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We study the stability of the solutions of stochastic differential equations driven by fractional
Brownian motions with Hurst parameter greater than half. We prove that when the initial
conditions, the drift, and the diffusion coefficients as well as the fractional Brownian motions
converge in a suitable sense, then the sequence of the solutions of the corresponding equations
converge in Hölder norm to the solution of a stochastic differential equation. The limit equation is
driven by the limit fractional Brownian motion and its coefficients are the limits of the sequence of
the coefficients.

1. Introduction and Main Result

Suppose that BH = (BH
t )0≤t≤T is anm-dimensional fractional Brownian motion (fBm in short)

with Hurst parameter H defined on a complete filtered probability space (Ω,F, (Ft)0≤t≤T ,P).
Wemean that the components BH,j , j = 1, . . . , m are independent centered Gaussian processes
with the covariance function

RH(s, t) =
1
2

(
t2H + s2H − |t − s|2H

)
. (1.1)

If H = 1/2, then BH is clearly a Brownian motion. Since for any p ≥ 1, E|BH,j
t − B

H,j
s |p =

cp|t − s|pH the processes BH,j have α-Hölder continuous paths for all α ∈ (0,H) (see [1] for
further information about fBm).
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In this paper we fix 1/2 < H < 1 andwe consider the solution (Xt)0≤t≤T of the following
stochastic differential equation (abbreviated by SDE from now on) on Rd

Xi
t = xi +

m∑
j=1

∫ t

0
σi,j(Xs)dB

H,j
s +

∫ t

0
bi(Xs)ds, 0 ≤ t ≤ T, (1.2)

i = 1, . . . , d, x ∈ Rd is the initial value of the process X.
Under suitable assumptions on σ, the processes σ(X) and BH have trajectories which

are Hölder continuous of order strictly larger than 1/2 so we can use the integral introduced
by Young in [2]. The stochastic integral in (1.2) is then a path-wise Riemann-Stieltjes integral.
A first result on the existence and uniqueness of a solution of such an equation was obtained
in [3] using the notion of p-variation. The theory of rough paths introduced by Lyons in [3]
was used by Coutin and Qian in order to prove an existence and uniqueness result for (1.2)
(see [4]). The Riemann-Stieltjes integral appearing in (1.2) can be expressed as a Lebesgue
integral using a fractional integration by parts formula (see Zähle [5]). Using this formula
Nualart and Răşcanu have established in [6] the existence of a unique solution for a class
of general differential equations that includes (1.2). Later on, the regularity in the sense of
Malliavin calculus and the absolute continuity of the law of the random variables Xt have
been investigated in [7–10].

In order to obtain moment bounds on the solution of (1.2), we have to estimate the
corresponding determinist differential equation very carefully. Indeed, an exponential of the
Hölder norm of the fBm may appear and by Fernique’s theorem, it is well known that such
exponential moment does not always exist. This fact will be specified in Section 2. Thanks
to a technical trick due to Hairer and Pillai in [11] (see also [12]), some estimations that are
compatible with exponential moments are now available. This is the starting point of this
short communication: first we will estimate the difference between two solutions of SDEs
with different coefficients. We will endeavor ourselves to give some bounds that are suitable
for stability results.

Now we present the kind of results we are interested in and so we need further
notations. For a differentiable function ϕ fromRd toRq, we denote (if the following quantities
do exist) ‖ϕ‖∞ = maxj=1,...,q‖ϕj‖∞ and

∥∥ϕ∥∥C1 =
∥∥ϕ∥∥∞ + max

i=1,...,d
max
j=1,...,q

∥∥∥∥∥
∂ϕj

∂xi

∥∥∥∥∥
∞
. (1.3)

The space C1 is the space of continuously differentiable functions ϕ such that ‖ϕ‖C1 < ∞. The
spaceC2 is defined in a similar way. For 0 < λ < 1 and 0 ≤ a < b ≤ T , we denote byCλ(a, b;Rd)
the space of λ-Hölder continuous functions f : [a, b] → Rd, equipped with the norm

∥∥f∥∥λ :=
∥∥f∥∥a,b,∞ +

∥∥f∥∥a,b,λ, (1.4)

where
∥∥f∥∥a,b,∞ = sup

a≤r≤b

∣∣f(r)∣∣, ∥∥f∥∥a,b,λ = sup
a≤r≤s≤b

∣∣f(s) − f(r)
∣∣

|s − r|λ
. (1.5)

We simply write Cλ(a, b)when d = 1.
The main result of this work is the following theorem.
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Theorem 1.1. Let (BH,n)n≥1 be a sequence of fractional Brownian motions defined on (Ω,F,
(Ft)0≤t≤T ,P). Let (xn)n≥1, (bn)n≥1, and (σn)n≥1 be some sequences in Rd, C1, and C2. One considers
the sequence (Xn)n≥1 of processes such that for any n ≥ 1, (Xn

t )0≤t≤T is the unique solution of

Xn
t = xn +

∫ t

0
σn(Xn

s )dB
H,n
s +

∫ t

0
bn(Xn

s )ds, 0 ≤ t ≤ T. (1.6)

If there exists

(i) x ∈ Rd, b ∈ C1 and σ ∈ C2 such that

lim
n→∞

{|xn − x| + ‖bn − b‖∞ + ‖σ − σn‖C1} = 0; (1.7)

(ii) a fractional Brownian motion BH defined on (Ω,F, (Ft)0≤t≤T ,P) such that for β ∈
(1/2,H) and p ≥ 1 one has

lim
n→∞

E
(∥∥∥BH,n − BH

∥∥∥
p

0,T,β

)
= 0; (1.8)

then

lim
n→∞

E
(
‖Xn −X‖pβ

)
= 0, (1.9)

where (Xt)0≤t≤T is the solution of (1.2) with the coefficients x, b, and σ and driven by the fBm BH .

As usual in the theory of SDEs driven by fBm, the above theorem will be the
counterpart of a deterministic result on ordinary differential equations driven by Hölder
continuous functions. More precisely, Theorem 1.1 will be a consequence of an estimation on
the Hölder norm of the difference of two solutions of rough differential equations. This result
is interesting in itself and it is the subject of Section 2. It is precisely stated in Proposition 2.3
but we present here a brief description of the result we have obtained. We consider for
some β ∈ (1/2, 1) two deterministic rough functions g and g̃ in Cβ and two deterministic
differential equations

xt = x0 +
∫ t

0
b(xs)ds +

∫ t

0
σ(xs)dgs,

x̃t = x̃0 +
∫ t

0
b̃(x̃s)ds +

∫ t

0
σ̃(x̃s)dg̃s,

(1.10)

where all the coefficients are smooth. Then we will prove that there exists a constant C such
that

‖x − x̃‖β ≤ C
(
|x0 − x̃0| +

∥∥∥b − b̃
∥∥∥
∞
+ ‖σ − σ̃‖C1

∥∥g∥∥0,T,β +
∥∥g − g̃

∥∥
0,T,β

)

×
(
1 +

∥∥g∥∥0,T,β
)2/β

exp
{
C
∥∥g∥∥1/β0,T,β

}
.

(1.11)
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Since our upper bound is explicit, this estimate can be viewed as a refinement of Theorems
11.3 and 11.6 of [13]. Nevertheless we strength the fact that many results have been obtained
in the theory of fractional SDEs thanks to rough paths theory. Wemay prove the above results
by rough paths techniques but we adopt the simplest context of Young’s integral. The stability
with respect to the driving noise is a reformulation of the continuity of the Itô map and this
is well known. A weaker stability result with respect to the initial condition is proved in [14].
The stability with respect to all the coefficients in (1.2) is new to our knowledge.

The paper is organized as follows. In Section 2 we present the case of deterministic
differential equations driven by Hölder continuous function and we state an estimation on
the difference between the solutions of such equations (see Proposition 2.3). Theorem 1.1 will
be a straightforward consequence of this work on deterministic differential equations. Finally
some proofs are gathered in Section 3 and in the appendix.

2. Deterministic Differential Equation Driven by Rough Functions

This section deals with deterministic differential equations driven by Hölder’s continuous
functions. These equations are the one satisfied by the trajectories of the solution of (1.2). Our
aim is to prove an estimate for the difference of two solutions of deterministic differential
equations driven by two different Hölder continuous functions. In [8, Theorem 3.3], such
estimates are proved but are unfortunately unusable in our context (see the discussion
below). Proposition 2.3 hereafter will strengthen the result of [8].

Suppose that f ∈ Cλ(a, b) and g ∈ Cμ(a, b) with λ + μ > 1. From [2], the Riemann-
Stieltjes integral

∫b
a fdg exists. In [5], the author provides an explicit expression for the

integral
∫b
a fdg in terms of fractional derivatives. In order to give some precisions, we

consider α > 0 being such that β > 1 − α. Supposing that the following limit exists and is
finite, we denote gb−(t) = g(t) − limε↓0g(b − ε). Then the Riemann-Stieltjes integral can be
expressed as

∫b

a

ftdgt = (−1)α
∫b

a

(
Dα

a+f
)
(t)
(
D1−α

b− gb−
)
(t)dt, (2.1)

where

Dα
a+f(t) =

1
Γ(1 − α)

(
f(t)

(t − a)α
+ α

∫ t

a

f(t) − f(s)

(t − s)α+1
ds

)
,

Dα
b−gb−(t) =

(−1)α
Γ(1 − α)

(
g(t) − g(b)
(b − t)α

+ α

∫b

t

g(t) − g(s)

(s − t)α+1
ds

)
.

(2.2)

We refer to [15] for further details on fractional operators. The following useful lemma is now
classical. Its proof is postponed in the appendix.
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Lemma 2.1. Let f and g inCβ(s, t)with 1/2 < β < 1 and 0 ≤ s < t ≤ T , then there exists a universal
constant κ such that

∣∣∣∣∣
∫ t

s

frdgr

∣∣∣∣∣ ≤
κ

β − 1/2
∥∥g∥∥0,T,β

[∥∥f∥∥s,t,∞(t − s)β +
∥∥f∥∥s,t,β(t − s)2β

]
. (2.3)

Set 1/2 < β < 1 and let g, g̃ ∈ Cβ(0, T ;Rm). We will work with the following
deterministic differential equations on Rd:

xi
t = xi

0 +
∫ t

0
bi(xs)ds +

m∑
j=1

∫ t

0
σi,j(xs)dg

j
s,

x̃i
t = x̃i

0 +
∫ t

0
b̃i(x̃s)ds +

m∑
j=1

∫ t

0
σ̃i,j(x̃s)dg̃

j
s,

(2.4)

for 0 ≤ t ≤ T, i = 1, . . . , d and x0, x̃0 ∈ Rd.
We introduce the following assumptions on the coefficients of the above equations. For

a function ϕ from Rd to Rq, ∇ϕ denotes the matrix of first order derivatives and ∇2ϕ denotes
its Hessian.

(H1) There exists some positive constants b0, b1, b̃0, b̃1 such that ‖b‖∞ ≤ b0, ‖b̃‖∞ ≤ b̃0,
‖∇b‖∞ ≤ b1, and ‖∇b̃‖∞ ≤ b̃1.

(H2) There exists some positive constants c0, c1, c2, c̃0, c̃1, and c̃2 such that ‖σ‖∞ ≤ c0,
‖∇σ‖∞ ≤ c1, ‖∇2σ‖∞ ≤ c2, ‖σ̃‖∞ ≤ c̃0, ‖∇σ̃‖∞ ≤ c̃1, and ‖∇2σ̃‖∞ ≤ c̃2.

It is proved in [6, Theorem 5.1] that if 1 − β < α < 1/2, each of the above equations has a
unique (1 − α)-Hölder continuous solution. The estimates on the solution (xt)0≤t≤T obtained
in [6] were improved in [8]. Let us recall the following observations concerning Theorem 3
in Hu and Nualart [8] (see also [11] for similar comments). It has been proved in [8] that if
b = 0 and σ is twice continuously differentiable with bounded second order derivatives, then
there exists a constant k that depends on T , β, and σ such that

‖x − x̃‖0,T,∞ ≤ k exp
{
k
∥∥g∥∥1/β0,T,β

(
1 + ‖x‖0,T,β + ‖x̃‖0,T,β

)1/β

(
1 + ‖x‖0,T,β

)∥∥g − g̃
∥∥
0,T,β

}
.

(2.5)

Replacing g and g̃ by the trajectories of the fractional Brownian motions BH and B̃H , we
obtain estimation in the supremum norm for the difference of the processes X and X̃ sat-
isfying

Xt = x0 +
∫ t

0
σ(Xs)dBH

s , X̃t = x0 +
∫ t

0
σ
(
X̃s

)
dB̃H

s . (2.6)
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Thus the estimation (2.5) holds almost-surely and one have to take expectation. For this
purpose we use the following Fernique’s type result on the exponential moments of the
Hölder norm of the fBm.

Lemma 2.2. Let T > 0, 1/2 < β < H < 1. Then for any α < 1/(128(2T)2(H−β))

E
[
exp

(
α
∥∥∥BH

∥∥∥
2

0,T,β

)]
≤
(
1 − 128α(2T)2(H−β)

)−1/2
. (2.7)

One refers to [16] for a proof of this lemma. Lemma 2.2 implies the following
integrability property for X (or X̃): for any λ > 0 and γ < 2H,

E
[
exp

(
λ‖X‖γ0,T,∞

)]
< ∞. (2.8)

Inequality (2.8) together with (2.5)will unfortunately be useless since the quantities ‖X‖1/β0,T,∞
and ‖B‖1/β0,T,∞ appear in a multiplicative way in the exponent in the right hand side of (2.5).

Indeed, Young’s inequality yields ‖X‖1/β0,T,∞‖B‖
1/β
0,T,∞ ≤ c‖X‖p/β0,T,∞ + c‖B‖q/β0,T,∞ and if one imposes

p/β < 2 then necessarily q/β > 2 and the finiteness of the expression such as

E
[
exp

(
k‖B‖1/β0,T,∞‖X‖1/β0,T,∞

)]
(2.9)

cannot be deduced from Lemma 2.2 and (2.8) (in fact we do not even know if this expectation
is finite). Hence we need a suitable estimate to obtain moment bounds on the quantities we
are interested in. Such investigations have been carried out in [11, 12] but we need some
nontrivial modifications to handle the difference x− x̃when x and x̃ are the solutions of (2.4).

Therefore the next result is a strengthening of Theorem 3.3 in [8] and is based on the
method used in [11, Lemma 3.2]. It may also be viewed as a refinement of Theorems 11.3 and
11.6 of [13].

Proposition 2.3. Let T be fixed and let g and g̃ be Hölder continuous of order 1/2 < β < 1. Under
(H1) and (H2), there exists a constant C that depends only on T , β, b0, b̃0, c0, c̃0, c1, c̃1, c2, and c̃2
such that

‖x − x̃‖β ≤ C
(
|x0 − x̃0| +

∥∥∥b − b̃
∥∥∥
∞
+ ‖σ − σ̃‖C1

∥∥g∥∥0,T,β +
∥∥g − g̃

∥∥
0,T,β

)

×
(
1 +

∥∥g∥∥0,T,β
)2/β

exp
{
C
∥∥g∥∥1/β0,T,β

}
.

(2.10)

It is worth to notice that a careful reading of the proof shows that C depends
continuously on its parameters. This is important when we apply this proposition to stability
properties of stochastic differential equations.
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3. Proofs

The subject of this section is the proof of Proposition 2.3 and Theorem 1.1. We follow the
arguments developed in the proof of [8, Theorem 3.2], [11, Lemma 3.2] and we give some
precisions. We restrict ourselves to the case d = m = 1 for simplicity. Thus for a function ϕ,
we denote ϕ′ its derivative and ϕ′′ its second order derivative. Moreover cβ := κ/(β − 1/2)
designates the constant in (2.3).

3.1. A Preliminary Lemma

We will need the following lemma whose proof is borrowed from [11]. For the sake of
completeness and to give some information on the constants that are involved in the
statement, we briefly recall the arguments that are used in the proof.

Lemma 3.1. There exists an explicit constant M1 that depends on T , b0, b1, c0, c1, and cβ such that

‖x‖0,T,∞ ≤ T(1 + |x0|)e2M1b1T
(
2M1

(
1 +

∥∥g∥∥0,T,β
))1/β

. (3.1)

Proof. Let 0 ≤ s ≤ t ≤ T . Since |b(xr)| ≤ |b(xr)−b(xs)|+ |b(xs)| and |b(xs)| ≤ b0+b1|xs|, we have

∣∣∣∣∣
∫ t

s

b(xr)dr

∣∣∣∣∣ ≤ b0(t − s) + b1|xs|(t − s) + b1‖x‖s,t,β(t − s)1+β. (3.2)

Clearly ‖σ(x·)‖s,t,β ≤ c1‖x‖s,t,β, thus Inequality (2.3) yields

‖x‖s,t,β ≤ b0(t − s)1−β + b1|xs|(t − s)1−β + b1‖x‖s,t,β(t − s)

+ cβ
∥∥g∥∥0,T,β

[
c0 + c1‖x‖s,t,β(t − s)β

]

≤ M1

{
1 +

∥∥g∥∥0,T,β + b1|xs|(t − s)1−β +
(
1 +

∥∥g∥∥0,T,β
)
‖x‖s,t,β(t − s)β

}
(3.3)

withM1 = max(1, T1−β‖b‖C1 , cβ‖σ‖C1). We denote

Δ1 =
{
2M1

(
1 +

∥∥g∥∥0,T,β
)}−1/β

(3.4)

and when (t − s) ≤ Δ1 we may write

‖x‖s,t,β ≤ 2M1

(
1 +

∥∥g∥∥0,T,β + b1|xs|Δ1−β
1

)
. (3.5)
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Since ‖x‖s,t,∞ ≤ |xs| + ‖x‖s,t,β(t − s)β, we obtain for (t − s) ≤ Δ1 that

‖x‖s,t,∞ ≤ |xs|(1 + 2M1b1Δ1) + 1. (3.6)

By induction with N = T/Δ1 it follows that

‖x‖0,T,∞ ≤ |x0|(1 + 2M1b1Δ1)
N +

N∑
k=1

(1 + 2M1b1Δ1)
k

≤
(

T

Δ1

)
(1 + |x0|)(1 + 2M1b1Δ1)

T/Δ1

(3.7)

and since for any a > 0, (1 + x/a)a ≤ ex, we have (1 + 2M1b1Δ1)
T/Δ1 ≤ e2M1b1T and we finally

deduce (3.1).
As noticed in [11], if b is the null function, then b1 = 0 and the last above argument

fails. In this case it is impossible to obtain a bound without any exponential of the quantity
‖g‖0,T,β.

Remark 3.2. When (t − s) ≤ Δ1, we substitute (3.1) into (3.5) and we deduce the estimate

‖x‖s,t,β ≤ M2

(
1 +

∥∥g∥∥0,T,β
)
, (3.8)

where

M2 = 2M1

(
1 + b1T(1 + |x0|)e2M1b1T

)
. (3.9)

In the sequel, we naturally denote M̃1, Δ̃1, and M̃2 the corresponding quantities that
are related to (7).

3.2. Proof of Proposition 2.3

Proof. Let 0 ≤ s ≤ t ≤ T . We write

xt − x̃t − (xs − x̃s) = I1 + I2 + I3 + I4 + I5, (3.10)
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where

I1 =
∫ t

s

[b(xr) − b(x̃r)]dr,

I2 =
∫ t

s

[
b(x̃r) − b̃(x̃r)

]
dr,

I3 =
∫ t

s

[σ(xr) − σ(x̃r)]dgr,

I4 =
∫ t

s

[σ(x̃r) − σ̃(x̃r)]dgr,

I5 =
∫ t

s

σ̃(x̃r)d
[
gr − g̃r

]
.

(3.11)

Since for any s ≤ r ≤ t, |xr − x̃r | ≤ ‖x − x̃‖s,t,β + |xs − x̃s|, we may write

|I1| ≤ b1
{
‖x − x̃‖s,t,β(t − s)1+β + |xs − x̃s|(t − s)

}
(3.12)

and clearly

|I2| ≤
∥∥∥b − b̃

∥∥∥
∞
(t − s). (3.13)

We use (2.3) to obtain

|I4| ≤ cβ
∥∥g∥∥0,T,β

{
‖σ − σ̃‖∞(t − s)β +

∥∥∥σ ′ − σ̃ ′
∥∥∥
∞
‖x̃‖s,t,β(t − s)2β

}
,

|I5| ≤ cβ
∥∥g − g̃

∥∥
0,T,β

{
‖σ̃‖∞(t − s)β +

∥∥∥σ̃ ′
∥∥∥
∞
‖x̃‖s,t,β(t − s)2β

}
.

(3.14)

Then by (3.8)we have for (t − s) ≤ Δ̃1:

|I4| ≤ M3
∥∥g∥∥0,T,β‖σ − σ̃‖C1(t − s)β,

|I5| ≤ M3
∥∥g − g̃

∥∥
0,T,β‖σ̃‖C1(t − s)β,

(3.15)

where M3 = cβ(1 + b̃1T(1 + |x̃0|)e2M̃1b̃1T ).
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The term I3 is a little bit more elaborate. First we have

|σ(xr) − σ(x̃r) − σ(xr ′) + σ(x̃r ′)|
≤ ∥∥σ ′∥∥

∞|xr − x̃r − xr ′ + x̃r ′ | +
∥∥σ ′′∥∥

∞|xr − xr ′ |(|xr − x̃r | + |xr ′ − x̃r ′ |)

≤ c1‖x − x̃‖s,t,β(t − s)β + 2c2‖x‖s,t,β
(
‖x − x̃‖s,t,β(t − s)β + |xs − x̃s|

)
(t − s)β

(3.16)

and thus

‖σ(x·) − σ(x̃·)‖s,t,β ≤ c1‖x − x̃‖s,t,β + 2c2‖x‖s,t,β
(
‖x − x̃‖s,t,β(t − s)β + |xs − x̃s|

)
. (3.17)

Since

‖σ(x·) − σ(x̃·)‖s,t,∞ ≤ ∥∥σ ′∥∥
∞‖x − x̃‖s,t,β(t − s)β +

∥∥σ ′∥∥
∞|xs − x̃s|. (3.18)

Inequality (2.3) yields

|I3| ≤ cβ
∥∥g∥∥0,T,β

{
c1‖x − x̃‖s,t,β(t − s)2β + c1|xs − x̃s|(t − s)β

+
[
c1‖x − x̃‖s,t,β + 2c2‖x‖s,t,β

(
‖x − x̃‖s,t,β(t − s)β + |xs − x̃s|

)]
(t − s)2β

}

(3.19)

and by (3.8) we deduce that for (t − s) ≤ Δ1:

|I3| ≤ M4
∥∥g∥∥0,T,β

{
‖x − x̃‖s,t,β(t − s)2β + |xs − x̃s|(t − s)β

}
, (3.20)

withM4 = 2cβ‖σ‖C1(1+b1T (1+ |x0|)e2M1b1T ). We use (3.12), (3.13), (3.20), and (3.15), in (3.10)
and we may write that for (t − s) ≤ Δ2 := min(Δ1, Δ̃1)

‖x − x̃‖s,t,β ≤ b1|xs − x̃s|(t − s)1−β +M4
∥∥g∥∥0,T,β|xs − x̃s|

+
∥∥∥b − b̃

∥∥∥
∞
(t − s)1−β +M3‖σ − σ̃‖C1

∥∥g∥∥0,T,β +M3‖σ̃‖C1

∥∥g − g̃
∥∥
0,T,β

+ ‖x − x̃‖s,t,β
[
b1(t − s) +M4

∥∥g∥∥0,T,β(t − s)β
]

≤ b1|xs − x̃s|(t − s)1−β +M4
∥∥g∥∥0,T,β|xs − x̃s| + E

+M5‖x − x̃‖s,t,β
(
1 +

∥∥g∥∥0,T,β
)
(t − s)β,

(3.21)



International Journal of Stochastic Analysis 11

where

E =
∥∥∥b − b̃

∥∥∥
∞
(t − s)1−β +M3‖σ − σ̃‖C1

∥∥g∥∥0,T,β +M3‖σ̃‖C1

∥∥g − g̃
∥∥
0,T,β (3.22)

and M5 = max(b1T1−β,M4). With Δ3 = (2M5(1 + ‖g‖0,T,β))−1/β we may write when (t − s) ≤
Δ := min(Δ2,Δ3) that

‖x − x̃‖s,t,β ≤ 2b1|xs − x̃s|(t − s)1−β + 2M4
∥∥g∥∥0,T,β|xs − x̃s| + 2E. (3.23)

The final arguments are the same as in the proof of (3.1). For t − s ≤ Δwe have

‖x − x̃‖s,t,∞ ≤ |xs − x̃s|
(
1 + 2b1Δ + 2M4

∥∥g∥∥0,T,βΔβ
)
+ 2E (3.24)

that implies by induction if we denote N = T/Δ

‖x − x̃‖0,T,∞ ≤ (|x0 − x̃0| + 2NE)
(
1 + 2b1Δ + 2M4

∥∥g∥∥0,T,βΔβ
)N

≤ N(|x0 − x̃0| + 2E)

⎛
⎝1 +

2b1T + 2M4T
∥∥g∥∥0,T,βΔβ−1

T/Δ

⎞
⎠

T/Δ

≤
(
T

Δ

)
(|x0 − x̃0| + 2E) exp

{
2b1T + 2M4T

∥∥g∥∥0,T,βΔβ−1
}
.

(3.25)

Now we see that we may find a constant M depending only on T , cβ and all the coefficients
of (2.4) (but not on g and g̃) such that

‖x − x̃‖0,T,∞ ≤ C(|x0 − x̃0| + E)
(
1 +

∥∥g∥∥0,T,β
)1/β

exp
{
C
∥∥g∥∥1/β0,T,β

}
. (3.26)

Substituting the bound (3.26) in (3.23) yields that for (t − s) ≤ Δ:

‖x − x̃‖s,t,β ≤ C(|x0 − x̃0| + E)
(
1 +

∥∥g∥∥0,T,β
)1+1/β

exp
{
C
∥∥g∥∥1/β0,T,β

}
. (3.27)

Thus by Lemma A.2 from [11]we finally obtain

‖x − x̃‖0,T,β ≤ C(|x0 − x̃0| + E)
(
1 +

∥∥g∥∥0,T,β
)2/β

exp
{
C
∥∥g∥∥1/β0,T,β

}
. (3.28)

Proposition 2.3 is now a consequence of (3.26) and (3.28).
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3.3. Proof of Theorem 1.1

Proof. The proof is now very simple. We use (2.10) from Proposition 2.3 with g = BH and
g̃ = BH,n. Moreover for any k ≥ 1 we have the following estimate of the moment of the
Hölder norm of the fBm (see [16, Lemma 8] for instance)

E

(∥∥∥BH
∥∥∥
2k

0,T,β

)
≤ 32k(2T)2k(H−β) (2k)!

k!
. (3.29)

Then the estimate on the moments of ‖Xn − X‖β are deduced from easy algebra using
Lemma 2.2, (3.29), Hölder’s inequality and Young’s inequality. The convergence (1.9) follows
from the stability assumptions on the coefficients.

Appendix

Proof of Lemma 2.1

Proof. With 1− β < α < 1/2, we use (2.1) and we obtain for all 0 ≤ s, t ≤ T and all f ∈ Cβ(s, t):

∣∣∣∣∣
∫ t

s

frdgr

∣∣∣∣∣ ≤
∫ t

s

∣∣∣Dα
s+frD

1−α
t− gt−(r)

∣∣∣dr. (A.1)

We have

∣∣∣D1−α
t− gt−(r)

∣∣∣ ≤ β(
α + β − 1

)
Γ(α)

∥∥g∥∥0,T,β|t − r|α+β−1,

∣∣Dα
s+fr

∣∣ ≤ 1
Γ(1 − α)

∥∥f∥∥s,r,∞(r − s)−α +
α(

β − α
)
Γ(1 − α)

∥∥f∥∥s,r,β(r − s)β−α.

(A.2)

It follows that

∣∣∣∣∣
∫ t

s

frdgr

∣∣∣∣∣ ≤
β(

α + β − 1
)
Γ(α)Γ(1 − α)

∥∥g∥∥0,T,β

×
{∥∥f∥∥s,t,∞

∫ t

s

(r − s)−α(t − r)α+β−1dr + α
∥∥f∥∥s,t,β

∫ t

s

(r − s)β−α(t − r)α+β−1dr

}
.

(A.3)
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We use the change of variables r = (t − s)ξ + s and we recall that the Beta function is defined
by B(a, b) =

∫1
0 (1 − ξ)a−1ξb−1dξ = Γ(a)Γ(b)/Γ(a + b). Then we get

∣∣∣∣∣
∫ t

s

frdgr

∣∣∣∣∣ ≤ kα,β
∥∥g∥∥0,T,β

[∥∥f∥∥s,t,∞(t − s)β +
∥∥f∥∥s,t,β(t − s)2β

]
with

kα,β =
βB
(
α + β, 1 − α

)
(
α + β − 1

)
Γ(α)Γ(1 − α)

+
αβB

(
α + β, 1 + β − α

)
(
α + β − 1

)(
β − α

)
Γ(α)Γ(1 − α)

.

(A.4)

It is proved in [12] that in fact kα,β ≤ κ/(β − 1/2) where κ is a universal constant.
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than 1/2,” in Stochastic Analysis and Applications, vol. 2 of Abel Symposium, pp. 399–413, Springer,
Berlin, Germany, 2007.

[9] I. Nourdin and T. Simon, “On the absolute continuity of one-dimensional SDEs driven by a fractional
Brownian motion,” Statistics & Probability Letters, vol. 76, no. 9, pp. 907–912, 2006.

[10] D. Nualart and B. Saussereau, “Malliavin calculus for stochastic differential equations driven by a
fractional Brownian motion,” Stochastic Processes and Their Applications, vol. 119, no. 2, pp. 391–409,
2009.

[11] M. Hairer and N. S. Pillai, “Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion,”
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