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We consider the best-choice problemwith disorder and imperfect observation. The decision-maker
observes sequentially a known number of i.i.d random variables from a known distribution with
the object of choosing the largest. At the random time the distribution law of observations is
changed. The random variables cannot be perfectly observed. Each time a random variable is
sampled the decision-maker is informed only whether it is greater than or less than some level
specified by him. The decision-maker can choose at most one of the observation. The optimal rule
is derived in the class of Bayes’ strategies.

1. Introduction

In the papers we consider the following best-choice problem with disorder and
imperfect observations. A decision-maker observes sequentially n iid random variables
ξ1, . . . , ξθ−1, ξθ, . . . , ξn. The observations ξ1, . . . , ξθ−1 are from a continuous distribution law
F1(x) (state S1). At the random time θ, the distribution law of observations is changed to
continuous distribution function F2(x) (i.e., the disorder happen—state S2). The moment
of the disorder has a geometric distribution with parameter 1 − α. The observer knows
parameters α, F1(x), and F2(x), but the exact moment θ is unknown.

At each time in which a random variable is sampled, the observer has to make a
decision to accept (and stop the observation process) or reject the observation (and continue
the observation process). If the decision-maker decided to accept at step k (1 ≤ k ≤ n), she
receives as the payoff the value of the random variable discounted by the factor λk−1, where
0 < λ < 1. The random variables cannot be perfectly observed. The decision-maker is only
informed whether the observation is greater than or less than some level specified by her.
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The aim of the decision-maker is to maximize the expected value of the accepted
discounted observation.

We find the solution in the class of the following strategies. At each moment k (1 ≤
k ≤ n), the observer estimates the a posterior probability of the current state and specifies the
threshold s = sn−k. The decision-maker accepts the observation xk if and only if it is greater
than the corresponding threshold s.

This problem is the generalization of the best-choice problem [1, 2] and the quickest
determination of the change-point (disorder) problem [3–5]. The best-choice problems with
imperfect information were treated in [6–8]. Only few papers related to the combined
best-choice and disorder problem are published [9–11]. Yoshida [9] considered the full-
information case and found the optimal stopping rule which maximizes the probability
that accepted value is the largest of all θ + m − 1 random variables for a given integer m.
Closely related work to this study is Sakaguchi [10] where the optimality equation for the
optimal expected reward is derived for the full-information model. In [11], we constructed
the solution of the combined best-choice and disorder problem in the class of single-level
strategies, and, in this paper, we search the Bayes’ strategy which maximizes the expected
reward in the model with imperfect observation.

2. Optimal Strategy

According to the problem the observer does not know the current state (S1 or S2). But she
can estimate the state using the Bayes’ formula:

πs = π(s) = P{S1 | x ≤ s} = P(S1)P(x ≤ s | S1)
P(x ≤ s)

=
απF1(s)
Fπ(s)

. (2.1)

Here, s = si is the threshold specified by the decision-maker within i steps until the
end (i.e., at the step n − i), π is the a prior probability of the state S1 (i.e., before getting the
information that x ≤ s), Fπ(s) = πF1(s) + πF2(s), and π = 1 − π .

We use the dynamic programming approach to derive the optimal strategy. Let vi(π)
be the payoff that the observer expects to receive using the optimal strategy within steps until
the end. The optimality equation is as follows:

vi(π) = max
s

E
[
λvi−1(πs)I{x≤s} + xI{x>s}

]
, i ≥ 1,

v0(π) = 0 ∀π. (2.2)

Simplifying (2.2), we get

vi(π) = max
s

[λvi−1(πs)Fπ(s) + πE1(s) + πE2(s)], i ≥ 1,

v0(π) = 0 ∀π. (2.3)

Here, Ek(s) =
∫∞
s xdFk(x), k = 1, 2.

The following theorem gives the presentation of the expected payoff in linear form
on π .
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Theorem 2.1. For any i the function vi(π) can be written in the form

vi(π) = πAi(s1, . . . , si) + Bi(s1, . . . , si), (2.4)

where

si = si(π) = argmax
s

[λvi−1(πs)Fπ(s) + πE1(s) + πE2(s)], i ≥ 1, 0 ≤ π ≤ 1. (2.5)

Proof. Using the formula (2.3), one can show that

v1(π) = max
s

[π(E1(s) − E2(s)) + E2(s)] = πA1(s1) + B1(s1), (2.6)

where A1(s1) = E1(s1) − E2(s1), B1 = E2(s1) and

s1 = s1(π) = argmax
s

[π(E1(s) − E2(s)) + E2(s)], 0 ≤ π ≤ 1. (2.7)

Threshold s1 = s1(π) is the solution of (2.3) for 0 ≤ π ≤ 1 for i = 1.
Assume the theorem is correct for certain i = k. Then, for i = k + 1

vk+1(π) = max
s

[λ(πsAk(s1, . . . , sk) + Bk(s1, . . . , sk))Fπ(s) + πE1(s) + πE2(s)]

= max
s

[π(λαF1(s)Ak(s1, . . . , sk) + λBk(s1, . . . , sk)(F1(s) − F2(s)) + E1(s) − E2(s))

+λBk(s1, . . . , sk)F2(s) + E2(s)]

= πAk+1(s1, . . . , sk+1) + Bk+1(s1, . . . , sk+1),
(2.8)

where

Ak+1(s1, . . . , sk+1) = λαF1(s)Ak(s1, . . . , sk) + λBk(s1, . . . , sk)(F1(s) − F2(s)) + E1(s) − E2(s),

Bk+1(s1, . . . , sk+1) = λBk(s1, . . . , sk)F2(s) + E2(s),

si = si(π) = argmax
s

[λvi−1(πs)Fπ(s) + πE1(s) + πE2(s)], i ≥ 1, 0 ≤ π ≤ 1.

(2.9)

The theorem is proved.

The following lemma takes place.

Lemma 2.2. Assuming Ek < ∞, k = 1, 2 as i → ∞, there is a limit of the expected payoff
vi(π) → v(π).

Proof. It is obvious that the sequence vi(π) is increasing by i.
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Now, we prove that the sequence of the expected payoffs has an upper bound.

v1(π) ≤ πE1 + πE2,

Ek =
∫∞

0
xdFk(x), k = 1, 2

v2(π) = max
s

[λv1(πs)Fπ(s) + πE1(s) + πE2(s)]

≤ λ(πE1 + πE2) + πE1 + πE2.

(2.10)

Further one can show using the induction that for any i ≥ 1 and any 0 ≤ π ≤ 1 the expected
payoff at the step i has the upper bound

vi(π) ≤ πE1 + πE2

1 − λ
. (2.11)

The lemma is proved.

Corollary 2.3. Theorem 2.1 and the lemma yield that there are such A and B that

lim
i→∞

vi(π) = lim
i→∞

(πAi(s1, . . . , si) + Bi(s1, . . . , si)) = πA + B = v(π). (2.12)

As i → ∞ the expected payoff satisfies the following equation:

v(π) = lim
i
vi(π) = max

s
[λv(πs)Fπ(s) + πE1(s) + πE2(s)]. (2.13)

To find the components of the expected payoff for a case of huge number of
observation we should solve the following equation:

πA + B = max
s

[π(λαF1(s)A + λB(F1(s) − F2(s)) + E1(s) − E2(s)) + λBF2(s) + E2(s)], (2.14)

therefore,

A = λαF1(s)A + λB(F1(s) − F2(s)) + E1(s) − E2(s),

B = λBF2(s) + E2(s).
(2.15)

The solution of the system is as follows

A =
E1(s)(1 − λF2(s)) − E2(s)(1 − λF1(s))

(1 − λF2(s))(1 − λαF1(s))
,

B =
E2(s)

1 − λF2(s)
.

(2.16)
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The expected payoff is

v(π) = max
s

(πA + B) (2.17)

and the optimal threshold is

s = s(π) = argmax
s

(πA + B). (2.18)

The above results are summarized in the following theorem.

Theorem 2.4. For i → ∞, the solution of (2.3) is defined as

v(π) = max
s

(πA + B), (2.19)

where

s = s(π) = argmax
s

(πA + B),

A =
E1(s)(1 − λF2(s)) − E2(s)(1 − λF1(s))

(1 − λF2(s))(1 − λαF1(s))
,

B =
E2(s)

1 − λF2(s)
.

(2.20)

3. Examples

Consider the examples of using the Bayes’ strategy B defined by the formula (2.18)
comparing with two strategies with constant thresholds that do not depend on π .

3.1. Normal Distribution

Consider the example of the normal distribution of the random variables where functions
F1(x) and F2(x) have the variance σ2 = 1 and the expectation μ1 = 10 and μ2 = 9, respectively.

StrategiesA1 and A2 with constant thresholds defined by the following formula:

s =
E(s)

1 − λF(s)
, (3.1)

where F(s) ≡ F1(s) and E(s) ≡ E1(s) for the strategy A1; F(s) ≡ F2(s) and E(s) ≡ E2(s) for
the strategy A2.

The values of the thresholds of strategies A1 and A2 depending on discount rate are
tabulated in Table 1.

Table 1 shows how much the discount rate is affect on the thresholds.
Figure 1 shows the graphics of the optimal thresholds for strategiesA1 andA2 (s1 and

s2, resp.) and strategy B (sopt) depending on π . As the figure shows, the strategy B depends
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Table 1: The values of the thresholds of strategiesA1 and A2.

λ Strategy A1 Strategy A2

0.99 10.851 9.902
0.9 9.088 8.210
0.7 7.000 6.300
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Figure 1: Graphics of the optimal thresholds for strategiesA1, A2, and B for α = 0.9, λ = 0.99.

Table 2: Main characteristics of the best-choice process for α = 0.9, λ = 0.99.

Characteristic Strategy A1 Strategy A2 Strategy B

Expected payoff 10.035 10.429 10.500
Average time of accepting the observation 14.526 2.472 3.072
Average number of steps after the disorder 30.406 4.503 5.031
Number of the values accepted before the disorder, % 64.100 83.066 79.738

on the a posterior probability of the state S1(π). As π tends to zero, the optimal threshold of
the strategy B tends to threshold s2.

We compare the payoffs that the observer expects to receive using different strategies.
Define Vα as the expected payoff for π = 1 and depending on probability of disorder α.

Figure 2 shows the numerical results of the expected payoffs of the observer who uses
the strategies A1, A2, and B (thresholds s1, s2, and sopt, resp.).

The expected payoff of the observer who uses the Bayes’ strategy B is greater if she
uses one of the strategiesA1 orA2. The difference is significant for α ∈ [0.75, 0.98], because of
uncertainty of the current state of the system.

Table 2 shows the numerical results of the main characteristics of the best-choice
process.

For the small probability of the disorder (1−α = 0.1), the expected payoff according to
the strategy A2 is greater (10.429) than according to the strategy A1 (10.035). But the Bayes’
strategy B that depends on π gives the largest expected payoff (10.500).

Table 2 shows that the average time of accepting the observation is increasing with
respect to the value of the threshold. Note that the strategy A1 does not depend on the
disorder and this leads to a high value of the average time of accepting the observation. Both
strategies A2 and B have a small average time of accepting the observation.
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Figure 2: Expected payoffs of the observer who uses the strategiesA1, A2 and B for α = 0.9, λ = 0.99.

Table 3: The values of the thresholds of strategiesA1 and A2.

λ Strategy A1 Strategy A2

0.99 6.756 3.378
0.9 3.358 1.679

Table 4: Main characteristics of the best-choice process for α = 0.9, λ = 0.99.

Characteristic Strategy A1 Strategy A2 Strategy B

Expected payoff 2.355 4.438 4.499
Average time of accepting the observation 678.930 15.397 16.923
Average number of steps after the disorder 856.535 29.110 29.610
Number of the values accepted before the disorder, % 21.57 70.89 56.01

3.2. Exponential Distribution

Consider the example of the exponential distribution of the observations. Let F1(x) and F2(x)
have the exponential distribution with parameters λ1 = 0.5 and λ2 = 1, respectively. As in the
previous example, consider the strategies A1 and A2 comparing with the Bayes’ strategy B,

s =
E(s)

1 − λF(s)
, (3.2)

where F(s) ≡ F1(s) and E(s) ≡ E1(s) for the strategy A1; F(s) ≡ F2(s) and E(s) ≡ E2(s) for
the strategy A2.

Table 3 shows the values of the thresholds for the strategies A1 and A2 depending on
the discount rate.

The value of the optimal threshold of the strategy B as in the case of the normal
distribution of the observations is increasing by π and equal to the threshold of the strategy
A2 at π = 0. The graphics of the expected payoffs have the same view as in Figure 2. Table 4
shows the main characteristics of the best-choice process for different strategies.

As in the previous example, the Bayes’ strategy gives better payoff than the strategy
A2, but it has bigger average time of accepting the observation. The strategy A1 is the worst
for all the parameters.
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4. Results

In the article, we consider the best-choice problem with disorder and imperfect observations.
We propose the Bayes’ strategy where the threshold depends on the a posterior probability of
the disorder. The numerical results show that this strategy gives better expected payoff than
the constant strategies.
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