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Optimal control problems for one-dimensional diffusion processes in the interval (d1, d2) are
considered. The aim is either tomaximize or tominimize the time spent by the controlled processes
in (d1, d2). Exact solutions are obtained when the processes are symmetrical with respect to
d∗ ∈ (d1, d2). Approximate solutions are derived in the asymmetrical case. The one-barrier cases
are also treated. Examples are presented.

1. Introduction

Let {X(t), t ≥ 0} be a one-dimensional controlled diffusion process defined by the stochastic
differential equation

dX(t) = m[X(t)]dt + b0X
k(t)u[X(t)]dt + {v[X(t)]}1/2dB(t), (1.1)

where u(·) is the control variable, m(·) and v(·) > 0 are Borel measurable functions, b0 /= 0
and k ∈ {0, 1, . . .} are constants, and {B(t), t ≥ 0} is a standard Brownian motion. The set of
admissible controls consists of Borel measurable functions.

Remark 1.1. We assume that the solution of (1.1) exists for all t ∈ [0,∞) and is weakly unique.

We define the first-passage time

T(x) = inf{t > 0 : X(t) = d1 or d2 | X(0) = x}, (1.2)
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where x ∈ (d1, d2). We want to find the control u∗ that minimizes the expected value of the
cost function

J(x) =
∫T(x)
0

{
1
2
q0u

2[X(t)] + λ

}
dt, (1.3)

where q0 > 0 and λ/= 0 are constants. Notice that if λ is negative, then the optimizer wants
to maximize the survival time of the controlled process in the interval (d1, d2), taking the
quadratic control costs into account. In general, there is a maximal value that the parameter
λ can take. Otherwise, the expected reward becomes infinite.

When the relation

αv[X(t)] =
b20
q0

X2k(t) (1.4)

holds for some positive constant α, using a theorem in Whittle [1, p. 289], we can express the
value function

F(x) := inf
u[X(t)],0≤t≤T(x)

E[J(x)] (1.5)

in terms of a mathematical expectation for the uncontrolled process obtained by setting
u[X(t)] ≡ 0 in (1.1). Actually, for the result to hold, ultimate entry of the uncontrolled process
into the stopping set must be certain, which is not a restrictive condition in the case of one-
dimensional diffusion processes considered in finite intervals.

In practice, the theorem in Whittle [1] gives a transformation that enables us to
linearize the differential equation satisfied by the function F(x).

In Lefebvre [2], using symmetry, the author was able to obtain an explicit and exact
expression for the optimal control u∗ when {X(t), t ≥ 0} is a one-dimensional controlled
standard Brownian motion process (so that m[X(t)] ≡ 0 and v[X(t)] ≡ 1), d2 = −d1 = d
and k = 1. Notice that the relation in (1.4) does not hold in that case. The author assumed
that the parameter λ in the cost function is negative, and he found the maximal value that
this parameter can take.

Previously, Lefebvre [3] had computed the value of u∗ when k = 0, but with the cost
function

J1(x) =
∫T(x)
0

{
1
2
q0X

2(t)u2[X(t)] + λ

}
dt (1.6)

rather than the function J(x) defined above.We cannot appeal to the theorem inWhittle [1] in
that case either. However, the author expressed the function F(x) in terms of a mathematical
expectation for an uncontrolled geometric Brownian motion.

In Section 2, we will generalize the results in Lefebvre [2] to one-dimensional diffusion
processes for which the functions m[X(t)] and v[X(t)] are symmetrical with respect to zero
and d1 = −d2. Important particular cases will be considered.

Next, in Section 3, wewill treat the general symmetrical case when d1 is not necessarily
equal to −d2. In Section 4, we will consider processes for which the functions m[X(t)] and
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v[X(t)] are not symmetrical with respect to a certain d∗ ∈ (d1, d2). An approximate solution
will then be proposed. In Section 5, we will present possible extensions, including the case of
a single barrier. Finally, we will make some concluding remarks in Section 6.

2. Optimal Control in the Symmetrical Case with d1 = −d2

In this section, we take d2 = −d1 = d. Assuming that it exists and that it is twice differentiable,
we find that the value function F(x) defined in (1.5) satisfies the dynamic programming
equation

inf
u(x)

{
1
2
q0u

2(x) + λ +
[
m(x) + b0x

ku(x)
]
F ′(x) +

1
2
v(x)F

′′
(x)
}

= 0, (2.1)

where x = X(0). Differentiating with respect to u(x) and equating to zero, we deduce that the
optimal control u∗(x) can be expressed as follows:

u∗(x) = −b0x
k

q0
F ′(x). (2.2)

Substituting the optimal control into the dynamic programming equation (2.1), we obtain
that the function F(x) satisfies the nonlinear second-order ordinary differential equation

λ +m(x)F ′(x) − b20x
2k

2q0

[
F ′(x)

]2 + 1
2
v(x)F

′′
(x) = 0, (2.3)

subject to the boundary conditions

F(d) = F(−d) = 0. (2.4)

Now, in general solving nonlinear second-order differential equations is not an easy
task. As mentioned previously, when the relation in (1.4) holds, there exists a transformation
that enables us to linearize (2.3). Notice, however, that in order to obtain an explicit
expression for the optimal control u∗(x), one only needs the derivative of the value function
F(x). Hence, if we can find a boundary condition in terms of F ′(x), rather than the boundary
conditions in (2.4), then we could significantly simplify our problem, since we would only
have to solve the first-order nonlinear (Riccati) differential equation:

λ +m(x)G(x) − b20x
2k

2q0
G2(x) +

1
2
v(x)G′(x) = 0, (2.5)

where

G(x) := F ′(x). (2.6)
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Proposition 2.1. Assume that the functionm(x) is odd and that the function v(x) is even. Then the
optimal control u∗(x) is given by

u∗(x) = −b0x
k

q0
G(x), (2.7)

where G(x) satisfies (2.5), subject to the condition

G(0) = 0. (2.8)

Proof. The condition (2.8) follows from the fact that, by symmetry, when the parameter λ
is positive, then 0 is the value of x for which the function F(x) has a maximum, whereas
F(x) has a minimum at x = 0 when λ is negative. Indeed, the origin is the worst (resp.,
best) position possible when the optimizer is trying to minimize (resp., maximize), taking
the quadratic control costs into account, the time spent by X(t) in the interval (−d, d).

Remarks 2.2. (i) The solution to (2.5), subject to (2.8), might not be unique.
(ii) Notice that the symmetrical case includes the one when m(x) is identical to 0, and

v(x) is a constant, so that the uncontrolled process is a Wiener process with zero drift.

The previous proposition can be generalized as follows.

Corollary 2.3. If Xk(t) is replaced by h[X(t)] in (1.1), where h2(x) is even, and if the hypotheses in
Proposition 2.1 are satisfied, then the optimal control u∗(x) can be expressed as

u∗(x) = −b0h(x)
q0

G(x), (2.9)

where G(x) is a solution of

λ +m(x)G(x) − b20h
2(x)

2q0
G2(x) +

1
2
v(x)G′(x) = 0 (2.10)

that satisfies the condition G(0) = 0.

We will now present an example for which we can determine the optimal control u∗

explicitly.
We consider the case when {X(t), t ≥ 0} is a controlled Bessel process, so that

dX(t) =
θ − 1
2 X(t)

dt + b0X
k(t)u[X(t)]dt + dB(t). (2.11)

Moreover, we assume that the parameter θ belongs to the interval (0, 2). The origin is then
a regular boundary (see [4, p. 239]) for the uncontrolled process {X0(t), t ≥ 0} obtained by
setting u[X(t)] ≡ 0 in the stochastic differential equation above. Notice that if the parameter
θ is equal to 1, then {X0(t), t ≥ 0} becomes a standard Brownian motion, which is the process
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considered in Lefebvre [2]. Therefore, this example generalizes the results in Lefebvre’s
paper.

Here, the relation in (1.4) holds if there exists a positive constant α such that

α =
b20
q0

X2k(t). (2.12)

Hence, we can appeal to the theorem in Whittle [1] when k is equal to zero. We will treat the
case when k > 0 instead.

The differential equation that we must solve is

λ +
θ − 1
2 x

G(x) − b20x
2k

2q0
G2(x) +

1
2
G′(x) = 0. (2.13)

We find that

G(x) =

√−2λq0
b0xk

{
Jν
(
cxk+1) + c0Yν

(
cxk+1)

Jν−1
(
cxk+1

)
+ c0Yν−1

(
cxk+1

)
}
, (2.14)

where Jν and Yν are Bessel functions and c0 is an arbitrary constant,

ν :=
θ

2(k + 1)
,

c :=
b0
√−2λ/q0
k + 1

.

(2.15)

The expression above for the function G(x) is appropriate when the parameter λ is
negative. However, when λ > 0, it is better to rewrite it as follows:

G(x) =

√
2λq0
b0xk

{
c0Kν

(
c∗xk+1) − Iν

(
c∗xk+1)

c0Kν−1
(
c∗xk+1

)
+ Iν−1

(
c∗xk+1

)
}
, (2.16)

where Iν and Kν are modified Bessel functions and

c∗ :=
b0
√
2λ/q0

k + 1
= ic. (2.17)

In order to determine the value of the constant c0, we will use the condition G(0) = 0.
First, we consider the special case when k = 1, θ = 1 and λ is negative. Then, we have that
ν = 1/4 and

G(x) =

√−2λq0
b0x

{
J1/4
(
cx2) + c0Y1/4

(
cx2)

J−3/4(cx2) + c0Y−3/4(cx2)

}
, (2.18)

where c = b0
√−λ/(2q0).
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Next, when ν /= − 1,−2, . . ., we have the formula (see [5, p. 358])

Yν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
. (2.19)

It follows, with ν = 1/4 and ν = −3/4, that

G(x) =

√−2λq0
b0x

{
(1 + c0)J1/4

(
cx2) − √

2c0J−1/4
(
cx2)

(1 + c0)J−3/4(cx2) +
√
2c0J3/4(cx2)

}
. (2.20)

Finally, making use of the limiting form of the function Jν(z) when z → 0 (see [5, p.
360]):

Jν(z) ∼
(z
2

)ν 1
Γ(ν + 1)

(if ν /= − 1,−2, . . .), (2.21)

we obtain that

lim
x→ 0

G(x) = −
√−2λq0

b0

Γ(1/4)
Γ(3/4)

c1/2
c0

1 + c0
. (2.22)

It follows that we must set the constant c0 equal to 0, which implies that

G(x) =

√−2λq0
b0x

J1/4
(
cx2)

J−3/4(cx2)
. (2.23)

We then deduce from (2.7) (with k = 1) that the optimal control is given by

u∗(x) = −
√
−2λ√
q0

J1/4
((√

−λ/√2q0
)
b0x

2
)

J−3/4
((√

−λ/√2q0
)
b0x2
) for − d < x < d. (2.24)

This formula for the optimal control is the same as the one obtained by Lefebvre [2].
Now, in the general case, proceeding as previously we find that when λ < 0, the

function G(x) defined in (2.14) is such that when x decreases to zero,

G(x) ∼
√−2λq0
b0xk

×

{(
cxk+1/2

)ν
Γ(ν + 1)

(
1 + c0

cos(νπ)
sin(νπ)

)
− c0
sin(νπ)

(
cxk+1/2

)−ν
Γ(−ν + 1)

}

⎧⎨
⎩
(
cxk+1/2

)ν−1
Γ(ν)

(
1 + c0

cos [(ν − 1)π]
sin [(ν − 1)π]

)
− c0
sin [(ν − 1)π]

(
cxk+1/2

)−(ν−1)
Γ(−ν + 2)

⎫⎬
⎭

.

(2.25)
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This expression may be rewritten as follows:

G(x) ∼
√−2λq0

b0

c1x
θ/2 + c2x

−θ/2

c3x(θ/2)−1 + c4x−(θ/2)+2k+1 , (2.26)

where ci is a constant, for i = 1, 2, 3, 4. Multiplying the numerator and the denominator by
xθ/2, we obtain that

G(x) ∼
√−2λq0

b0

c1x
θ + c2

c3xθ−1 + c4x2k+1
. (2.27)

Hence, we deduce that if θ ∈ (1, 2), we must set the constant c2 equal to 0. This implies that
c0 = 0, so that the constant c4 is equal to 0 as well. It follows that the function G(x) is given
by

G(x) =

√−2λq0
b0xk

{
Jν
(
cxk+1)

Jν−1
(
cxk+1

)
}
. (2.28)

This expression is valid as long as the denominator is positive. This is tantamount to saying
that the parameter λ, which represents the instantaneous reward given for survival in the
interval (−d, d), must not be too large.

Finally, the optimal control is

u∗(x) = −
√
−2λ√
q0

{
Jν
(
cxk+1)

Jν−1
(
cxk+1

)
}
. (2.29)

Now, if θ ∈ (0, 1), it turns out that limx→ 0 G(x) = 0 for any constant c0, so that the
solution is not unique. However, this does not entail that we can choose any c0. For instance,
in the particular case when θ = 1/2, k = 1, λ = −1, b0 = 1 and q0 = 1/2, we find that

G(x) =
1
x

{
J1/8
(
x2) + c0Y1/8

(
x2)

J−7/8(x2) + c0Y−7/8(x2)

}
. (2.30)

If we choose c0 = 0, as in the case when θ ∈ (1, 2), then the expression for the optimal control
is

u∗(x) = −2 J1/8
(
x2)

J−7/8(x2)
. (2.31)

One can check that if d = 1/2, then u∗(x) < 0 for 0 < |x| < 1/2, which is logical because the
optimizer wants to maximize the survival time in (−1/2, 1/2). But if we let c0 tend to infinity,
the optimal control becomes

u∗(x) = −2 Y1/8
(
x2)

Y−7/8(x2)
, (2.32)
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which is strictly positive for 0 < |x| < 1/2. Thus, when the solution to (2.5), (2.8) is not unique,
one must use other arguments to find the optimal control. One can obviously check whether
the expression obtained for the optimal control does indeed correspond to a minimum (or a
maximum in absolute value). In the particular case considered previously, if we let

F(x) =
∫x
−d

1
y

J1/8
(
y2)

J−7/8
(
y2
)dy, (2.33)

we find that this function satisfies all the conditions of the optimal control problem set up in
Section 1 and leads to a valid expression for the optimal control.

Next, if the parameter λ is positive, we deduce from the function G(x) in (2.16) that
the optimal control is given by

u∗(x) = −
√
2λ√
q0

{
Iν
(
c∗xk+1)

Iν−1
(
c∗xk+1

)
}

(2.34)

when θ ∈ (1, 2). However, when θ ∈ (0, 1), again we do not obtain a unique solution to (2.5)
and (2.8).

Moreover, contrary to the case when λ is negative, there is no constraint on this param-
eter when it is positive. That is, we can give as large a penalty as we want for survival in the
continuation region.

3. Optimal Control in the Symmetrical General Case

In this section, we assume that d1 and d2 are not necessary such that d1 = −d2. Moreover, we
assume that there is a transformation Y (t) = g[X(t)] of the stochastic process {X(t), t ≥ 0}
such that the functions m[Y (t)] and v[Y (t)] are symmetrical with respect to zero. Then the
optimal control problem is reduced to the one presented in the previous section.

A simple example of such a situation is the case when {X(t), t ≥ 0} is a one-
dimensional controlled standard Brownian motion and d1 /= −d2. Then one can simply define

Y (t) = aX(t) + b, (3.1)

with

a =
2d

d2 − d1
, b = −d(d2 + d1)

d2 − d1
(3.2)

to obtain a controlled Brownian motion with zero drift and variance parameter σ2 = a2 in the
interval (−d, d). We can then apply Proposition 2.1 to find the optimal control.

A more interesting example is the following one: assume that the controlled process
{X(t), t ≥ 0} is defined by

dX(t) =
1
2
X(t)dt + b0[X(t)]ku[X(t)]dt +X(t)dB(t). (3.3)
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That is, {X(t), t ≥ 0} is a controlled geometric Brownian motion. Since this process is strictly
positive, we cannot have d1 = −d2. Let us define

T(x) = inf
{
t > 0 : X(t) =

1
d

or d | X(0) = x

}
for x ∈

(
1
d
, d

)
, (3.4)

where d > 1.
Notice that the relation in (1.4) only holds in the case when k = 1. To obtain the control

that minimizes the expected value of the cost function defined in (1.3), we will transform the
geometric Brownian motion process into a Wiener process by setting

Y (t) = ln[X(t)]. (3.5)

The infinitesimal parameters of the process {Y (t), t ≥ 0} are given by (see, e.g., [6, p.
64])

mY

(
y
)
=
(
1
2
x + b0x

ku

)
1
x
+
(
1
2
x2
)(

− 1
x2

)
= b0x

k−1u = b0e
(k−1)yu,

vY

(
y
)
= x2
(
1
x

)2

≡ 1.

(3.6)

Hence, we can write that Y (t) satisfies the stochastic differential equation

dY (t) = b0e
(k−1)Y (t)u[Y (t)]dt + dB(t). (3.7)

That is, {Y (t), t ≥ 0} is a controlled standard Brownian motion. Moreover, the random vari-
able T(x) becomes

TY
(
y
)
= inf
{
t > 0 : |Y (t)| = ln(d) | Y (0) = y

}
, (3.8)

where y ∈ (− ln(d), ln(d)).
We can find the function G(y), from which the optimal control u∗ is obtained at

once, for any choice of k ∈ {0, 1, . . .}. We will present the solution in the case when k = 0.
Furthermore, we let λ = −1, b0 = 1 and q0 = 1/2. We then must solve the nonlinear ordinary
differential equation

1
2
G′(y) − e−2yG2(y) − 1 = 0. (3.9)

The solution that satisfies the condition G(0) = 0 is

G
(
y
)
= ey

Y0(2)J0(2e−y) − J0(2)Y0(2e−y)
Y0(2)J1(2e−y) − J0(2)Y1(2e−y)

. (3.10)
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Figure 1: Optimal control when k = 0, λ = −1, b0 = 1, q0 = 1/2 and d = 3/2.

Hence, from Corollary 2.3, we can state that the optimal control is given by u∗ = −2e−yG(y).
In terms of the original process, we have that

u∗(x) = −2Y0(2)J0(2/x) − J0(2)Y0(2/x)
Y0(2)J1(2/x) − J0(2)Y1(2/x)

. (3.11)

Since λ < 0, this solution is only valid as long as it remains finite. That is, because we chose
the value of λ, the constant d must not be too large. The optimal control is plotted in Figure 1
when d = 3/2. Notice that u∗(x) is positive when x < 1 and negative when x > 1, which is
logical because the optimizer wants to maximize the survival time in the interval (2/3, 3/2).
However, the optimal control is not symmetrical with respect to 1.

4. Approximate Optimal Control in the Asymmetrical Case

We will now consider the case when the infinitesimal parameters of the controlled process
{X(t), t ≥ 0} do not satisfy the hypotheses in Proposition 2.1. In order to obtain the optimal
control without having to find the function F(x) explicitly, we need a condition on G(x). If
we could determine the value x0 of x in the interval (d1, d2) for which the function G(x) has
a maximum or a minimum, then we would set G(x0) = 0.

An approximate solution can be obtained by finding the value of x that maximizes the
expected value of the time it takes the uncontrolled process that corresponds to {X(t), t ≥ 0}
to leave the interval (d1, d2). Let e(x) denote this expected value. This function satisfies the
ordinary differential equation (see [6, p. 220])

1
2
v(x)e′′(x) +m(x)e′(x) = −1. (4.1)

The boundary conditions are obviously

e(d1) = e(d2) = 0. (4.2)

We can state the following proposition.
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Proposition 4.1. Let x0 be the value of x that maximizes the function e(x) defined previously. The
optimal control u∗(x) is approximately given by (2.7), where the function G(x) satisfies (2.5), subject
to the condition G(x0) = 0.

To illustrate this result, we will present an example for which we can find the exact
optimal control. We will then be able to assess the quality of the approximation proposed
previously.

Let {X(t), t ≥ 0} be the controlled Wiener process with drift μ/= 0 and variance param-
eter σ2 defined by

dX(t) = μdt + b0u[X(t)]dt + σdB(t). (4.3)

Because the relation in (1.4) holds with

α =
b20

q0σ2
> 0, (4.4)

and ultimate entry of the uncontrolled process into the set {d1, d2} is certain, we can indeed
appeal to Whittle’s theorem to obtain the control that minimizes the expected value of the
cost function J(x) defined in (1.3).

Assume that the parameter λ is positive, so that the optimizer wants X(t) to leave the
interval (d1, d2) as soon as possible.We deduce fromWhittle’s theorem that the value function
F(x) can be expressed as follows:

F(x) = − 1
α
ln[M(x)], (4.5)

where

M(x) := E
[
e−αλτ(x)

]
, (4.6)

in which τ(x) is the same as the random variable T(x) in (1.2), but for the uncontrolled pro-
cess {ξ(t), t ≥ 0} defined by

dξ(t) = μdt + σdB(t). (4.7)

It is a simple matter to find that

M(x) ∝ f−(d1) − f−(d2) + f+(d1) − f+(d2), (4.8)

where

f±(di) := exp
{
− 1
σ2

[
(x + di)μ ± (x − di)Δ

]}
(4.9)
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for i = 1, 2, and

Δ :=
(
μ2 + 2αλσ2

)1/2
. (4.10)

We then obtain that the exact optimal control is given by

u∗(x) = − μ

b0
− Δ
b0

{
f−(d1) − f−(d2) + f+(d1) − f+(d2)
f−(d2) − f−(d1) + f+(d1) − f+(d2)

}
. (4.11)

Now, the function e(x) := E[τ(x)] satisfies the ordinary differential equation

σ2

2
e′′(x) + μe′(x) = −1. (4.12)

The unique solution for which e(d1) = e(d2) = 0 is

e(x) ∝ (d2 − d1)e−2μx/σ
2 − (x − d1)e−2μd2/σ

2 − (d2 − x)e−2μd1/σ
2
. (4.13)

The value of x that maximizes e(x) is obtained by differentiation:

e′(x) = 0 ⇐⇒ x = −σ2

2μ
ln

{
σ2

2μ
e−2μd2/σ

2 − e−2μd1/σ
2

d2 − d1

}
:= x0. (4.14)

Next, from (2.2), the optimal control is given by

u∗(x) = −b0
q0

F ′(x), (4.15)

where G(x) := F ′(x) satisfies the nonlinear differential equation

λ − 1
2
b20
q0

G2(x) + μG(x) +
σ2

2
G′(x) = 0. (4.16)

We find that the solution of this equation is the following:

G(x) =
μq0

b20
−

√
2λq0b20 + μ2q20

b20
tanh

⎧⎪⎨
⎪⎩

√
2λq0b20 + μ2q20

σ2q0
(x + c1)

⎫⎪⎬
⎪⎭. (4.17)
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Figure 2: Exact (solid line) and approximate (dotted line) optimal controls when μ = σ = b0 = q0 = λ = 1,
d1 = 0, and d2 = 2.

The constant c1 is uniquely determined from the condition G(x0) = 0. We have that

G(x) � μq0

b20
−

√
2λq0b20 + μ2q20

b20

× tanh

⎧⎪⎨
⎪⎩

√
2λq0b20 + μ2q20

σ2q0
(x − x0) + arctanh

⎛
⎜⎝ μq0√

2λq0b20 + μ2q20

⎞
⎟⎠
⎫⎪⎬
⎪⎭.

(4.18)

The expression that we obtain for the approximate optimal control by multiplying the
function G(x) by −b0/q0 is quite different from the exact optimal control. To compare the
two solutions, we consider the special case when μ = σ = b0 = q0 = λ = 1, d1 = 0 and
d2 = 2. We then find that the constant Δ is equal to

√
3, and the value that maximizes G(x) is

approximately x0 � 0,7024. We plotted the two controls in Figure 2. Notice how close the two
curves are.

5. Extensions

To complete this work, we will consider two possible extensions of the results presented.
First, suppose that the random variable T(x) defined in (1.2) is replaced by

Td(x) = inf{t > 0 : X(t) = d | X(0) = x}. (5.1)

That is, we want to solve a one-barrier, rather than a two-barrier problem. To do so, we can
introduce a second barrier, at x = d∗. In general, it will be necessary to find a transformation
Y (t) = g[X(t)] for which the infinitesimal parameters of the uncontrolled process {Y0(t), t ≥
0} that corresponds to {Y (t), t ≥ 0} satisfy the hypotheses in Proposition 2.1. If we can find
such a transformation, then we can try to obtain the optimal control u∗(y) for the transformed
process. Finally, we must express the optimal control in terms of the original variable x and
take the limit as d∗ tends to ∞ (resp., −∞) if d∗ > d (resp., d∗ < d).



14 International Journal of Stochastic Analysis

Remark 5.1. If there is a natural boundary at the origin, for example, and if d∗ < d, then we
would take the limit as d∗ decreases to zero.

We will now present an example where the technique described previously is used.
We consider the controlled geometric Brownian motion defined in Section 3 by

dX(t) =
1
2
X(t)dt + b0[X(t)]ku[X(t)]dt +X(t)dB(t), (5.2)

and we assume that X(0) = x > d ∈ (0, 1) and that b0 > 0. Let

Xa(t) = aX(t), (5.3)

where

a :=
1√
dd∗ . (5.4)

Notice that the boundaries x = d and x = d∗ > d become, respectively:

√
d

d∗ :=
1
δ
,

√
d∗

d
= δ. (5.5)

Next, we set Y (t) = ln[Xa(t)]. We then find that {Y (t), t ≥ 0} is a controlled standard
Brownian motion, and the first-passage time

Td,d∗(x) := inf{t > 0 : X(t) = d or d∗ | X(0) = x} (5.6)

becomes

Tδ
(
y
)
:= inf

{
t > 0 : |Y (t)| = ln(δ) | Y (0) = y

}
. (5.7)

Hence, we can appeal to Proposition 2.1 to determine the optimal value of the control u(y).
Assume that k = 1 in (5.2). Then Whittle’s theorem applies with

α =
b20
q0

> 0. (5.8)

The optimal control is given by

u∗(x) = −b0
q0

xF ′(x), (5.9)
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and, as in Section 4, the value function F(x) can be expressed as

F(x) = − 1
α
ln[M(x)], (5.10)

where

M(x) := E
[
e−αλτd(x)

]
, (5.11)

in which τd(x) is the same as Td(x) for the uncontrolled process that corresponds to {X(t), t ≥
0}.

The function M(x) satisfies the second-order ordinary differential equation

1
2
x2M′′(x) +

1
2
xM′(x) = αλM(x). (5.12)

The general solution of this equation can be written as

M(x) = c1x
√
2αλ + c2x

−
√
2αλ. (5.13)

We assume that the parameter λ is positive. Then, we can write that

lim
x→∞

M(x) = 0. (5.14)

It follows that we must choose the constant c1 = 0 in the general solution. Finally, making use
of the boundary condition M(d) = 1, we obtain that

M(x) =
(
d

x

)√
2αλ

, (5.15)

from which we deduce that the optimal control is constant:

u∗(x) ≡ −
√
2λ√
q0

. (5.16)

If we do not appeal to Whittle’s theorem, we must solve the nonlinear first-order
differential equation (see Section 3)

λ − b20
2q0

G2(y) + 1
2
G′(y) = 0, (5.17)

subject to the boundary condition G(0) = 0. We find that

G
(
y
)
= −
√
2λq0
b0

tanh

(√
2λb0y√
q0

)
. (5.18)



16 International Journal of Stochastic Analysis

It follows that

u∗(y) = −b0
q0

G
(
y
)
=

√
2λ√
q0

tanh

(√
2λb0y√
q0

)
. (5.19)

In terms of the original variable x = ey/a =
√
dd∗ey, we can write that

u∗(x) =

√
2λ√
q0

tanh

⎛
⎜⎝

√
2λb0 ln

(
x/

√
dd∗
)

√
q0

⎞
⎟⎠. (5.20)

Since

lim
c→∞

tanh
[
c0 ln
(

x√
c

)]
= −1 (5.21)

for any positive constant c0, we obtain that

lim
d∗ →∞

u∗(x) = −
√
2λ√
q0

. (5.22)

Thus, we retrieve the formula for the optimal control.
Next, we will treat the case when k = 0 in (5.2), so that Whittle’s theorem does not

apply. The optimal control becomes

u∗(x) = −b0
q0

G(x). (5.23)

In terms of the transformed variable y, we have that

u∗(y) = −b0
q0

e−yG
(
y
)
, (5.24)

where G(y) is a solution of (see Section 3)

1
2
G′(y) − b20

2q0
e−2yG2(y) + λ = 0. (5.25)

When λ is positive, the solution that satisfies the condition G(0) = 0 is

G
(
y
)
= −q0

b20
κey

I0(κ)K0(κe−y) −K0(κ)I0(κe−y)
I0(κ)K1(κe−y) +K0(κ)I1(κe−y)

, (5.26)
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where

κ :=

√
2λb0√
q0

, (5.27)

from which we deduce that

u∗(y) = κ

b0

I0(κ)K0(κe−y) −K0(κ)I0(κe−y)
I0(κ)K1(κe−y) +K0(κ)I1(κe−y)

. (5.28)

It follows that

u∗(x) =
κ

b0

I0(κ)K0

(
κ
√
dd∗/x

)
−K0(κ)I0

(
κ
√
dd∗/x

)

I0(κ)K1

(
κ
√
dd∗/x

)
+K0(κ)I1

(
κ
√
dd∗/x

) . (5.29)

Finally, using the asymptotic expansions for large arguments of the functions Iν(z) andKν(z)
(see [5, p. 377]), we find that

lim
d∗ →∞

u∗(x) ≡ − κ

b0
= −

√
2λ√
q0

, (5.30)

which is the same optimal control as in the case when k = 1.

Remarks 5.2. (i) If we take the limit as d∗ decreases to zero in u∗(x) instead, then making use
of the formulas (see [5, p. 375])

I0(z) ∼ 1, I1(z) ∼ z

2
, K0(z) ∼ − ln(z), K1(z) ∼ 1

z
as z ↓ 0, (5.31)

we obtain that

lim
d∗↓0

u∗(x) ≡ 0. (5.32)

(ii)We can also try to solve the differential equation

x2

2
G′(x) +

x

2
G(x) − b20

2q0
G2(x) + λ = 0 (5.33)

satisfied by the function G(x) directly. However, the solution that we are looking for must
be such that G(

√
dd∗) = 0, because x =

√
dd∗ is the value of the original variable x that

corresponds to y = 0.
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Now, in Corollary 2.3 we mentioned that Proposition 2.1 could be generalized by
replacing Xk(t) by h[X(t)] in (1.1). Another extension of Proposition 2.1 is to generalize the
cost function J(x) defined in (1.3) to

J(x) =
∫T(x)
0

{
1
2
q[X(t)]u2[X(t)] + λ

}
dt, (5.34)

where the function q(·) ≥ 0 is even.
To illustrate this result, we consider a particular controlled Ornstein-Uhlenbeck

process defined by

dX(t) = −X(t)dt + u[X(t)]dt + dB(t), (5.35)

and we take

J(x) =
∫T(x)
0

{
u2[X(t)]
|X(t)| + 1

+ 1

}
dt, (5.36)

in which

T(x) = inf{t > 0 : |X(t)| = 2 | X(0) = x ∈ (−2, 2)}. (5.37)

Then, we find that the optimal control is given by

u∗(x) = −1
2
(|x| + 1)G(x), (5.38)

and that the function G(x) satisfies the nonlinear differential equation

1 − xG(x) − (|x| + 1)G2(x) +
1
2
G′(x) = 0, (5.39)

subject to the condition G(0) = 0.
Next, by symmetry, we can write that G(−x) = −G(x) (and that u∗(−x) = −u∗(x)).

Hence, we can restrict ourselves to the interval [0, d]. The solution of the differential equation
that is such that G(0) = 0 is

G(x) =
√
π[erf(x + 2) − erf(2)]

√
π[erf(2) − erf(x + 2)] − e−(x+2)

2 , (5.40)

where “erf” is the error function. It follows that the optimal control is given by

u∗(x) =
1
2
(x + 1)

√
π[erf(2) − erf(x + 2)]

√
π[erf(2) − erf(x + 2)] − e−(x+2)

2 (5.41)

for 0 ≤ x ≤ 2. This function is plotted in Figure 3.
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Figure 3: Optimal control in the interval [0, 2].

6. Conclusion

We have shown that when the LQG homing problem that we want to solve possesses a
certain symmetry, then it is not necessary to obtain the value function F(x) explicitly; only
the derivative of F(x) is needed to determine the optimal control. Using this result, we were
able to solve various problems for which Whittle’s theorem does not apply. In Section 4,
we proposed an approximate solution in the case when the infinitesimal parameters of the
controlled processes are not symmetrical with respect to the origin.

Many papers have been written on LQG homing problems, in particular by the first
author (see, e.g., [7]) and recently by Makasu [8]. In most cases, the problems considered
were only for one-dimensional processes, because to apply Whittle’s theorem a certain
relation must hold between the noise and control terms. This relation is generally not
verified in two or more dimensions. Furthermore, even if the relation in question holds, we
still must solve a nontrivial probability problem. More precisely, we need to evaluate the
moment-generating function of a first-passage time. To do so, we must find the solution of a
Kolmogorov backward equation that satisfies the appropriate boundary conditions.

Proceeding as we did in this paper, we could simplify, at least in the symmetrical case,
the differential equation problem, even in more than one dimension. Therefore, we should be
able to solve more realistic problems. Such problems will also have interesting applications.

Finally, in order to be able to treat real-life applications, we should try to find a way
to solve problems that are not symmetrical and for which Whittle’s theorem does not apply.
This could be achieved by finding a transformation that linearizes the differential equations
that we need to solve.
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