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A retrial queueing system with two types of batch arrivals, called type I and type II customers, is
considered. Type I customers and type II customers arrive in batches of variable sizes according
to two different Poisson processes. Service time distributions are identical and independent and
are different for both types of customers. If the arriving customers are blocked due to the server
being busy, type I customers are queued in a priority queue of infinite capacity, whereas type II
customers enter into a retrial group in order to seek service again after a random amount of time.
A type I customer who has received service departs the system with a preassigned probability or
returns to the priority queue for reservice with the complement probability. A type II call who has
received service leaves the system with a preassigned probability or rejoins the retrial group with
complement probability. For this model, the joint distribution of the number of customers in the
priority queue and in the retrial group is obtained in a closed form. Some particular models and
operating characteristics are obtained. A numerical study is also carried out.

1. Introduction

In the last three decades there has been significant contribution in the area of retrial queueing
theory. For detailed survey one can see Yang and Templeton [1], Falin [2] and Choi and
Chang [3]. Choi and Park [4] investigated an M/G/1 retrial queue with two type of
customers in which the service time distribution for both types of customers are the same.
Khalil et al. [5] investigated the above model at Markovian level in detail. Falin et al. [6]
investigated a similar model, in which they assumed different service time distributions for
both types of customers. In 1995, Choi et al. [7], studied an M/G/1 retrial queue with two
types of customers and finite capacity. Atenica and Moreno [8] has analyzed a single server
retrial queuing system with infinite buffer, Poisson arrivals, general distribution of service
time, and linear retrial policy. If an arriving customer finds the server occupied, he joins
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a retrial group (called orbit) with probability p and with complementary probability q a
priority queue in order to be served. After the customer is served completely, he will decide
either to return to the priority queue for another service with probability θ or to leave the
system forever with probability θ = 1 − θ, where 0 ≤ θ < 1. They proved the ergodicity of
the embedded Markov chain and obtained its stationary distribution function and the joint
generating function of the number of customers in both groups in the steady-state regime.
Kalyanaraman and Srinivasan [9] studied an M/G/1 retrial queue with geometric loss and
with type I batch arrivals and type II single arrivals. Artalejo and Atenica [10] analyzed
a single server retrial queue with batch arrivals. Atenica and Moreno [11] considered an
M/G/1 retrial queue with general retrial time where the blocked customers either join the
infinite waiting room (called priority queue) with probability q or with complementary
probability p leave the service area and enter the retrial group (called orbit) in accordance
with an FCFS discipline. They assume that only the customers at the head of the orbit are
allowed to retry for service. They studied the ergodicity of the embedded Markov chain, its
stationary distribution function, and the joint generating function of the number of customers
in both groups in the steady-state regime. In 2005, Lee [12] considered an M/G/1 retrial
queueing system with two types of customers and feedback and derived the joint generating
function of the number of customers in two groups by using the supplementary variable
method. Falin [13] considered a single server batch arrival queue with returning customers.
In 2011, Thillaigovindan and Kalyanaraman [14] analyzed a feedback retrial queueing system
with two types of arrivals and the type I arrival being in batches of fixed size K.

In this paper, we deal with a feedback retrial queue with two types of customers, in
which both types of customers arrive in batches of variable sizes. In Section 2, we describe
the system with stability condition. In Section 3, we obtain the joint probability generating
function for the number of customers in the priority queue and in the retrial group when
server is busy as well as idle. The expressions for some particular models are deduced in
Section 4. Some operating characteristics are derived in Section 5 and a numerical study is
carried out in Section 6.

2. The Model

A retrial queueing system with two types of customers is considered in this paper. Type
I customers arrive in batches of size k with probability ck and type II customers arrive in
batches of size k with probability dk according to two independent Poisson processes with
rates λ1c = λ1

∑∞
k=1 kck and λ2d = λ2

∑∞
k=1 kdk, respectively. If type II customers, upon arrival,

find the server busy, they enter in to an orbit of infinite capacity in order to seek service again
after random amount of time. All the customers in the retrial group behave independently of
each other. The retrial time is exponentially distributed with mean 1/α. Type I customers are
queued in a priority queue of infinite capacity after blocking, if the server is busy. As soon
as the server is free, the customers in the priority queue are served using FCFS rule and the
customers in the retrial group are served only if there are no customers in the priority queue.
A type I call who has received service departs the system with probability 1 − q1 or returns
to the priority queue for reservice with probability q1. A type II call who has received service
leaves the system with probability 1 − q2 or rejoins the retrial group with probability q2.

The service time distributions for both type of customers are identically and inde-
pendently distributed random variables and have different distributions. A supplementary
variable technique is used for the analysis and the variable considered being the residual
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service time of a customer in service. The service time density function is bi(x); i = 1, 2 and
B∗
k
(s) =

∫∞
0 e−sxbk(x)dx, k = 1, 2 is the Laplace transformation of the distribution function

bk(x).
The Stochastic process related to the model is X(t) = {(ξ(t),Np(t),Nr(t), Sk(t)) : t ≥

0} where Np(t) = number of customers in the priority queue at time t, Nr(t) = number of
customers in the retrial group at time t, and ξ(t) = the server state at time t where

ξ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, when the server is idle
1, when the server is busy with type I customer
2, when the server is busy with type II customer,

(2.1)

Sk(t) = the residual service time of a type k customer in service at time t. X(t) is a Markov
process with state space {0, 1, 2} × {0, 1, 2, 3, . . .} × (0,∞) and the corresponding stationary
process is {(ξ,Np,Nr, Sk)}.

The related probabilities are qj(t) = Pr{ξ(t) = 0,Nr(t) = j}

p
(
k, i, j;x, t

)
dx = Pr

{
ξ(t) = k,Np(t) = i,Nr(t) = j, Sk(t)ε(x, x + dx)

}
, k = 1, 2. (2.2)

In steady state, the corresponding probabilities are

qj = lim
t→∞

qj(t),

p
(
k, i, j;x

)
= lim

t→∞
p
(
k, i, j;x, t

)
,

(2.3)

and the Laplace transformation of p(k, i, j;x) is

p∗
(
k, i, j; s

)
=
∫∞

0
e−sxp

(
k, i, j;x

)
dx, i = 1, 2, j ≥ 0. (2.4)

It is clear that

p
(
k, i, j; 0

)
=
∫∞

0
p
(
k, i, j;x

)
dx = Pr

{
ξ = k, Np = i, Nr = j

}
(2.5)
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is the steady-state probability that there are i customers in the priority queue, j customers in
the retrial group, and the server is busy with a kth-type customer.

For |Z1|, |Z2| ≤ 1, the following probability generating functions are defined for the
analysis:

Q(Z2) =
∞∑

j=0

qjZ
j

2,

C(Z1) =
∞∑

j=1

cjZ
j

1,

D(Z2) =
∞∑

j=1

djZ
j

2,

P ∗(k, i, s, Z2) =
∞∑

j=0

p∗
(
k, i, j, s

)
Z

j

2; i = 0, 1, 2, . . . , k = 1, 2,

P ∗(k, s, Z1, Z2) =
∞∑

i=0

P ∗(k, i, s, Z2)Zi
1; k = 1, 2,

P(k, i, 0, Z2) =
∞∑

j=0

p∗
(
k, i, j, 0

)
Z

j

2; i = 0, 1, 2, . . . , k = 1, 2,

P(k, 0, Z1, Z2) =
∞∑

i=0

P(k, i, 0, Z2)Zi
1.

(2.6)

3. The Analysis

Using the mean drift argument of Falin [15], it can be shown that the system is stable if
ρ1 + ρ2 < 1 where ρ1 = −λ1cB∗′

1 (0),ρ2 = −λ2dB∗′
2 (0).

Now the mathematical equations that govern the system are obtained by employing
the remaining service time (vacation time) as the supplementary variable. Relating the state
of the system at time t and t + dt, the following partial differential-difference equations are
obtained.

For j ≥ 0, x ≥ 0, i ≥ 0

(
λ + jα

) d

dt
qj(t) =

(
1 − q1

)
p
(
1, 0, j; 0, t

)
+
(
1 − q2

)
p
(
2, 0, j; 0, t

)
+ q2p

(
2, 0, j − 1; 0, t

)
,

−∂p(1, 0, j;x, t)

∂x
+
−∂p(1, 0, j;x, t)

∂t
= − λp

(
1, 0, j;x, t

)
+ q1b1(x)p

(
1, 0, j; 0, t

)

+ λ1b1(x)qj(t) +
(
1 − q1

)
b1(x)p

(
1, 1, j; 0, t

)

+ λ2

j∑

k=1

dkp
(
1, 0, j − k;x, t

)
,
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−∂p(1, i, j;x, t)

∂x
+
−∂p(1, i, j;x, t)

∂t
= − λp

(
1, i, j;x, t

)
+ q1b1(x)p

(
1, i, j; 0, t

)

+
(
1 − q1

)
b1(x)p

(
1, i + 1, j; 0, t

)
+ λ1

i∑

k=1

ckp
(
1, i − k, j;x, t

)

+ λ2

j∑

k=1

dkp
(
1, i, j − k;x, t

)
,

−∂p(2, 0, j;x, t)

∂x
+
−∂p(2, 0, j;x, t)

∂t
= − λp

(
2, 0, j;x, t

)
+ λ2b2(x)

j∑

k=0

dk+1qj−k(t)

+
(
j + 1

)
αb2(x)qj+1(t) + λ2

j∑

k=1

dkp
(
2, 0, j − k;x, t

)
,

−∂p(2, i, j;x, t)

∂x
+
−∂p(2, i, j;x, t)

∂t
= − λp

(
2, i, j;x, t

)
+ λ1

i∑

k=1

ckp
(
2, i − k, j;x, t

)

+ λ2

j∑

k=1

dkp
(
2, i, j − k;x, t

)
.

(3.1)

In steady state, (3.1) becomes

(
λ + jα

)
qj =

(
1 − q1

)
p
(
1, 0, j; 0

)
+
(
1 − q2

)
p
(
2, 0, j, 0

)
+ q2p

(
2, 0, j − 1, 0

)
, (3.2)

−p′(1, 0, j;x) = − λp
(
1, 0, j;x

)
+ q1b1(x)p

(
1, 0, j; 0

)
+ λ1b1(x)qj

+
(
1 − q1

)
b1(x)p

(
1, 1, j; 0

)
+ λ2

j∑

k=1

dkp
(
1, 0, j − k;x

)
,

(3.3)

−p′(1, i, j;x) = − λp
(
1, i, j;x

)
+ q1b1(x)p

(
1, i, j; 0

)
+
(
1 − q1

)
b1(x)p

(
1, i + 1, j; 0

)

+ λ1
i∑

k=1

ckp
(
1, i − k, j;x

)
+ λ2

j∑

k=1

dkp
(
1, i, j − k;x

)
,

(3.4)

−p′(2, 0, j;x) = − λp
(
2, 0, j;x

)
+ λ2b2(x)

j∑

k=0

dk+1qj−k +
(
j + 1

)
αb2(x)qj+1

+ λ2

j∑

k=1

dkp
(
2, 0, j − k;x

)
,

(3.5)

−p′(2, i, j;x) = −λp(2, i, j;x) + λ1
i∑

k=1

ckp
(
2, i − k, j;x

)
+ λ2

j∑

k=1

dkp
(
2, i, j − k;x

)
, (3.6)
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and the normalization condition is

∞∑

j=0

∞∑

i=0

∫∞

0
p
(
1, i, j;x

)
dx +

∞∑

i=0

∞∑

j=0

∫∞

0
p
(
2, i, j;x

)
dx +

∞∑

j=0

qj = 1, (3.7)

where λ = λ1 + λ2.
By taking the Laplace Stieltjes transformation of (3.3) to (3.6), the following equations

are obtained:

(s − λ)P ∗(1, 0, j; s
)
= P

(
1, 0, j; 0

) − q1p
(
1, 0, j; 0

)
B∗
1(s) − λ1qjB

∗
1(s)

− (
1 − q1

)
p
(
1, 1, j; 0

)
B∗
1(s) − λ2

j∑

k=1

dkP
∗(1, 0, j − k; s

)
,

(s − λ)P ∗(1, i, j; s
)
= P

(
1, i, j; 0

) − q1p
(
1, i, j; 0

)
B∗
1(s) −

(
1 − q1

)
p
(
1, i + 1, j; 0

)
B∗
1(s)

− λ1
i∑

k=1

ckP
∗(1, i − k, j; s

) − λ2

j∑

k=1

dkP
∗(1, i, j − k; s

)
,

(s − λ)P ∗(2, 0, j; s
)
= P

(
2, 0, j; 0

) − λ2B
∗
2(s)

j∑

k=0

dk+1qj−k −
(
j + 1

)
αqj+1B

∗
2(s)

− λ2

j∑

k=1

dkP
∗(2, 0, j − k; s

)
,

(s − λ)P ∗(2, i, j; s
)
= −λ1

i∑

k=1

ckP
∗(2, i − k, j;x

)
+ λ2

j∑

k=1

dkP
∗(2, i, j − k; s

)
,

P
(
2, i, j; 0

)
= 0.

(3.8)

In (3.2) and (3.8), multiplying byZ
j

2 and then summing over j, the following equations
are obtained:

λQ(Z2) + αZ2Q
′(Z2) =

(
1 − q1

)
P(1, 0; 0, Z2) +

(
1 − q2

)
P(2, 0; 0, Z2) + q2Z2P(2, 0; 0, Z2),

(3.9)

(s − λ + λ2D(Z2))P ∗(1, 0; s, Z2) = P(1, 0; 0, Z2) − λ1B
∗
1(s)Q(Z2) − q1B

∗
1(s)P(1, 0; 0, Z2)

− (
1 − q1

)
B∗
1(s)P(1, 1; 0, Z2),

(3.10)
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(s − λ + λ2D(Z2))P ∗(1, i; s, Z2) = P(1, i; 0, Z2) −
(
1 − q1

)
B∗
1(s)P(1, i + 1; 0, Z2)

− q1B
∗
1(s)P(1, i; 0, Z2) − λ1

i∑

k=1

ckP
∗(1, i − k; s, Z2),

(3.11)

(s − λ + λ2D(Z2))P ∗(2, 0; s, Z2) = P(2, 0; 0, Z2) − λ2B
∗
2(s)

D(Z2)
Z2

Q(Z2) − αB∗
2(s)Q

′(Z2),

(3.12)

(s − λ + λ2D(Z2))P ∗(2, i; s, Z2) = −λ1
i∑

k=1

ckP
∗(2, i − k; s, Z2). (3.13)

Multiplying (3.11) and (3.13) by Zi
1 and summing over i = 1, 2, . . . and using (3.10)

and (3.12) leads to

(s − λ + λ1C(Z1) + λ2D(Z2))P ∗(1; s, Z1, Z2) = P(1; 0, Z1, Z2) − λ1B
∗
1(s)Q(Z2)

− q1B
∗
1(s)P(1; 0, Z1, Z2)

−
(
1 − q1

)
B∗
1(s)

Z1
P(1; 0, Z1, Z2)

+

(
1 − q1

)
B∗
1(s)

Z1
P(1; 0, 0, Z2),

(3.14)

(s − λ + λ1C(Z1) + λ2D(Z2))P ∗(2; s, Z1, Z2) = P(2, 0; 0, Z2) − λ2B
∗
2(s)

D(Z2)
Z2

Q(Z2)

− αB∗
2(s)Q

′(Z2).

(3.15)

By substituting s = λ − λ1C(Z1) − λ2D(Z2) in (3.14) and (3.15), we get

P(1, 0; 0, Z2) =
λ1z1
1 − q1

Q(Z2) −
(
Z1 − B∗

1(l)
) − q1(Z1 − 1)B∗

1(l)(
1 − q1

)
B∗
1(l)

P(1; 0, Z1, Z2), (3.16)

P(2, 0; 0, Z2) = B∗
2(l)

[

λ2
D(Z2)
Z2

Q(Z2) + αQ′(Z2)
]

, (3.17)

where l = λ − λ1C(Z1) − λ2D(Z2).
Using (3.16) and (3.17) in (3.9) and on simplification, one can get the following

equation:

α
[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2(l)

]
Q′(Z2)

+
[

λ − (
1 − q1

) λ1Z1

1 − q1
− (

1 − q2 + q2Z2
)
λ2B

∗
2(l)

D(Z2)
Z2

]

Q(Z2)

=
q1(Z1 − 1)B∗

1(l) −
(
Z1 − B∗

1(l)
)

B∗
1(l)

P(1; 0, Z1, Z2).

(3.18)
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Define f(Z1, Z2) = (q1(Z1 − 1)B∗
1(l) − (Z1 − B∗

1(l)))/B
∗
1(l) for each fixed Z2, |Z2| ≤ 1. By

Rouche’s theorem, there is a unique solution Z1 = h(Z2) of the equation f(Z1, Z2) = 0. Now
(3.18) becomes

Q′(Z2) =
1
α

λ − λ1h(Z2) − λ2U(Z2)(D(Z2)/Z2)
U(Z2) − Z2

Q(Z2), (3.19)

where h(Z2) is the root of the equation Z1 = B∗
1(λ−λ1C(Z1)−λ2D(Z2)) andU(Z2) = (1− q2 +

q2Z2)B∗
2(l).
Using (3.19) in (3.18), it can be seen that

P(1; 0, Z1, Z2) =

{
L
[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2(l)

]
+ R[U(Z2) − Z2]

}
B∗
1(l)[

q1(Z1 − 1)B∗
1(l) −

(
Z1 − B∗

1(l)
)]
[U(Z2) − Z2]

Q(Z2), (3.20)

where L = λ−λ1h(Z2)−λ2U(Z2)(D(Z2)/Z2), R = λ−λ1Z1− (1−q2+q2Z2)λ2B∗
2(l)(D(Z2)/Z2).

Using (3.20) in (3.16) leads to

P(1; 0, 0, Z2) =
[λ1Z1 + R][U(Z2) − Z2] + L

[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2(l)

]

(
1 − q1

)
[U(Z2) − Z2]

Q(Z2). (3.21)

Using (3.19) in (3.17) leads to

P(2; 0, 0, Z2) =
{λ2(D(Z2)/Z2)[U(Z2) − Z2] + L}B∗

2(l)
[U(Z2) − Z2]

Q(Z2). (3.22)

The general solution of the differential equation (3.19) is

Q(Z2) = Q(1) exp

{
−1
α

∫1

Z2

λ − λ1h(x) − λ2U(x)(D(x)/x)
U(x) − x

dx

}

, (3.23)

where Q(1) is a constant, which is the probability that the server is idle.
Putting s = 0 in (3.10) and in (3.11), we get

(−λ + λ2D(Z2))P ∗(1, 0; 0, Z2) = P(1, 0; 0, Z2) − λ1Q(Z2) − q1P(1, 0; 0, Z2)

− (
1 − q1

)
P(1, 1; 0, Z2),

(3.24)

(−λ + λ2D(Z2))P ∗(1, i; 0, Z2) = P(1, i; 0, Z2) −
(
1 − q1

)
P(1, i + 1; 0, Z2)

− q1P(1, i; 0, Z2) − λ1
i∑

k=1

ckP
∗(1, i − k; 0, Z2).

(3.25)
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Summing (3.25) over i = 1 to∞ and then adding (3.24), we get

λ2(D(Z2) − 1)
∞∑

i=0

P ∗(1, i; 0, Z2) =
(
1 − q1

)
P(1, 0; 0, Z2) − λ1Q(Z2). (3.26)

Putting s = 0 in (3.12) and in (3.13) results in

(−λ + λ2D(Z2))P ∗(2, 0; 0, Z2) = P(2, 0; 0, Z2) − λ2
D(Z2)
Z2

Q(Z2) − αQ′(Z2), (3.27)

(−λ + λ2D(Z2))P ∗(2, i; 0, Z2) = −λ1
i∑

k=1

ckP
∗(2, i − k; 0, Z2). (3.28)

Summing (3.28) over i = 1 to∞ and then adding (3.27), we get

λ2(D(Z2) − 1)
∞∑

i=0

P ∗(2, i; 0, Z2) = P(2, 0; 0, Z2) − λ2Q(Z2)
D(Z2)
Z2

− αQ′(Z2). (3.29)

Adding (3.28) and (3.29) and using (3.9) leads to

λ2(D(Z2) − 1)
∞∑

i=0

2∑

k=1

P ∗(k, i; 0, Z2) = λ2

(

1 − D(Z2)
Z2

− q2(1 − Z2)B∗
2(l)

D(Z2)
Z2

)

Q(Z2)

+ α(1 − Z2)
[
q2B

∗
2(l) − 1

]
Q′(Z2).

(3.30)

Evaluating at Z2 = 1 and using normalization condition we get

Q′(1) =
λ2d − λ2

(
1 − q2

)
Q(1)

α
(
1 − q2

) . (3.31)

Using (3.31) in (3.23) gives

PI = Q(1) =
c
[(
1 − ρ1

)(
1 − q2

) − ρ2
]

(
1 − q2

)(
c + ρ1 − ρ1c

) . (3.32)
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In steady state, the probability generating function of number of customers in the orbit
when the server is idle is obtained from (3.32) and (3.23).

Substituting s = 0 in (3.14)

P ∗(1; 0, Z1, Z2) =
(1 − Z1)

(
1 − q1

)
P(1; 0, Z1, Z2) + λ1Z1Q(Z2) −

(
1 − q1

)
P(1, 0, 0;Z2)

Z1[λ − λ1C(Z1) − λ2D(Z2)]
.

(3.33)

Equation (3.33) together with (3.20) and (3.16) yields the joint probability generating
function of the number of customers in the priority queue and in the orbit when the server is
busy with type I customer as

P ∗(1; 0, Z1, Z2) =

[
1 − B∗

1(l)
]{
L
[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2(l)

]
+ R[U(Z2) − Z2]

}

l
[
q1(Z1 − 1)B∗

1(l) −
(
Z1 − B∗

1(l)
)]
[U(Z2) − Z2]

Q(Z2).

(3.34)

Putting s = 0 in (3.15),

(−λ + λ1C(Z1) + λ2D(Z2))P ∗(2; 0, Z1, Z2) = P(2, 0; 0, Z2) − λ2
D(Z2)
Z2

Q(Z2) − αQ′(Z2).

(3.35)

Substituting (3.19) in (3.35), we get

P ∗(2; 0, Z1, Z2) =
1
l

{[
L

[U(Z2) − Z2]
+ λ2

D(Z2)
Z2

]

Q(Z2) − P(2; 0, 0, Z2)
}

. (3.36)

Equation (3.36) together with (3.19) and (3.17) yields the joint probability generating
function of the number of customers in the priority queue and in the orbit when the server is
busy with type II customer as

P ∗(2; 0, Z1, Z2) =

[
1 − B∗

2(l)
]

l

{
λ2D(Z2)

Z2
+

L

U(Z2) − Z2

}

Q(Z2). (3.37)

Thus, we have the following theorem.
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Theorem 3.1. The stationary distribution of {(ξ,Np,Nr, Sk)} has the following generating
functions:

Q(Z2) =
c
[(
1 − ρ1

)(
1 − q2

) − ρ2
]

(
1 − q2

)(
c + ρ1 − ρ1c

) exp

{
1
α

∫Z2

1

λ − λ1h(x) − λ2U(x)(D(x)/x)
U(x) − x

dx

}

,

P ∗(1; 0, Z1, Z2) =

[
1 − B∗

1(l)
]{
L
[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2(l)

]
+ R[U(Z2) − Z2]

}

l
[
q1(Z1 − 1)B∗

1(l) −
(
Z1 − B∗

1(l)
)]
[U(Z2) − Z2]

Q(Z2),

P ∗(2; 0, Z1, Z2) =

[
1 − B∗

2(l)
]

l

{
λ2D(Z2)

Z2
+

L

U(Z2) − Z2

}

Q(Z2).

(3.38)

Corollary 3.2. The probability that the server busy is

PB = P ∗(1; 0, 1, 1) + P ∗(2; 0, 1, 1) =

[
ρ1
(
1 − q2

)
+ ρ2c

]

(
1 − q2

)(
c + ρ1 − ρ1c

) . (3.39)

4. Particular Models

By taking particular values to some parameters of the above model, the following models can
be obtained.

(i) When dk = 0 = ck, k /= 1, q1 = q2 = 0, and B1(x) = B2(x) = B(x), the system coincides
with that of Choi and Park [4].

(ii) When dk = 0 = ck, k /= 1, and q1 = q2 = 0, the above results coincide with the results
of Falin et al. [6].

(iii) When dk = 0, k /= 1, the system coincides with that of Thillaigovindan and
Kalyanaraman [14].

5. Operating Characteristics

The operating characteristics like the mean number of customers in the priority queue (Np)
and the mean number of customers in the orbit (Nr) have been calculated using the formulas
Np = limZ1 → 1P

∗′(1; 0, Z1, 1) + limZ1 → 1P
∗′(2; 0, Z1, 1) and Nr = limZ2 → 1P

∗′(1; 0, 1, Z2) +
limZ2 → 1P

∗′(2; 0, 1, Z2) +Q′(1). After putting Z2 = 1 in (3.34) and in (3.37), we get

P ∗(1; 0, Z1, 1) =

{
1 − B∗

1[λ1(1 − C(Z1))]
}
(A1 +A2)Q(1)

[λ1(1 − C(Z1))]
,

P ∗(2; 0, Z1, 1) =

{
1 − B∗

2[λ1(1 − C(Z1))]
}[
λ1h

′(1) + λ2d
]
Q(1)

[λ1(1 − C(Z1))][1 −U′(1)]
,

(5.1)

where A1 = ([1 −B∗
2[λ1(1 −C(Z1))]][−λ1h′(1) − λ2U

′(1) − λ2d + λ2])/((1 −C(Z1))[U′(1) − 1]),
A2 = λ−λ1Z1−λ2B∗

2[λ1(1−C(Z1))],A3 = q1(Z1−1)B∗
1[λ1(1−C(Z1))]−(Z1−B∗

1[λ1(1−C(Z1))]),
h′(1) = λ2dρ1/λ1c(1 − ρ1),U′(1) = q2ρ2/(1 − ρ1).
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Differentiating (5.1) with respect to Z1 and then taking the limit as Z1 → 1, we get

lim
Z1 → 1

P ∗′(1; 0, Z1, 1) =
(
1 − ρ1

)[(
1 − q2

) − ρ2(1 − c)
]
A4 +

λ1λ2β2ρ1cd

2
(
1 − ρ1 − q1

)(
1 − q2

)

− c2ρ1
[(
1 − ρ1

)(
1 − q2

) − ρ2
]

2c
(
1 − q2

)(
1 − ρ1 − q1

)[
ρ1 + c

(
1 − ρ1

)] ,

(5.2)

where A4 = ((1 − q1)[ρ1c2 + λ21c
3β1] + 2ρ21q1c)/(2c(1 − q2)(1 − ρ1 − q1)

2[ρ1 + c(1 − ρ1)])

lim
Z1 → 1

P ∗′(2; 0, Z1, 1) =
λ1λ2cdβ2

2
(
1 − q2

) . (5.3)

After putting Z1 = 1 in (3.34) and in (3.37), we get

P ∗(1; 0, 1, Z2) =

{
L
[
Z2 −

(
1 − q2 + q2Z2

)
B∗
2[λ2[1 −D(Z2)]]

]
+ R[U(Z2) − Z2]

}

−λ2[1 −D(Z2)][U(Z2) − Z2]
Q(1),

P ∗(2; 0, 1, Z2) =

[
1 − B∗

2[λ2[1 −D(Z2)]]
]{LZ2 + λ2D(Z2)[U(Z2) − Z2]}

λ2[1 −D(Z2)]Z2[U(Z2) − Z2]
Q(1).

(5.4)

Differentiating (5.4) with respect to Z2 and then taking limit as Z2 → 1, we get

lim
Z2 → 1

P ∗′(1; 0, 1, Z2) =
D1

[
λ1c

2(1 − ρ1
)2
D2 −

(
1 − q2 − ρ2

)
D3

]

2λ1c
2d

2(
1 − ρ1

)2(
q2 − 1

)[
ρ1 + c

(
1 − ρ1

)]
D0

+

(
1 − q2 − ρ2

)
(D4 + λ2cD5 −D6 −D7)

2λ1λ2c
2d

2(
1 − ρ1

)2(1 − q2
)[
ρ1 + c

(
1 − ρ1

)]

+
D8c

[(
1 − ρ1

)(
1 − q2

) − ρ2
]

2d
2(
1 − q2

)[
ρ1 + c

(
1 − ρ1

)] +
ρ1λ2D1

(
1 − q2 − ρ2 − ρ2c

)

αD0
(
1 − q2

)[
ρ1 + c

(
1 − ρ1

)] ,

D0 =
[(
1 − q2

)(
1 − ρ1

) − ρ2
]
,

D1 = ρ1d + ρ2c + c
(
1 − ρ1

)(
d − 1 + q2

)
,

D2 = D0

[

2q2ρ2d + ρ2d2 + λ22d
3
β2

]

,

D3 = 2λ1c
2dq2ρ2

(
1 − ρ1

)2 + λ1λ
2
2c

2β2d
3(
1 − ρ1

)
+ λ2c2d

2
ρ21ρ2

+ λ21λ2c
3d

2
β1ρ2 + λ1c

2d2ρ2
(
1 − ρ1

)2
,
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D4 = λ21λ
2
2c

3d
3
β1 + λ22d

3
ρ31c2 + λ1λ2d2dρ1c

2(1 − ρ1
)2 + 2λ1λ2c

3dq2ρ2
(
1 − ρ1

)2
,

D5 = λ1λ
2
2c

2d
3
β2
(
1 − ρ1

)
+ λ2c2d

2
ρ21ρ2 + λ21λ2c

3d
2
β1ρ2 + λ1c

2d2ρ2
(
1 − ρ1

)2
,

D6 = 2λ1λ2c
3d

(
d − 1

)(
1 − ρ1

)2[1 − ρ1 − ρ2 − q2
(
1 − ρ1

)]
,

D7 = λ1λ2c
2d2

(
1 − ρ1

)2
[
ρ1d + c

[
q2
(
1 − ρ1

)
+ ρ2

] − c
(
1 − ρ1

)]
,

D8 = 2d
(
1 − d

)(
q2 + ρ2 − 1

) − λ22d
3
β2 − d2 + q2

[
−2ρ2d + d2

]
,

lim
Z2 → 1

P ∗′(2; 0, 1, Z2) =
λ22d

2
β2

2
(
1 − q2

) +
λ2ρ2D1

αc
(
1 − q2

)
D0

+
ρ22q2(

1 − q2
)[(

1 − ρ1
)(
1 − q2

) − ρ2
]

+
ρ2
[((

1 − ρ1
)(
1 − q2

) − ρ2
)
D9 +

(
c + ρ1 − ρ1c

)
D10

]

2λ1dc
2(1 − ρ1

)2
D0

(
c + ρ1 − ρ1c

)(
1 − q2

) ,

D9 = λ21λ2c
3d

2
β1 + λ2d

2
ρ31c2 + λ1c

2d2
(
1 − ρ1

)(
c + ρ1 − ρ1c

)
,

D10 = λ1λ
2
2c

2d
3
β2
(
1 − ρ1

)
+ λ2d

2
ρ21ρ2c2 + λ21λ2c

3d
2
β1ρ2

+ λ1c
2d2ρ2

(
1 − ρ1

)2
.

(5.5)

From (3.31) and (3.32)

Q′(1) =
λ2
α

[
d

1 − q2
− c

[(
1 − ρ1

)(
1 − q2

) − ρ2
]

(
1 − q2

)(
c + ρ1 − ρ1c

)

]

. (5.6)

(i) Mean number of customers in the priority queue is

Np = lim
Z1 → 1

P ∗′(1; 0, Z1, 1) + lim
Z1 → 1

P ∗′(2; 0, Z1, 1). (5.7)

(ii) Mean number of customers in the orbit is

Nr = lim
Z2 → 1

P ∗′(1; 0, 1, Z2) + lim
Z2 → 1

P ∗′(2; 0, 1, Z2) +Q′(1). (5.8)

(iii) Mean busy period.

Busy period Tb is the length of the time interval that keeps the server busy
continuously and this continues till the instant server becomes free again and let T0 be the
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Table 1: The probabilities PI and PB .

λ1
α = 0.9, λ2 = 0.8 α = 0.9, λ2 = 0.9

PI PB PI PB

0.1 0.4511 0.0089 0.3837 0.0088
0.2 0.4422 0.0178 0.3750 0.0175
0.3 0.4334 0.0266 0.3663 0.0262
0.4 0.4246 0.0354 0.3576 0.0349
0.5 0.4158 0.0442 0.3490 0.0435
0.6 0.4071 0.0529 0.3404 0.0521
0.7 0.3984 0.0616 0.3319 0.0606
0.8 0.3898 0.0702 0.3233 0.0692
0.9 0.3811 0.0789 0.3148 0.0777
1.0 0.3725 0.0875 0.3064 0.0861

length of the idle period. For this model, Tb and T0 generates an alternating renewal process
and therefore

E(Tb)
E(T0)

=
Pr{Tb}

1 − Pr{Tb} =
PB

1 − PB
. (5.9)
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Table 2: The probabilities PI and PB .

λ2
α = 0.9, λ1 = 0.8 α = 0.9, λ1 = 0.9

PI PB PI PB

0.1 0.8548 0.0777 0.8453 0.0872
0.2 0.7884 0.0766 0.7790 0.0860
0.3 0.7219 0.0756 0.7127 0.0848
0.4 0.6555 0.0745 0.6464 0.0836
0.5 0.5891 0.0734 0.5801 0.0824
0.6 0.5226 0.0724 0.5138 0.0812
0.7 0.4562 0.0713 0.4474 0.0801
0.8 0.3898 0.0702 0.3811 0.0789
0.9 0.3233 0.0692 0.3148 0.0777
1.0 0.2569 0.0681 0.2485 0.0765

But E(T0) = 1/λ

E(Tb) =
PB

λ(1 − PB)
. (5.10)

Using (3.39) on (5.10), we get

E(Tb) =

[
ρ1
(
1 − q2

)
+ ρ2c

]

λc
[(
1 − ρ1

)(
1 − q2

) − ρ2
] . (5.11)

6. Numerical Study

In this section, some numerical examples related to the model analyzed in this paper are
given. By varying type I arrival rate, type II arrival rate, and the retrial rate, the mean number
of customers in the priority queue, the mean number of customers in the orbit, the mean busy
period, the probability that the server is idle, and the probability that the server is busy are
calculated. For the analysis, the parameters q1, q2, c, c′′(1), d, d′′(1), β1, β2, B∗

1
(1)
(0) and B∗

2
(1)
(0)

are fixed. In Figures 1 and 2, the retrial rate is taken as 0.9 and type II arrival rate is taken
as 0.8 and 0.9, respectively; by varying values of type I arrival rate the graphs of the mean
number of customers in the priority queue and the mean number of customers in the orbit
are drawn. In Figures 3 and 4, the retrial rate has been fixed as 0.9 but type I arrival rates are
0.8 and 0.9, respectively. The graphs of the mean number of customers in the priority queue
and the mean number of customers in the orbit are drawn against varying values of type II
arrival rate. In Figures 5 and 6, the same graphs with respect to varying retrial rate are drawn
for fixed values of type I and type II arrival rates (λ1 = 0.9, λ2 = 0.8 and 0.9). Figures 7, 8,
and 9 show the graphs of mean busy period for varying values of type I arrival rate and type
II arrival rate and retrial rate, respectively. From Figures 7 and 8, it is seen that the mean
busy period is an decreasing function with respect to type I arrival rate and the mean busy
period is an increasing function with respect to type II arrival rate. Whereas from Figure 9,
the mean busy period is a constant function with respect to retrial rate. In Tables 1 and 2,
the probability that the server is idle (PI) and the probability that the server is busy (PB) are
presented. From the graphs, it is clear that as type I arrival rate (type II arrival rate) increases
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the mean number of customers in the priority queue and the mean number of customers in
the orbit also increase, whereas as the retrial rate increases the mean number of customers
in the orbit decreases and the mean number of customers in the priority queue is a constant
function.

7. Conclusion

In the foregoing analysis, an M/G/1 queue with retrial queueing system with two types
of batch arrivals is considered to obtain queue length distribution and mean queue length.
Extensive numerical work has been carried out to observe the trends of the operating
characters of the system.
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