initial state
x0 ∈ R if there exists a symmetric stable process Z with respect to the filtration F such that
Z0 = 0 and

Xt = x0 +
∫ t
0
b(s,Xs−)dZs +

∫ t
0
a(s,Xs)ds on {t < τΔ(X)} P-a.s. (2.11)

for all t ≥ 0, where τΔ(X) is called the explosion time of X. Since Z is a semimartingale for all
0 < α ≤ 2, the stochastic integral in (2.11) can be defined for all appropriate integrands via
semimartingale integration theory.

If τΔ(X) = ∞, then X is called a nonexploding solution, otherwise—exploding solution
with the explosion time τΔ(X).

LetZ be a symmetric stable processZ of index α ∈ (0, 2] defined on a probability space
(Ω,F,P) and x0 ∈ R an arbitrary value. We introduce the matrix B defined as

B :=

(
0 |b|−α

1 a|b|−α
)

(2.12)

and setWt := (Zt, t), Lt = (At, Yt), x0 := (0, x0).
Consider the 2-dimensional equation

Lt = x0 +
∫ t
0
B(Ls−)dWs, (2.13)

which, if written componentwise, is equivalent to the following two one-dimensional equa-
tions:

At =
∫ t
0
|b|−α(As, Ys)ds, (2.14)

Yt = x0 + Zt +
∫ t
0
a|b|−α(As, Ys)ds. (2.15)

Notice that the processW is a semimartingale; hence (2.13) can be seen as a stochastic differ-
ential equation with respect to a semimartingale.
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Moreover, det(B) = −|b|−α so that the matrix B is nondegenerate since b−1 := 1/b and
b /=∞ by the definition of the coefficient b. We also see that A is a strictly increasing non-
negative process such that A0 = 0. Let A∞ := limt→∞At. The properties of A imply that the
right inverse to A process T is a continuous process defined on the interval [0, A∞).

Proposition 2.2. Assume that there exist constants δ1 > 0 and δ2 > 0 such that δ1 ≤ |b| ≤ δ2. Then,
(1.1) has a solution if and only if (2.13) has a solution.

Proof. We notice that the assumptions on the coefficient b imply that the solutions of both
equations are nonexploding.

Suppose first that X is a solution of (1.1) which means that (2.11) is satisfied. The
integrals on the right side of (2.11) are well defined and are P-a.s. finite for all t ≥ 0. Let

Tt =
∫ t
0
|b|α(s,Xs)ds,

At = inf{s ≥ 0 : Ts > t}.
(2.16)

It can be easily verified that the process A satisfies the relation

At =
∫ t
0
|b|−α(As,XAs)ds. (2.17)

By its definition, the process T is F-adapted so that its right-inverse process A is a F-time
change process defined for all t ≥ 0. We notice that (At) is a global time change (that is,
At ∈ [0,∞) for all t ≥ 0) because T∞ = limt↑∞Tt = ∞. Now define

Yt = XAt, Gt = FAt . (2.18)

Applying the time change t → At to the semimartingale X in (2.11) (see [16, Chapter 10])
and using the change of variables rule in Lebesgue-Stieltjes integral (see ch. 0, (4.9) in [17])
yield

Yt = x0 +
∫At

0
b(s,Xs−)dZs +

∫ t
0
a(As, Ys)dAs. (2.19)

It remains to notice that the process

Z̃t :=
∫At

0
b(s,Xs−)dZs (2.20)

is nothing but a symmetric stable process of the index α (see [18], Theorem 3.1). Hence L =
(A,Y ) is a solution of (2.13).
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Now, let L = (A,Y ) be a solution of (2.13) defined on a probability space (Ω,G,P)with
a filtration G, where Z̃ is a symmetric stable process adapted to G. Let

Xt = YTt , Ft = GTt (2.21)

for all t ≥ 0 where T is the right inverse to A. It follows A∞ = ∞ so that T is a global time
change. By applying the time change t → Tt to the semimartingale Y in (2.15)we obtain

Z̃Tt = Xt − x0 −
∫ t
0
a(s,Xs)ds. (2.22)

Using the standard arguments of time change in stochastic integrals with respect to
symmetric stable processes (see, e.g., [11]), we conclude that there exists a symmetric stable
process (defined on the same probability space as Z̃) such that

Z̃Tt =
∫ t
0
b(s,Xs−)dZs, (2.23)

what finishes the proof.

Actually, as Proposition 2.2 indicates, to prove the existence of solutions of (1.1), we
need only to assume that (2.13) has a solution. In this sense the assumptions on the coefficient
b required in Proposition 2.2 can be slightly relaxed.

Corollary 2.3. Let L be a solution of (2.13), where x0 ∈ R, and there exists a constant δ1 > 0 such
that |b| > δ1. Then there exists a (possibly, exploding) solution X of (1.1).

Proof. By assumptions, there exist a solution A of (2.14) and a process Y satisfying (2.15),
both adapted to the same filtration F. For any t ≥ 0, let

Tt = inf{s ≥ 0 : As > t} (2.24)

be the right inverse of the process A. By A∞ and T∞ we denote the limits of processes A and
T as t → ∞, respectively. Clearly, A and T are strictly increasing and continuous processes
defined on intervals [0, T∞) and [0, A∞), respectively. In particular, we have thatATt = t∧A∞
and TAt = t∧ T∞ for all t ≥ 0. We notice further that T is a F-time change, finite on [0, A∞) and
equal to infinity for t ≥ A∞. Define Xt = x0 + YTt for all t ∈ [0, A∞) and Xt = Δ for all t ≥ A∞.
Also letHt = FAt for all t ≥ 0. Our goal is to show that the process (X,H) is a solution of (1.1).

By making a time change in the relation (2.14), we obtain for all t ≥ 0

Tt =
∫Tt
0
|b|α(As, x0 + Ys)|b|−α(As, x0 + Ys)ds =

∫Tt
0
|b|α(As, x0 + Ys)dTs

=
∫ATt

0
|b|α(s, x0 + YTs)ds =

∫ t∧A∞

0
|b|α(s,Xs)ds P-a.s.

(2.25)
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Applying the same time change to processes in (2.15) yields

Xt∧A∞ = x0 + ZTt +
∫ t∧A∞

0
a(s,Xs)ds. (2.26)

Let us look at the process ZTt . By properties of stable integrals (see, e.g., [11, Proposition 4.3]
or [18, Theorem 3.1]), there exists a symmetric stable process (Z,H) of the same index α
stopped at A∞ such that

Zt =
∫Tt
0
b−1(As, x0 + Ys−)dZs, t ≥ 0. (2.27)

From the last relation and time change properties in stochastic integrals with respect to a
semimartingale (see, e.g., [16, Theorem 10.19]), it follows that

Zt =
∫Tt
0
b−1(As, x0 + Ys−)dZs =

∫ t
0
b−1(s,Xs−)dZTs , t < A∞, P-a.s. (2.28)

Now, the relation (2.25) yields that, for all t < A∞, the integral
∫ t
0 |b|α(s,Xs)ds is finite hence

there exists the stochastic integral
∫ t
0 b(s,Xs−)dZs (see, e.g., [11, Proposition 4.3]). Using

(2.28), we obtain then

∫ t
0
b(s,Xs−)dZs =

∫ t
0
b(s,Xs−)b−1(s,Xs−)dZTs = ZTt , t < A∞, P-a.s. (2.29)

Enlarging the probability space, we can assume that Z is extended to a full symmetric stable
process of index α. The last relation combinedwith (2.26) verifies thatX is a solution of (2.11),
possibly, exploding in A∞.

Corollary 2.4. Let L be a solution of (2.13)with x0 ∈ R, and assume that there exist constants δ1 > 0
and δ2 > 0 such that δ1 ≤ |b(t, x)| ≤ δ2 for all (t, x). Then there exists a nonexploding solution X of
(1.1).

3. Some Estimates

Let δ1, δ2, and K be strictly positive constants and Z a symmetric stable process of index
0 < α ≤ 2 defined on a probability space (Ω,F,P) with filtration F. By I1 and I2 we denote
the classes of all F-predictable one-dimensional processes rt and γt, respectively, such that
δ1 ≤ rt ≤ δ2 and |γt| ≤ K.

For any (t, x) ∈ R
2, λ > 0, and any nonnegative, measurable function f ∈ C∞

0 (R2)
(C∞

0 (R2) denotes the class of all infinitely many times differentiable real-valued functions
with compact support defined on R

2) defines the value function v(t, x) as

v(t, x) = sup
r∈I1,γ∈I2

E
∫∞

0
e−λsf

(
s + ψrs , x +Xγ

s

)
ds, (3.1)
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where the processes ψr and Xγ are given by

ψrt =
∫ t
0
rsds, X

γ
t = Zt +

∫ t
0
γsds. (3.2)

Then, for the value function v and the process (ψr,Xγ), the Bellman principle of optimality
can be formulated as follows (cf. [1]): for any [0,∞)-valued F-stopping time τ it holds

v(t, x) = sup
r∈I1,γ∈I2

E
{∫ τ

0
e−λsf

(
t + ψrs , x +Xγ

s

)
ds + e−λτv

(
t + ψrτ , x +Xγ

τ

)}
. (3.3)

Using standard arguments, one can derive from the principle above the corresponding Bell-
man equation (r and γ are deterministic)

sup
δ1≤r≤δ2

sup
|γ |≤K

{
rvt(t, x) +Lv(t, x) − λv(t, x) + γvx(t, x) + f(t, x)

}
= 0, (3.4)

which holds a.e. in R
2. Here vt and vx denote the partial derivatives of the function v(t, x) in

t and x, respectively.
Define Q = {(t, x) : vt(t, x) > 0}. Then, the Bellman equation is equivalent to two

equations

δ2vt +Lv − λv +K|vx| + f = 0 onQ,

δ1vt +Lv − λv +K|vx| + f = 0 onQc.
(3.5)

Lemma 3.1. Let 1 < α ≤ 2 and δ2/δ1 ∈ [1, 2 +
√
2). Then, for all (t, x) ∈ R

2, it holds

v(t, x) ≤N∥∥f∥∥2 :=N
(∫

R2
f2(s, y)dsdy

)1/2

, (3.6)

where the constantN depends on δ1, K, and α only.

Proof. For any function h : R
2 → R such that h ∈ L1(R2) and any ε > 0 we define

h(ε)(t, x) =
1
ε2

∫

R2
h(t, x)q

(
t − s
ε

,
x − y
ε

)
dsdy (3.7)

to be the ε-convolution of h with a smooth function q such that q ∈ C∞
0 (R2) and∫

R2 q(t, x)dt dx = 1.
For ε > 0, let

f (ε) :=

⎧
⎨
⎩
λv(ε) − δ2v(ε)

t − Lv(ε) −K
∣∣∣v(ε)

x

∣∣∣ on Q,

λv(ε) − δ1v(ε)
t − Lv(ε) −K

∣∣∣v(ε)
x

∣∣∣ on Qc.
(3.8)
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It follows that

δ2v
(ε)
t + Lv(ε) − λv(ε) =

(
δ2v

(ε)
t + Lv(ε) − λv(ε)

)
1Q +

(
δ2v

(ε)
t + Lv(ε) − λv(ε)

)
1Qc

= −
(
f (ε) +K

∣∣∣v(ε)
x

∣∣∣
)
+ (δ2 − δ1)v(ε)

t 1Qc

(3.9)

so that

(
δ2v

(ε)
t +Lv(ε) − λv(ε)

)2 ≤ 4
((

f (ε)
)2

+K2
(
v
(ε)
x

)2)
+ 2(δ2 − δ1)2

(
v
(ε)
t

)2
. (3.10)

Obviously, f (ε) is square integrable, and (3.5) implies that f (ε) → f as ε ↓ 0 a.s. in R
2.

Now, applying Proposition 2.1, the Parseval identity and integration by parts to the
inequality

∫

R2

(
δ2v

(ε)
t +Lv(ε)(t, x) − λv(ε)(t, x)

)2
dt dx

≤ 4
∫

R2

((
f (ε)
)2
(t, x) +K2

(
v
(ε)
x

)2
(t, x)

)
dt dx + 2(δ2 − δ1)2

∫

R2

(
v
(ε)
t

)2
(t, x)dt dx

(3.11)

yields

∫

R2

∣∣∣v̂(ε)(ζ, ξ)
∣∣∣
2(
[|ξ|α + λ]2 + δ22 |ζ|2

)
dζ dξ

≤ 4
∫

R2

(∣∣∣f̂ (ε)(ζ, ξ)
∣∣∣
2
+K2|ξ|2

∣∣∣v̂(ε)(ζ, ξ)
∣∣∣
2
)
dζ dξ + 2(δ2 − δ1)2

∫

R2
|ζ|2
∣∣∣v̂(ε)(ζ, ξ)

∣∣∣
2
dζ dξ.

(3.12)

Let δ := δ22 − 2(δ2 − δ1)2. It follows from the assumptions that δ > 0. The inequality (3.12) can
be rewritten then as

∫

R2

∣∣∣v̂(ε)(ζ, ξ)
∣∣∣
2([|ξ|α + λ]2 + δ|ζ|2

)
dζ dξ

≤ 4
∫

R2

∣∣∣f̂ (ε)(ζ, ξ)
∣∣∣
2
dξ dζ + 4K2

∫

R2
|ξ|2
∣∣∣v̂(ε)(ζ, ξ)

∣∣∣
2
dζ dξ.

(3.13)

One sees easily that there exists a constant λ0 > 0 such that

[|ξ|α + λ0
]2 + δ|ζ|2 ≥ [|ξ|α + λ0

]2 ≥ 8K2ξ2 (3.14)

for all (ζ, ξ) ∈ R
2.
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Combining the inequalities (3.12) and (3.14), we obtain for all λ ≥ λ0

1
2

∫

R2

∣∣∣v̂(ε)(ζ, ξ)
∣∣∣
2([|ξ|α + λ] + δ|ζ|2

)
dζ dξ ≤ 4

∫

R2

∣∣∣f̂ (ε)(ζ, ξ)
∣∣∣
2
dζ dξ. (3.15)

Let

N1 :=
∫

R2

dζdξ
(|ξ|α + λ)2 + δ|ζ|2

. (3.16)

Clearly, the constantN1 is finite and depends on δ1, δ2, K, and α only.
Using the estimate (3.15) and the inverse Fourier transform yields for all (t, x) ∈ R

2

and λ ≥ λ0
(
v(ε)(t, x)

)2 ≤ N1

4π2

∫

R2

∣∣∣v̂(ε)(ζ, ξ)
∣∣∣
2([|ξ|α + λ]2 + δ|ζ|2

)
dζ dξ

≤ N1

π2

∫

R2

(
f (ε)(s, z)

)2
dsdz.

(3.17)

The result follows then by taking the limit ε → 0 in the above inequality and using the Leb-
esgue-dominated convergence theorem.

Now, let L = (A,Y ) be a solution of (2.13), and there exist constants K > 0 and δ > 0
such that the following assumptions are satisfied:

|a(t, x)| ≤ K|b(t, x)|α ∀ (t, x) ∈ [0,∞) × R,

δ ≤ |b|−α(t, x) ≤ βδ where β ∈
[
1, 2 +

√
2
)
, (t, x) ∈ [0,∞) × R.

(3.18)

We are interested in L2-estimates of the form

E
∫∞

0
e−λuf(t0 +Au, x0 + Yu)du ≤N∥∥f∥∥2, (3.19)

where (t0, x0) ∈ R
2, λ > 0.

Theorem 3.2. Assume that 1 < α ≤ 2, L is a solution of (2.13), and the assumptions (3.18) hold.
Then, for any (t0, x0) ∈ R

2, λ ≥ λ0, and any measurable function f : R
2 → [0,∞), the estimate

(3.19) is satisfied where the constantN depends on δ,K, and α only.

Proof. Assume first that f ∈ C∞
0 (R2) so that there is a solution v of (3.5) satisfying the

inequality (3.6). By taking the ε-convolution on both sides of (3.5), we obtain for all δ ≤ r ≤ βδ
and |γ | ≤ K

rv
(ε)
t +Lv(ε) − λv(ε) + γ

∣∣∣v(ε)
x

∣∣∣ + f (ε) ≤ 0. (3.20)
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Then, for s ≥ 0, applying the Itô’s formula to the expression

v(ε)(t0 +As, x0 + Ys)e−λs (3.21)

yields

Ev(ε)(t0 +As, x0 + Ys)e−λs − v(ε)(t0, x0)

= E
∫ s
0
e−λu
[
v
(ε)
t |b|−α(Au, Yu) +Lv(ε) − λv(ε) + a|b|−α(Au, Yu)v

(ε)
x

]
(t0 +Au, x0 + Yu)du

≤ −E
∫ s
0
e−λuf (ε)(t0 +Au, x0 + Yu)du.

(3.22)

By Lemma 3.1

E
∫ s
0
e−λuf (ε)(t0 +Au, x0 + Yu)du ≤ sup

t0,x0

v(ε)(t0, x0) ≤N
∥∥∥f (ε)

∥∥∥
2
. (3.23)

It remains to pass to the limit in the above inequality letting ε → 0, s → ∞ and using the
Fatou’s lemma.

The inequality (3.19) can be extended in a standard way first to any function f ∈ L2(R)
and then to any nonnegative, measurable function using the monotone class theorem argu-
ments (see, e.g., [19, Theorem 20]).

Now, for arbitrary but fixed t > 0,m ∈ N, define

∥∥f∥∥2,m,t =
(∫ t

0

∫m
−m

∣∣f(s, x)∣∣2dx ds
)1/2

(3.24)

to be the L2-norm of f on [0, t] × [−m,m]. Applying (3.19) to the function f(s, x) =
f(s, x)1[0,t]×[−m,m](s, x), we obtain the following local version of Krylov’s estimates.

Corollary 3.3. Let 1 < α ≤ 2 and L = (A,Y ) be a solution of (2.13). Suppose that the conditions
(3.18) are satisfied. Then, for any t ≥ 0,m ∈ N, and any nonnegative measurable function f , it follows
that

E
∫ t∧τm(Y )
0

f(Au, Yu)du ≤N∥∥f∥∥2,m,t, (3.25)

where τm(Y ) := inf{t ≥ 0 : |Yt| ≥ m} andN is a constant depending on δ, K, α,m, and t only.

From Theorem 3.2 and Corollary 3.3 we also obtain the following.

Corollary 3.4. Let (A,Y ) be a solution of (2.13) with α = 1. If the assumptions (3.18) are satisfied
with arbitrary δ and K < 1/2

√
2, then the estimate (3.25) holds.
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4. Existence of Solutions

Now we turn our attention to the existence of solutions of (1.1) and (2.13). Since the case of
α = 2 is well studied, we restrict ourselves to the case α < 2.

Theorem 4.1. Let 1 ≤ α < 2 and assume that the assumptions (3.18) are satisfied where the constant
K is arbitrary for 1 < α < 2 and K < 1/2

√
2 for α = 1. Then, for any x0 ∈ R, there exists a

(nonexploding) solution of (1.1).

Proof. We first prove the existence of solutions of the equation (2.13).
It follows from the assumptions that the coefficient B is bounded. Hence we can find

a sequence of functions qn and pn, n ≥ 1, such that they are globally Lipshitz continuous and
uniformly bounded by the constant min{2δ, 2Kδ}. Moreover, qn → a|b|−α and pn → |b|−α
as n → ∞ pointwise and in ‖ · ‖2,t,m− norm for all t > 0, m ∈ N. For any n = 1, 2, . . ., (2.13)
has a unique strong solution (see, e.g., [20, Theorem 9.1]). That is, for any fixed symmetric
stable process Z defined on a probability space (Ω,F,P), there exists a sequence of processes
Ln = (An, Yn), n = 1, 2, . . ., such that

Lnt = x0 +
∫ t
0
Bn(s, Lns )dWs, t ≥ 0, P-a.s., (4.1)

where

Bn :=

(
0 pn

1 qn

)
(4.2)

or, written componentwise,

An
t =
∫ t
0
pn(An

s , Y
n
s )ds,

Yn
t = x0 + Zt +

∫ t
0
qn(An

s , Y
n
s )ds.

(4.3)

Let

Snt :=
∫ t
0
qn(An

s , Y
n
s )ds, (4.4)

so that

Yn = x0 + Z + Sn, n ≥ 1. (4.5)



14 International Journal of Stochastic Analysis

Now we claim that the sequence of processes Hn := (Yn, Sn,An, Z), n ≥ 1, is tight in
the sense of weak convergence in (D4,D4). Due to the Aldous’ criterion ([21]), we have only
to show that

lim
l→∞

lim sup
n→∞

P

(
sup
0≤s≤t

‖Hn
s ‖ > l

)
= 0 (4.6)

for all t ≥ 0 and

lim sup
n→∞

P
(∥∥∥Hn

t∧(τn+rn) −H
n
t∧τn
∥∥∥ > ε

)
= 0 (4.7)

for all t ≥ 0, ε > 0, every sequence of F-stopping times τn, and every sequence of real numbers
rn such that rn ↓ 0. We use ‖ · ‖ to denote the Euclidean norm of a vector.

But both conditions are clearly satisfied because of the uniform boundness of the
coefficients qn and pn for all n ≥ 1.

Since the sequence {Hn} is tight, there exists a subsequence {nk}, k = 1, 2, . . ., a pro-
bability space (Ω,F,P) and the process H on it with values in (D4,D4) such that Hnk con-
verges weakly (in distribution) to the processH as k → ∞. For simplicity, let {nk} = {n}.

According to the embedding principle of Skorokhod (see, e.g., [20, Theorem 2.7]),
there exists a probability space (Ω̃, F̃, P̃) and the processes H̃ = (Ỹ , S̃, Ã, Z̃), H̃n = (Ỹ n, S̃n,

Ãn, Z̃n), n = 1, 2, . . ., on it such that

(i) H̃n → H̃ as n → ∞P̃-a.s.

(ii) H̃n = Hn in distribution for all n = 1, 2, . . .

Using standard measurability arguments ([1, chapter 2]), one can prove that the processes
Z̃n and Z̃ are symmetric stable processes of the same index as the processes Zn with respect
to the augmented filtrations F̃

n and F̃ generated by processes H̃n and H̃, respectively.
Using the properties (i), (ii), and (4.1), one can show (cf. [1, chapter 2]) that

Ỹ n
t = x0 + Z̃n

t +
∫ t
0
qn
(
Ãn
s , Ỹ

n
s

)
ds, t ≥ 0, P̃-a.s.,

Ãn
t =
∫ t
0
pn
(
Ãn
s , Ỹ

n
s

)
ds, t ≥ 0, P̃-a.s.

(4.8)

On the other hand, the same properties and the quasileft continuity of the the processes H̃n

yield

lim
n→∞

Ãn
t = Ãt, lim

n→∞
Ỹ n
t = Ỹt t ≥ 0, P̃-a.s. (4.9)
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Therefore, in order to show that the process L̃ = (Ã, Ỹ ) is a solution of (2.13), it suffices to
verify that, for all t ≥ 0,

lim
n→∞

∫ t
0
pn
(
Ãn
s , Ỹ

n
s

)
ds =

∫ t
0
|b|−α

(
Ãs, Ỹs

)
ds P̃-a.s.,

lim
n→∞

∫ t
0
qn
(
Ãn
s , Ỹ

n
s

)
ds =

∫ t
0

[
a|b|−α]

(
Ãs, Ỹs

)
ds P̃-a.s.

(4.10)

The following fact can be proven similar as [14, Lemma 4.2].

Lemma 4.2. For any Borel measurable function f : R
2 → [0,∞) and any t ≥ 0, there exists a seq-

uencemk ∈ (0,∞), k = 1, 2, . . . such thatmk ↑ ∞ as k → ∞ and it holds

Ẽ
∫ t∧τmk (Ỹ )
0

f
(
Ãs, Ỹs

)
ds ≤N∥∥f∥∥2,mk,t

, (4.11)

where the constantN depends on δ, K, α, t, andmk only.

Without loss of generality, we can assume in Lemma 4.2 that {mk} = {m}. Now, to
prove (31), it is enough to verify that for all t ≥ 0 and ε > 0 we have

lim
n→∞

P̃

(∣∣∣∣∣
∫ t
0
pn
(
Ãn
s , Ỹ

n
s

)
ds −

∫ t
0
|b|−α

(
Ãs, Ỹs

)
ds

∣∣∣∣∣ > ε
)

= 0. (4.12)

In order to prove (4.12) we estimate for a fixed k ∈ N

P̃

(∣∣∣∣∣
∫ t
0
pn
(
Ãn
s , Ỹ

n
s

)
ds −

∫ t
0
|b|−α

(
Ãs, Ỹs

)
ds

∣∣∣∣∣ > ε
)

≤ P̃

(∣∣∣∣∣
∫ t
0
pk
(
Ãn
s , Ỹ

n
s

)
ds−
∫ t
0
pk
(
Ãs, Ỹs

)
ds

∣∣∣∣∣>
ε

3

)
+P̃

(∣∣∣∣∣
∫ t∧τm(Ỹ n)

0

[
pk−pn

](
Ãn
s , Ỹ

n
s

)
ds

∣∣∣∣∣>
ε

3

)

+ P̃

(∣∣∣∣∣
∫ t∧τm(Ỹ )
0

[
pk − |b|−α]

(
Ãs, Ỹs

)
ds

∣∣∣∣∣ >
ε

3

)
+ P̃
(
τm
(
Ỹ n
)
< t
)
+ P̃
(
τm
(
Ỹ
)
< t
)

= J1
n,k

+ J2
n,k,m

+ J3
k,m

+ P̃
(
τm
(
Ỹ n
)
< t
)
+ P̃
(
τm
(
Ỹ
)
< t
)
.

(4.13)
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By Chebyshev’s inequality and Lebesgue bounded convergence theorem, J1n,k → 0 as n →
∞. To show that J2

n,k,m
→ 0 as n → ∞ and J3

k,m
→ 0 as k → ∞, we use first the Chebyshev’s

inequality and then Corollary 3.3 and Lemma 4.2, respectively, to estimate

J2n,k,m ≤ 3
ε
N
∥∥pk − pn

∥∥
2,m,t,

J3k,m ≤ 3
ε
N
∥∥pk − |b|−α∥∥2,m,t,

(4.14)

where the constant N depends on K1, K2, α, m, and t only. Obviously, ‖pn − |b|−α‖2,m,t −→ 0
as n → ∞ implying that the right-hand sides in (4.14) converge to 0 by letting first n → ∞
and then k → ∞.

Because of the property τm(Ỹ n) −→ τm(Ỹ ) as n → ∞ P̃-a.s.,

P̃
(
τm
(
Ỹ n
)
< t
)
−→ P̃

(
τm
(
Ỹ
)
< t
)

as n −→ ∞ (4.15)

for all m ∈ N, t > 0. Therefore, the last two terms can be made arbitrarily small by choosing
large enoughm for all n due to the fact that the sequence of processes Ỹ n satisfies the property
(4.6). This proves (4.12). The proof of (4.10) is similar, and we omit the details.

We have shown that L̃ = (Ã, Ỹ ) is a solution of (2.13). To finish the proof of the
theorem, it is enough to use Corollary 2.4 that implies that the process X̃t = ỸT̃t will be a
(nonexploding) solution of (1.1).

Remark 4.3. If β = 1, then the existence conditions of Theorem 4.1 coincide with those found
in [14]where (1.1)with b = 1 was considered.
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