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We consider stochastic differential equations driven by some Volterra processes. Under time reversal, these equations are
transformed into past-dependent stochastic differential equations driven by a standard Brownian motion. We are then in position
to derive existence and uniqueness of solutions of the Volterra driven SDE considered at the beginning.

1. Introduction

Fractional Brownian motion (fBm for short) of Hurst index
𝐻 ∈ [0, 1] is the Gaussian process which admits the following
representation: for any 𝑡 ≥ 0,

𝐵
𝐻
(𝑡) = ∫

𝑡

0

𝐾
𝐻
(𝑡, 𝑠) d𝐵 (𝑠) , (1)

where 𝐵 is a one-dimensional Brownian motion and 𝐾
𝐻
is a

triangular kernel, that is,𝐾
𝐻
(𝑡, 𝑠) = 0 for 𝑠 > 𝑡, the definition

of which is given in (46). Fractional Brownian motion is
probably the first process which is not a semimartingale and
for which it is still interesting to develop a stochastic calculus.
That means we want to define a stochastic integral and solve
stochastic differential equations driven by such a process.
From the very beginning of this program, two approaches do
exist. One approach is based on the Hölder continuity or the
finite 𝑝 variation of the fBm sample paths. The other way to
proceed relies on the gaussianity of fBm.The former ismainly
deterministic and was initiated by Zähle [1], Feyel and de la
Pradelle [2], and Russo and Vallois [3, 4]. Then, came the
notion of rough paths was introduced by Lyons [5], whose
application to fBm relies on the work of Coutin and Qian [6].
These works have been extended in the subsequent works [7–
17]. A new way of thinking came with the independent but
related works of Feyel, de la Pradelle [18], and Gubinelli [19].
The integral with respect to fBm was shown to exist as the
unique process satisfying some characterization (analytic in

the case of [18], algebraic in [19]). As a byproduct, this showed
that almost all the existing integrals throughout the literature
were all the same as they all satisfy these two conditions.
Behind each approach, but the last too, is a construction
of an integral defined for a regularization of fBm, then
the whole work is to show that, under some convenient
hypothesis, the approximate integrals converge to a quantity
which is called the stochastic integral with respect to fBm.
The main tool to prove the convergence is either integration
by parts in the sense of fractional deterministic calculus, or
enrichment of the fBm by some iterated integrals proved to
exist independently or by analytic continuation [20, 21].

In the probabilistic approach [22–30], the idea is also to
define an approximate integral and then prove its conver-
gence. It turns out that the key tool is here the integration by
parts in the sense of Malliavin calculus.

In dimension greater than one, with the deterministic
approach, one knows how to define the stochastic integral and
prove existence and uniqueness of fBm-driven SDEs for fBm
with Hurst index greater than 1/4. Within the probabilistic
framework, one knows how to define a stochastic integral for
any value of𝐻but one cannot prove existence anduniqueness
of SDEs whatever the value of𝐻. The primary motivation of
this work is to circumvent this problem.

In [26, 27], we defined stochastic integrals with respect
to fBm as a “damped-Stratonovitch” integral with respect
to the underlying standard Brownian motion. This integral
is defined as the limit of Riemann-Stratonovitch sums,
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the convergence of which is proved after an integration by
parts in the sense of Malliavin calculus. Unfortunately, this
manipulation generates nonadaptiveness: formally the result
can be expressed as

∫

𝑡

0

𝑢 (𝑠) ∘ d𝐵𝐻 (𝑠) = 𝛿 (K∗

𝑡
𝑢) + trace (K∗

𝑡
∇𝑢) , (2)

whereK is defined by

K𝑓 (𝑡) =
𝑑

𝑑𝑡
∫

𝑡

0

𝐾
𝐻 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠 (3)

and K∗

𝑡
is the adjoint of K in L2

([0, 𝑡],R). In particular,
there exists 𝑘 such that

K
∗

𝑡
𝑓 (𝑠) = ∫

𝑡

𝑠

𝑘 (𝑡, 𝑢) 𝑓 (𝑢) d𝑢 (4)

for any 𝑓 ∈ L2
([0, 𝑡],R) so that even if 𝑢 is adapted (with

respect to the Brownian filtration), the process (𝑠 →K∗

𝑡
𝑢(𝑠))

is anticipative. However, the stochastic integral process (𝑡 →
∫
𝑡

0
𝑢(𝑠) ∘ d𝐵𝐻(𝑠)) remains adapted; hence, the anticipative

aspect is, in some sense, artificial.Themotivation of this work
is to show that, up to time reversal, we can work with adapted
process and Itô integrals.The time-reversal properties of fBm
were already studied in [31] in a different context. It was
shown there that the time reversal of the solution of an fBm-
driven SDE of the form

𝑑𝑌 (𝑡) = 𝑢 (𝑌 (𝑡)) d𝑡 + d𝐵𝐻 (𝑡) (5)

is still a process of the same form. With a slight adaptation
of our method to fBm-driven SDEs with drift, one should
recover the main theorem of [31].

In what follows, there is no restriction on the dimension,
but we need to assume that any component of 𝐵𝐻 is an fBm of
Hurst index greater than 1/2. Consider that we want to solve
the following equation:

𝑋
𝑡
= 𝑥 + ∫

𝑡

0

𝜎 (𝑋
𝑠
) ∘ d𝐵𝐻 (𝑠) , 0 ≤ 𝑡 ≤ 𝑇, (6)

where 𝜎 is a deterministic function whose properties will be
fixed below. It turns out that it is essential to investigate the
more general equations:

𝑋
𝑟,𝑡
= 𝑥 + ∫

𝑡

𝑟

𝜎 (𝑋
𝑟,𝑠
) ∘ d𝐵𝐻 (𝑠) , 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇. (A

)

The strategy is then as follows. We will first consider the
reciprocal problem:

𝑌
𝑟,𝑡
= 𝑥 − ∫

𝑡

𝑟

𝜎 (𝑌
𝑠,𝑡
) ∘ d𝐵𝐻 (𝑠) , 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇. (B)

The first critical point is that when we consider {𝑍
𝑟,𝑡
:=

𝑌
𝑡−𝑟,𝑡

, 𝑟 ∈ [0, 𝑡]}, this process solves an adapted, past-
dependent, and stochastic differential equation with respect
to a standard Brownian motion. Moreover, because 𝐾

𝐻

is lower-triangular and sufficiently regular, the trace term

vanishes in the equation defining 𝑍. We have then reduced
the problem to an SDE with coefficients dependent on the
past, a problem which can be handled by the usual contrac-
tion methods. We do not claim that the results presented
are new (for instance, see the brilliant monograph [32] for
detailed results obtained via rough paths theory), but it seems
interesting to have purely probabilistic methods which show
that fBm driven SDEs do have strong solutions which are
homeomorphisms. Moreover, the approach given here shows
the irreducible difference between the case𝐻 < 1/2 and𝐻 >

1/2. The trace term only vanishes in the latter situation, so
that such an SDE is merely a usual SDE with past-dependent
coefficients. This representation may be fruitful, for instance,
to analyze the support and prove the absolute continuity of
solutions of (6).

This paper is organized as follows. After some preliminar-
ies on fractional Sobolev spaces, often called Besov-Liouville
space, we address, in Section 3, the problem of Malliavin
calculus and time reversal. This part is interesting in its own
since stochastic calculus of variations is a framework oblivi-
ous to time. Constructing such a notion of time is achieved
using the notion of resolution of the identity as introduced in
[33, 34]. We then introduce the second key ingredient which
is the notion of strict causality or quasinilpotence; see [35]
for a related application. In Section 4, we show that solving
(B) reduces to solve a past-dependent stochastic differential
equation with respect to a standard Brownian motion; see
(C) below. Then, we prove existence, uniqueness, and some
properties of this equation. Technical lemmas are postponed
to Section 5.

2. Besov-Liouville Spaces

Let 𝑇 > 0 be fix real number. For a measurable function 𝑓 :
[0, 𝑇] → R𝑛, we define 𝜏

𝑇
𝑓 by

𝜏
𝑇
𝑓 (𝑠) = 𝑓 (𝑇 − 𝑠) for any 𝑠 ∈ [0, 𝑇] . (7)

For 𝑡 ∈ [0, 𝑇], 𝑒
𝑡
𝑓 will represent the restriction of 𝑓 to [0, 𝑡],

that is, 𝑒
𝑡
𝑓 = 𝑓1

[0,𝑡]
. For any linear map 𝐴, we denote by 𝐴∗

𝑇
,

its adjoint in L2
([0, 𝑇];R𝑛). For 𝜂 ∈ (0, 1], the space of 𝜂-

Hölder continuous functions on [0, 𝑇] is equipped with the
norm:

𝑓
Hol(𝜂) = sup

0<𝑠<𝑡<𝑇

𝑓 (𝑡) − 𝑓 (𝑠)


|𝑡 − 𝑠|
𝜂

+
𝑓
∞
. (8)

Its topological dual is denoted by Hol(𝜂)∗. For 𝑓 ∈

L1
([0, 𝑇]; R𝑛; d𝑡) (denoted by L1 for short), the left and

right fractional integrals of 𝑓 are defined by

(𝐼
𝛾

0
+
𝑓) (𝑥) =

1

Γ (𝛾)
∫

𝑥

0

𝑓 (𝑡) (𝑥 − 𝑡)
𝛾−1d𝑡, 𝑥 ≥ 0,

(𝐼
𝛾

𝑇
−
𝑓) (𝑥) =

1

Γ (𝛾)
∫

𝑇

𝑥

𝑓 (𝑡) (𝑡 − 𝑥)
𝛾−1d𝑡, 𝑥 ≤ 𝑇,

(9)



International Journal of Stochastic Analysis 3

where 𝛾 > 0 and 𝐼0
0
+ = 𝐼

0

𝑇
− = Id. For any 𝛾 ≥ 0, 𝑝, 𝑞 ≥ 1, any

𝑓 ∈L𝑝 and 𝑔 ∈L𝑞 where 𝑝−1 + 𝑞−1 ≤ 𝛾, we have

∫

𝑇

0

𝑓 (𝑠) (𝐼
𝛾

0
+
𝑔) (𝑠) d𝑠 = ∫

𝑇

0

(𝐼
𝛾

𝑇
−
𝑓) (𝑠) 𝑔 (𝑠) d𝑠. (10)

The Besov-Liouville space 𝐼𝛾
0
+
(L𝑝

) := I+

𝛾,𝑝
is usually

equipped with the norm:

𝐼
𝛾

0
+
𝑓
I+
𝛾,𝑝

=
𝑓
L𝑝

. (11)

Analogously, the Besov-Liouville space 𝐼𝛾
𝑇
−
(L𝑝

) := I−

𝛾,𝑝

is usually equipped with the norm:

𝐼
−𝛾

𝑇
−
𝑓
I−
𝛾,𝑝

=
𝑓
L𝑝

. (12)

We then have the following continuity results (see [2, 36]):

Proposition 1. Consider the following.
(i) If 0 < 𝛾 < 1, 1 < 𝑝 < 1/𝛾, then 𝐼𝛾

0
+
is a bounded

operator fromL𝑝 intoL𝑞 with 𝑞 = 𝑝(1 − 𝛾𝑝)−1.
(ii) For any 0 < 𝛾 < 1 and any 𝑝 ≥ 1, I+

𝛾,𝑝
is continuously

embedded in𝐻𝑜𝑙(𝛾 − 1/𝑝) provided that 𝛾 − 1/𝑝 > 0.
(iii) For any 0 < 𝛾 < 𝛽 < 1, Hol (𝛽) is compactly

embedded inI
𝛾,∞

.
(iv) For 𝛾𝑝 < 1, the spaces I+

𝛾,𝑝
and I−

𝛾,𝑝
are canonically

isomorphic. We will thus use the notation I
𝛾,𝑝

to
denote any of these spaces.

3. Malliavin Calculus and Time Reversal

Our reference probability space is Ω = C
0
([0, 𝑇],R𝑛), the

space of R𝑛-valued, continuous functions, null at time 0. The
Cameron-Martin space is denoted by H and is defined as
H = 𝐼

1

0
+(L

2
([0, 𝑇])). In what follows, the space L2

([0, 𝑇])

is identified with its topological dual. We denote by 𝜅

the canonical embedding from H into Ω. The probability
measure P on Ω is such that the canonical map 𝑊 :

𝜔 → (𝜔(𝑡), 𝑡 ∈ [0, 𝑇]) defines a standard 𝑛-dimensional
Brownian motion. A mapping 𝜙 fromΩ into some separable
Hilbert space H is called cylindrical if it is of the form
𝜙(𝑤) = ∑

𝑑

𝑖=1
𝑓
𝑖
(⟨𝑣

𝑖,1
, 𝑤⟩, . . . , ⟨𝑣

𝑖,𝑛
, 𝑤⟩)𝑥

𝑖
, where for each 𝑖,𝑓

𝑖
∈

C∞

0
(R𝑛,R) and (𝑣

𝑖,𝑗
, 𝑗 = 1, . . . , 𝑛) is a sequence of Ω∗. For

such a function we define ∇W
𝜙 as

∇
W
𝜙 (𝑤) = ∑

𝑖,𝑗=1

𝜕
𝑗
𝑓
𝑖
(⟨𝑣

𝑖,1
, 𝑤⟩ , . . . , ⟨𝑣

𝑖,𝑛
, 𝑤⟩) 𝑣

𝑖,𝑗
⊗ 𝑥

𝑖
,

(13)

where 𝑣 is the image of 𝑣 ∈ Ω∗ by the map (𝐼1
0
+ ∘ 𝜅)

∗. From
the quasi-invariance of the Wiener measure [37], it follows
that ∇W is a closable operator on 𝐿𝑝(Ω;H), 𝑝 ≥ 1, and we
will denote its closure with the same notation. The powers of
∇
W are defined by iterating this procedure. For 𝑝 > 1, 𝑘 ∈ N,

we denote byD
𝑝,𝑘
(H) the completion ofH-valued cylindrical

functions under the following norm:

𝜙
𝑝,𝑘

=

𝑘

∑

𝑖=0


(∇

W
)
𝑖
𝜙
𝐿𝑝(Ω;H⊗L𝑝([0,1])⊗𝑖)

. (14)

We denote by L
𝑝,1

the space D
𝑝,1
(L𝑝

([0, 𝑇]; R𝑛)). The
divergence, denoted as 𝛿W, is the adjoint of ∇W: 𝑣 belongs
to Dom

𝑝
𝛿
W whenever, for any cylindrical 𝜙,



E [∫
𝑇

0

𝑣
𝑠
∇
W
𝑠
𝜙d𝑠]



≤ 𝑐
𝜙
𝐿𝑝

(15)

and, for such a process 𝑣,

E [∫
𝑇

0

𝑣
𝑠
∇
W
𝑠
𝜙d𝑠] = E [𝜙 𝛿W𝑣] . (16)

We introduced the temporary notation 𝑊 for standard
Brownian motion to clarify the forthcoming distinction
between a standard Brownian motion and its time reversal.
Actually, the time reversal of a standard Brownian is also a
standard Brownian motion, and thus, both of them “live” in
the sameWiener space. We now precise how their respective
Malliavin gradient and divergence are linked. Consider 𝐵 =
(𝐵(𝑡), 𝑡 ∈ [0, 𝑇]) an 𝑛-dimensional standard Brownian
motion and �̆�𝑇 = (𝐵(𝑇)−𝐵(𝑇−𝑡), 𝑡 ∈ [0, 𝑇]) its time reversal.
Consider the following map:

Θ
𝑇
: Ω → Ω

𝜔 → �̆� = 𝜔 (𝑇) − 𝜏𝑇𝜔,

(17)

and the commutative diagram:

ℒ
2

ℒ
2

𝜏𝑇

Ω ⊃ H H ⊂ Ω
Θ𝑇

𝐼
1

0
+ 𝐼

1

0
+

(18)

Note that Θ−1

𝑇
= Θ

𝑇
since 𝜔(0) = 0. For a function 𝑓 ∈

C∞

𝑏
(R𝑛𝑘), we define the following:

∇
𝑟
𝑓 (𝜔 (𝑡

1
) , . . . , 𝜔 (𝑡

𝑘
))

=

𝑘

∑

𝑗=1

𝜕
𝑗
𝑓 (𝜔 (𝑡

1
) , . . . , 𝜔 (𝑡

𝑘
)) 1

[0,𝑡
𝑗
] (𝑟) ,

∇̆
𝑟
𝑓 (�̆� (𝑡

1
) , . . . , �̆� (𝑡

𝑘
))

=

𝑘

∑

𝑗=1

𝜕
𝑗
𝑓 (�̆� (𝑡

1
) , . . . , �̆� (𝑡

𝑘
)) 1

[0,𝑡
𝑗
] (𝑟) .

(19)

The operator ∇ = ∇
𝐵 (resp., ∇̆ = ∇

�̆�) is the Malliavin
gradient associated with a standard Brownian motion (resp.,
its time reversal). Since

𝑓 (�̆� (𝑡
1
) , . . . , �̆� (𝑡

𝑘
))

= 𝑓 (𝜔 (𝑇) − 𝜔 (𝑇 − 𝑡1) , . . . , 𝜔 (𝑇) − 𝜔 (𝑇 − 𝑡𝑘)) ,

(20)
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we can consider 𝑓(�̆�(𝑡
1
), . . . , �̆�(𝑡

𝑘
)) as a cylindrical function

with respect to the standard Brownian motion. As such its
gradient is given by

∇
𝑟
𝑓 (�̆� (𝑡

1
) , . . . , �̆� (𝑡

𝑘
))

=

𝑘

∑

𝑗=1

𝜕
𝑗
𝑓 (�̆� (𝑡

1
) , . . . , �̆� (𝑡

𝑘
)) 1

[𝑇−𝑡
𝑗
,𝑇] (𝑟) .

(21)

We thus have, for any cylindrical function 𝐹,

∇𝐹 ∘ Θ
𝑇 (𝜔) = 𝜏𝑇∇̆𝐹 (�̆�) . (22)

Since Θ∗

𝑇
P = P and 𝜏

𝑇
is continuous from L𝑝 into itself

for any 𝑝, it is then easily shown that the spacesD
𝑝,𝑘

and D̆
𝑝,𝑘

(with obvious notations) coincide for any 𝑝, 𝑘 and that (22)
holds for any element of one of these spaces. Hence we have
proved the following theorem.

Theorem 2. For any 𝑝 ≥ 1 and any integer 𝑘, the spaces D
𝑝,𝑘

and D̆
𝑝,𝑘

coincide. For any 𝐹 ∈ D
𝑝,𝑘

for some 𝑝, 𝑘,

∇ (𝐹 ∘ Θ
𝑇
) = 𝜏

𝑇
∇̆ (𝐹 ∘ Θ

𝑇
) ,P a.s. (23)

By duality, an analog result follows for divergences.

Theorem 3. A process 𝑢 belongs to the domain of 𝛿 if and
only if 𝜏

𝑇
𝑢 belongs to the domain of ̆𝛿, and, then, the following

equality holds:

̆𝛿 (𝑢 (�̆�)) (�̆�) = 𝛿 (𝜏𝑇𝑢 (�̆�)) (𝜔) = 𝛿 (𝜏𝑇𝑢 ∘ Θ𝑇
) (𝜔) . (24)

Proof. For𝑢 ∈L2, for cylindrical𝐹, we have on the one hand:

E [𝐹 (�̆�) ̆𝛿𝑢 (�̆�)] = E [(∇̆𝐹 (�̆�) , 𝑢)
L2
] , (25)

and on the other hand,

E [(∇̆𝐹 (�̆�) , 𝑢)
L2
] = E [(𝜏

𝑇
∇𝐹 ∘ Θ

𝑇 (𝜔) , 𝑢)L2
]

= E [(∇𝐹 ∘ Θ
𝑇 (𝜔) , 𝜏𝑇𝑢)L2

]

= E [𝐹 ∘ Θ
𝑇 (𝜔) 𝛿 (𝜏𝑇𝑢) (𝜔)]

= E [𝐹 (�̆�) 𝛿 (𝜏𝑇𝑢) (𝜔)] .

(26)

Since this is valid for any cylindrical 𝐹, (24) holds for 𝑢 ∈L2.
Now, for 𝑢 in the domain of divergence (see [37, 38]),

𝛿𝑢 = ∑

𝑖

((𝑢, ℎ
𝑖
)
L2
𝛿ℎ

𝑖
− (∇𝑢, ℎ

𝑖
⊗ ℎ

𝑖
)
L2⊗L2

) , (27)

where (ℎ
𝑖
, 𝑖 ∈ N) is an orthonormal basis ofL2

([0, 𝑇]; R𝑛).
Thus, we have

̆𝛿 (𝑢 (�̆�)) (�̆�) = ∑

𝑖

((𝑢 (�̆�) , ℎ𝑖)L2
̆𝛿ℎ
𝑖 (�̆�)

−(∇̆𝑢 (�̆�) , ℎ𝑖 ⊗ ℎ𝑖)L2⊗L2
)

= ∑

𝑖

((𝑢 (�̆�) , ℎ𝑖)L2
𝛿 (𝜏

𝑇
ℎ
𝑖
) (𝜔)

−(∇𝑢 (�̆�) , 𝜏𝑇ℎ𝑖 ⊗ ℎ𝑖)L2⊗L2
)

= ∑

𝑖

((𝜏
𝑇
𝑢 (�̆�) , 𝜏𝑇ℎ𝑖)L2

𝛿 (𝜏
𝑇
ℎ
𝑖
) (𝜔)

−(∇𝜏
𝑇
𝑢 (�̆�) , 𝜏𝑇ℎ𝑖 ⊗ 𝜏𝑇ℎ𝑖)L2⊗L2

) ,

(28)

where we have taken into account that 𝜏
𝑇
is in an involution.

Since (ℎ
𝑖
, 𝑖 ∈ N) is an orthonormal basis of L2

([0, 𝑇]; R𝑛),
identity (24) is satisfied for any 𝑢 in the domain of 𝛿.

3.1. Causality and Quasinilpotence. In anticipative calculus,
the notion of trace of an operator plays a crucial role,We refer
to [39] for more details on trace.

Definition 4. Let 𝑉 be a bounded map from L2
([0, 𝑇]; R𝑛)

into itself. The map 𝑉 is said to be trace class, whenever for
one CONB (ℎ

𝑛
, 𝑛 ≥ 1) ofL2

([0, 𝑇]; R𝑛),

∑

𝑛≥1

(𝑉ℎ𝑛, ℎ𝑛)L2
 is finite. (29)

Then, the trace of 𝑉 is defined by

trace (𝑉) = ∑
𝑛≥1

(𝑉ℎ
𝑛
, ℎ

𝑛
)
L2
. (30)

It is easily shown that the notion of trace does not depend
on the choice of the CONB.

Definition 5. A family 𝐸 of projections (𝐸
𝜆
, 𝜆 ∈ [0, 1])

in L2
([0, 𝑇]; R𝑛) is called a resolution of the identity if it

satisfies the conditions:

(1) 𝐸
0
= 0 and 𝐸

1
= Id

(2) 𝐸
𝜆
𝐸
𝜇
= 𝐸

𝜆∧𝜇

(3) lim
𝜇↓𝜆
𝐸
𝜇
= 𝐸

𝜆
for any 𝜆 ∈ [0, 1) and lim

𝜇↑1
𝐸
𝜇
= Id.

For instance, the family 𝐸 = (𝑒
𝜆𝑇
, 𝜆 ∈ [0, 1]) is a

resolution of the identity inL2
([0, 𝑇]; R𝑛).

Definition 6. A partition 𝜋 of [0, 𝑇] is a sequence {0 = 𝑡
0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇}. Its mesh is denoted by |𝜋| and defined by

|𝜋| = sup
𝑖
|𝑡
𝑖+1
− 𝑡

𝑖
|.

The causality plays a crucial role in what follows.The next
definition is just the formalization in terms of operator of the
intuitive notion of causality.
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Definition 7. A continuous map 𝑉 from L2
([0, 𝑇]; R𝑛) into

itself is said to be 𝐸 causal if and only if the following
condition holds:

𝐸
𝜆
𝑉𝐸

𝜆
= 𝐸

𝜆
𝑉 for any 𝜆 ∈ [0, 1] . (31)

For instance, an operator 𝑉 in integral form 𝑉𝑓(𝑡) =

∫
𝑇

0
𝑉(𝑡, 𝑠)𝑓(𝑠)d𝑠 is causal if and only if 𝑉(𝑡, 𝑠) = 0 for 𝑠 ≥ 𝑡,

that is, computing𝑉𝑓(𝑡) needs only the knowledge of 𝑓 up to
time 𝑡 and not after. Unfortunately, this notion of causality is
insufficient for our purpose, and we are led to introduce the
notion of strict causality as in [40].

Definition 8. Let 𝑉 be a causal operator. It is a strictly causal
operator, whenever for any 𝜀 > 0, there exists a partition 𝜋 of
[0, 𝑇] such that, for any 𝜋 = {0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇} ⊂ 𝜋,


(𝐸

𝑡
𝑖+1

− 𝐸
𝑡
𝑖

)𝑉(𝐸
𝑡
𝑖+1

− 𝐸
𝑡
𝑖

)
L2

< 𝜀, for 𝑖 = 0, . . . , 𝑛 − 1.
(32)

Note carefully that the identity map is causal but not
strictly causal. Indeed, if 𝑉 = Id, for any 𝑠 < 𝑡,

(𝐸𝑡 − 𝐸𝑠)𝑉(𝐸𝑡 − 𝐸𝑠)
L2

=
𝐸𝑡 − 𝐸𝑠

L2
= 1 (33)

since 𝐸
𝑡
− 𝐸

𝑠
is a projection. However, if 𝑉 is hyper-contract-

ive, we have the following result.

Lemma 9. Assume the resolution of the identity to be either
𝐸 = (𝑒

𝜆𝑇
, 𝜆 ∈ [0, 1]) or 𝐸 = (Id − 𝑒

(1−𝜆)𝑇
, 𝜆 ∈ [0, 1]). If 𝑉 is

an 𝐸 causal map continuous fromL2 intoL𝑝 for some 𝑝 > 2
then 𝑉 is strictly 𝐸 causal.

Proof. Let 𝜋 be any partition of [0, 𝑇]. Assume that 𝐸 =

(𝑒
𝜆𝑇
, 𝜆 ∈ [0, 1]), and the very same proof works for the other

mentioned resolution of the identity. According to Hölder
formula, we have for any 0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

(𝐸𝑡 − 𝐸𝑠) 𝑉 (𝐸𝑡 − 𝐸𝑠) 𝑓
L2

= ∫

𝑡

𝑠

𝑉(𝑓1(𝑠,𝑡])(𝑢)


2d𝑢

≤ (𝑡 − 𝑠)
1−2/𝑝𝑉(𝑓1(𝑠,𝑡])

L𝑝/2

≤ 𝑐 (𝑡 − 𝑠)
1−2/𝑝𝑓

L2
.

(34)

Then, for any 𝜀 > 0, there exists 𝜂 > 0 such that |𝜋| < 𝜂

implies ‖(𝐸
𝑡
𝑖+1

− 𝐸
𝑡
𝑖

)𝑉(𝐸
𝑡
𝑖+1

− 𝐸
𝑡
𝑖

)𝑓‖L2 ≤ 𝜀 for any {0 = 𝑡0 <
𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇} ⊂ 𝜋 and any 𝑖 = 0, . . . , 𝑛 − 1.

The importance of strict causality lies in the next theorem
we borrow from [40].

Theorem 10. The set of strictly causal operators coincides with
the set of quasinilpotent operators, that is, trace-class operators
such that trace(𝑉𝑛) = 0 for any integer 𝑛 ≥ 1.

Moreover, we have the following stability theorem.

Theorem 11. The set of strictly causal operators is a two-sided
ideal in the set of causal operators.

Definition 12. Let 𝐸 be a resolution of the identity in
L2
([0, 𝑇];R𝑛). Consider the filtrationF𝐸 defined as

F
𝐸

𝑡
= 𝜎 {𝛿

W
(𝐸

𝜆
ℎ) , 𝜆 ≤ 𝑡, ℎ ∈L

2
} . (35)

An L2-valued random variable 𝑢 is said to be F𝐸 adapted
if, for any ℎ ∈ L2, the real valued process ⟨𝐸

𝜆
𝑢, ℎ⟩ is F𝐸-

adapted.Wedenote byD𝐸

𝑝,𝑘
(H) the set ofF𝐸 adapted random

variables belonging to D
𝑝,𝑘
(H).

If 𝐸 = (𝑒
𝜆𝑇
, 𝜆 ∈ [0, 1]), the notion of F𝐸 adapted proc-

esses coincides with the usual one for the Brownian filtration,
and it is well known that a process 𝑢 is adapted if and only if
∇
W
𝑟
𝑢(𝑠) = 0 for 𝑟 > 𝑠. This result can be generalized to any

resolution of the identity.

Theorem 13 (Proposition 3.1 of [33]). Let 𝑢 belongs to L
𝑝,1
.

Then 𝑢 isF𝐸 adapted if and only if ∇W
𝑢 is 𝐸 causal.

We then have the following key theorem.

Theorem 14. Assume the resolution of the identity to be 𝐸 =
(𝑒
𝜆𝑇
, 𝜆 ∈ [0, 1]) either 𝐸 = (Id − 𝑒

(1−𝜆)𝑇
, 𝜆 ∈ [0, 1]) and that

𝑉 is an 𝐸-strictly causal continuous operator fromL2 intoL𝑝

for some 𝑝 > 2. Let 𝑢 be an element of D𝐸

2,1
(L2

). Then, 𝑉∇W
𝑢

is of trace class and we have trace(𝑉∇W
𝑢) = 0.

Proof. Since 𝑢 is adapted, ∇W
𝑢 is 𝐸-causal. According to

Theorem 11, 𝑉∇W
𝑢 is strictly causal and the result follows by

Theorem 10.

In what follows, 𝐸0 is the resolution of the identity in
the Hilbert space L2 defined by 𝑒

𝜆 𝑇
𝑓 = 𝑓1

[0,𝜆𝑇]
and �̆�0 is

the resolution of the identity defined by ̆𝑒
𝜆𝑇
𝑓 = 𝑓1

[(1−𝜆)𝑇,𝑇]
.

The filtrations F𝐸
0

and F�̆�
0

are defined accordingly. Next
lemma is immediate when 𝑉 is given in the form of 𝑉𝑓(𝑡) =
∫
𝑡

0
𝑉(𝑡, 𝑠)𝑓(𝑠)d𝑠. Unfortunately such a representation as an

integral operator is not always available. We give here an
algebraic proof to emphasize the importance of causality.

Lemma 15. Let 𝑉 be a map from L2
([0, 𝑇]; R𝑛) into itself

such that 𝑉 is 𝐸0-causal. Let 𝑉∗ be the adjoint of 𝑉 in
L2
([0, 𝑇];R𝑛). Then, the map 𝜏

𝑇
𝑉
∗

𝑇
𝜏
𝑇
is �̆�0-causal.

Proof. This is a purely algebraic lemma once we have noticed
that

𝜏
𝑇
𝑒
𝑟
= (Id − 𝑒

𝑇−𝑟
) 𝜏

𝑇
for any 0 ≤ 𝑟 ≤ 𝑇. (36)

For, it suffices to write

𝜏
𝑇
𝑒
𝑟
𝑓 (𝑠) = 𝑓 (𝑇 − 𝑠) 1[0,𝑟] (𝑇 − 𝑠)

= 𝑓 (𝑇 − 𝑠) 1[𝑇−𝑟,𝑇] (𝑠)

= (Id − 𝑒
𝑇−𝑟
) 𝜏

𝑇
𝑓 (𝑠) , for any 0 ≤ 𝑠 ≤ 𝑇.

(37)
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We have to show that

𝑒
𝑟
𝜏
𝑇
𝑉
∗

𝑇
𝜏
𝑇
𝑒
𝑟
= 𝑒

𝑟
𝜏
𝑇
𝑉
∗

𝑇
𝜏
𝑇
or equivalently (38)

𝑒
𝑟
𝜏
𝑇
𝑉𝜏

𝑇
𝑒
𝑟
= 𝜏

𝑇
𝑉𝜏

𝑇
𝑒
𝑟
, (39)

since 𝑒∗
𝑟
= 𝑒

𝑟
and 𝜏∗

𝑇
= 𝜏

𝑇
. Now, (37) yields

𝑒
𝑟
𝜏
𝑇
𝑉𝜏

𝑇
𝑒
𝑟
= 𝜏

𝑇
𝑉𝜏

𝑇
𝑒
𝑟
− 𝑒

𝑇−𝑟
𝑉𝜏

𝑇
𝑒
𝑟
. (40)

Use (37) again to obtain

𝑒
𝑇−𝑟
𝑉𝜏

𝑇
𝑒
𝑟
= 𝑒

𝑇−𝑟
𝑉 (Id − 𝑒

𝑇−𝑟
) 𝜏

𝑇

= (𝑒
𝑇−𝑟
𝑉 − 𝑒

𝑇−𝑟
𝑉𝑒

𝑇−𝑟
) 𝜏

𝑇
= 0,

(41)

since 𝑉 is 𝐸-causal.

3.2. Stratonovitch Integrals. In what follows, 𝜂 belongs to
(0, 1] and 𝑉 is a linear operator. For any 𝑝 ≥ 2, we set the
following.

Hypothesis 1 (𝑝, 𝜂). The linear map 𝑉 is continuous from
L𝑝

([0, 𝑇];R𝑛) into the Banach space Hol(𝜂).

Definition 16. Assume that Hypothesis 1 (𝑝, 𝜂) holds. The
Volterra process associated to 𝑉, denoted by𝑊𝑉, is defined
by

𝑊
𝑉
(𝑡) = 𝛿

W
(𝑉 (1

[0,𝑡]
)) , ∀ 𝑡 ∈ [0, 𝑇] . (42)

For any subdivision 𝜋 of [0, 𝑇], that is, 𝜋 = {0 = 𝑡
0
<

𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑇}, of mesh |𝜋|, we consider the Stratonovitch

sums:

𝑅
𝜋
(𝑡, 𝑢) = 𝛿

W
(∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∫

𝑡
𝑖+1
∧𝑡

𝑡
𝑖
∧𝑡

𝑉𝑢 (𝑟) d𝑟 1[𝑡
𝑖
,𝑡
𝑖+1
)
)

+ ∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∬
[𝑡
𝑖
∧𝑡,𝑡
𝑖+1
∧𝑡]
2

𝑉(∇
W
𝑟
𝑢) (𝑠) d𝑠 d𝑟.

(43)

Definition 17. We say that 𝑢 is 𝑉-Stratonovitch integrable on
[0, 𝑡]whenever the family 𝑅𝜋(𝑡, 𝑢), defined in (43), converges
in probability as |𝜋| goes to 0. In this case the limit will be
denoted by ∫𝑡

0
𝑢(𝑠) ∘ d𝑊𝑉

(𝑠).

Example 18. Thefirst example is the so-called Lévy fractional
Brownian motion of Hurst index𝐻 > 1/2 defined as

1

Γ (𝐻 + 1/2)
∫

𝑡

0

(𝑡 − 𝑠)
𝐻−1/2d𝐵

𝑠
= 𝛿 (𝐼

𝐻−1/2

𝑇
− (1

[0,𝑡]
)) . (44)

This amounts to say that 𝑉 = 𝐼
𝐻−1/2

𝑇
−

. Thus
Hypothesis 1 (𝑝,𝐻 − 1/2 − 1/𝑝) holds provided that
𝑝(𝐻 − 1/2) > 1.

Example 19. The other classical example is the fractional
Brownian motion with stationary increments of Hurst index
𝐻 > 1/2, which can be written as

∫

𝑡

0

𝐾
𝐻 (𝑡, 𝑠) d𝐵 (𝑠) , (45)

where

𝐾
𝐻 (𝑡, 𝑟)

=
(𝑡 − 𝑟)

𝐻−(1/2)

Γ (𝐻 + (1/2))
𝐹 (

1

2
− 𝐻,𝐻 −

1

2
,𝐻 +

1

2
, 1 −

𝑡

𝑟
)

× 1
[0,𝑡) (𝑟) .

(46)

The Gauss hypergeometric function 𝐹(𝛼, 𝛽, 𝛾, 𝑧) (see [41]) is
the analytic continuation on C × C × C \ {−1, −2, . . .} × {𝑧 ∈

C, Arg|1 − 𝑧| < 𝜋} of the power series:

+∞

∑

𝑘=0

(𝛼)𝑘(𝛽)𝑘

(𝛾)
𝑘
𝑘!
𝑧
𝑘
,

(𝑎)0 = 1,

(𝑎)𝑘 =
Γ (𝑎 + 𝑘)

Γ (𝑎)
= 𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑘 − 1) .

(47)

We know from [36] that 𝐾
𝐻

is an isomorphism from L𝑝

([0, 1]) ontoI+

𝐻+1/2,𝑝
and

𝐾
𝐻
𝑓 = 𝐼

1

0
+𝑥

𝐻−1/2
𝐼
𝐻−1/2

0
+ 𝑥

1/2−𝐻
𝑓. (48)

Consider thatK
𝐻
= 𝐼

−1

0
+ ∘ 𝐾𝐻. Then it is clear that

∫

𝑡

0

𝐾
𝐻 (𝑡, 𝑠) d𝐵 (𝑠) = ∫

𝑡

0

(K
𝐻
)
∗

𝑇
(1
[0,𝑡]
) (𝑠) d𝐵 (𝑠) ; (49)

hence we are in the framework of Definition 17 provided that
we take 𝑉 = (K

𝐻
)
∗

𝑇
. Hypothesis 1 (𝑝,𝐻 − 1/2 − 1/𝑝) is

satisfied provided that 𝑝(𝐻 − 1/2) > 1.

The next theorem then follows from [26].

Theorem 20. Assume that Hypothesis 1 (𝑝, 𝜂) holds. Assume
that 𝑢 belongs toL

𝑝,1
.Then 𝑢 is𝑉-Stratonovitch integrable, and

there exists a process which we denote by 𝐷W
𝑢 such that 𝐷W

𝑢

belongs to 𝐿𝑝(P ⊗ 𝑑𝑠) and

∫

𝑇

0

𝑢 (𝑠) ∘ dWV
(s) = 𝛿W (Vu) + ∫

T

0
DWu (s) ds. (50)

The so-called “trace-term” satisfies the following estimate:

E [∫
𝑇

0


𝐷

W
𝑢(𝑟)



𝑝

dr] ≤ 𝑐 𝑇𝑝𝜂‖𝑢‖𝑝L
𝑝,1

, (51)

for some universal constant 𝑐. Moreover, for any 𝑟 ≤ 𝑇, 𝑒
𝑟
𝑢 is

𝑉-Stratonovitch integrable and

∫

𝑟

0

𝑢 (𝑠) ∘ dWV
(s)

= ∫

𝑇

0

(𝑒
𝑟
𝑢) (𝑠) ∘ dWV

(s)

= 𝛿
W
(𝑉𝑒

𝑟
𝑢) + ∫

𝑟

0

𝐷
W
𝑢 (𝑠) ds,

(52)
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and we have the maximal inequality:

E[


∫

.

0

𝑢(𝑠) ∘ dWV
(s)


𝑝

Hol (𝜂)
] ≤ 𝑐 ‖𝑢‖

𝑝

L
𝑝,1

, (53)

where 𝑐 does not depend on 𝑢.

The main result of this Section is the following theorem
which states that the time reversal of a Stratonovitch integral
is an adapted integral with respect to the time-reversed
Brownian motion. Due to its length, its proof is postponed
to Section 5.1.

Theorem 21. Assume that Hypothesis 1 (𝑝, 𝜂) holds. Let 𝑢
belong to L

𝑝,1
and let �̆�

𝑇
= 𝜏

𝑡
𝑉𝜏

𝑇
. Assume furthermore that

𝑉 is �̆�
0
-causal and that �̆� = 𝑢 ∘ Θ−1

𝑇
isF�̆�

0-adapted. Then,

∫

𝑇−𝑟

𝑇−𝑡

𝜏
𝑇
𝑢 (𝑠) ∘ dWV

(s)

= ∫

𝑡

𝑟

�̆�
𝑇
(1
[𝑟,𝑡]
�̆�) (𝑠) dB̆T

(s) , 0 ≤ r ≤ t ≤ T,
(54)

where the last integral is an Itô integral with respect to the time
reversed Brownianmotion �̆�𝑇(𝑠) = 𝐵(𝑇)−𝐵(𝑇−𝑠) = Θ

𝑇
(𝐵)(𝑠).

Remark 22. Note that, at a formal level, we could have an easy
proof of this theorem. For instance, consider the Lévy fBm,
and a simple computation shows that �̆�

𝑇
= 𝐼

𝐻−1/2

0
+

for any
𝑇. Thus, we are led to compute trace(𝐼𝐻−1/2

0
+

∇𝑢). If we had
sufficient regularity, we could write

trace (𝐼𝐻−1/2
0
+ ∇𝑢) = ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑟)
𝐻−3/2

∇
𝑠
𝑢 (𝑟) d𝑟 d𝑠 = 0,

(55)

since ∇
𝑠
𝑢(𝑟) = 0 for 𝑠 > 𝑟 for 𝑢 adapted. Obviously, there are

many flaws in these lines of proof. The operator 𝐼𝐻−1/2
0
+

∇𝑢 is
not regular enough for such an expression of the trace to be
true. Even more, there is absolutely no reason for �̆�

𝑇
∇𝑢 to be

a kernel operator so we cannot hope such a formula. These
are the reasons that we need to work with operators and not
with kernels.

4. Volterra-Driven SDEs

LetG be the group of homeomorphisms ofR𝑛 equipped with
the distance. We introduce a distance 𝑑 onG by

𝑑 (𝜑, 𝜙) = 𝜌 (𝜑, 𝜙) + 𝜌 (𝜑
−1
, 𝜙

−1
) , (56)

where

𝜌 (𝜑, 𝜙) =

∞

∑

𝑁=1

2
−𝑁

sup
|𝑥|≤𝑁

𝜑 (𝑥) − 𝜙 (𝑥)


1 + sup
|𝑥|≤𝑁

𝜑 (𝑥) − 𝜙 (𝑥)


⋅ (57)

Then, G is a complete topological group. Consider the
equations:

𝑋
𝑟,𝑡
= 𝑥 + ∫

𝑡

𝑟

𝜎 (𝑋
𝑟,𝑠
) ∘ d𝑊𝑉

(𝑠) , 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, (A)

𝑌
𝑟,𝑡
= 𝑥 − ∫

𝑡

𝑟

𝜎 (𝑌
𝑠,𝑡
) ∘ d𝑊𝑉

(𝑠) , 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇. (B)

As a solution of (A) is to be constructed by “inverting”
a solution of (B), we need to add to the definition of a
solution of (A) or (B) the requirement of being a flow
of homeomorphisms. This is the meaning of the following
definition.

Definition 23. By a solution of (A), we mean a measurable
map:

Ω × [0, 𝑇] × [0, 𝑇] → G

(𝜔, 𝑟, 𝑡) → (𝑥 → 𝑋
𝑟,𝑡 (𝜔, 𝑥))

(58)

such that the following properties are satisfied.

(1) For any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, for any 𝑥 ∈ R𝑛, 𝑋
𝑟,𝑡
(𝜔, 𝑥) is

𝜎{𝑊
𝑉
(𝑠), 𝑟 ≤ 𝑠 ≤ 𝑡}-measurable.

(2) For any 0 ≤ 𝑟 ≤ 𝑇, for any 𝑥 ∈ R𝑛, the processes
(𝜔, 𝑡) → 𝑋

𝑟,𝑡
(𝜔, 𝑥) and (𝜔, 𝑡) → 𝑋

−1

𝑟,𝑡
(𝜔, 𝑥) belong to

L
𝑝,1

for some 𝑝 ≥ 2.
(3) For any 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡, for any 𝑥 ∈ R𝑛, the following

identity is satisfied:

𝑋
𝑟,𝑡 (𝜔, 𝑥) = 𝑋𝑠,𝑡

(𝜔,𝑋
𝑟,𝑠 (𝜔, 𝑥)) . (59)

(4) Equation (A) is satisfied for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇 P-a.s.

Definition 24. By a solution of (B), we mean a measurable
map:

Ω × [0, 𝑇] × [0, 𝑇] → G

(𝜔, 𝑟, 𝑡) → (𝑥 → 𝑌
𝑟,𝑡 (𝜔, 𝑥))

(60)

such that the following properties are satisfied.

(1) For any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, for any 𝑥 ∈ R𝑛, 𝑌
𝑟,𝑡
(𝜔, 𝑥) is

𝜎{𝑊
𝑉
(𝑠), 𝑟 ≤ 𝑠 ≤ 𝑡}measurable.

(2) For any 0 ≤ 𝑟 ≤ 𝑇, for any 𝑥 ∈ R𝑛, the processes
(𝜔, 𝑟) → 𝑌

𝑟,𝑡
(𝜔, 𝑥) and (𝜔, 𝑟) → 𝑌

−1

𝑟,𝑡
(𝜔, 𝑥) belong to

L
𝑝,1

for some 𝑝 ≥ 2.
(3) Equation (B) is satisfied for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇 P-a.s..
(4) For any 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡, for any 𝑥 ∈ R𝑛, the following

identity is satisfied:

𝑌
𝑟,𝑡 (𝜔, 𝑥) = 𝑌𝑟,𝑠 (𝜔, 𝑌𝑠,𝑡 (𝜔, 𝑥)) . (61)

At last consider the equation, for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇,

𝑍
𝑟,𝑡
= 𝑥 − ∫

𝑡

𝑟

�̆�
𝑇
(𝜎 ∘ 𝑍

.,𝑡
1
[𝑟,𝑡]
) (𝑠) d�̆�𝑇 (𝑠) , (C)

where 𝐵 is a standard 𝑛-dimensional Brownian motion.
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Definition 25. By a solution of (C), we mean a measurable
map:

Ω × [0, 𝑇] × [0, 𝑇] → G

(𝜔, 𝑟, 𝑡) → (𝑥 → 𝑍
𝑟,𝑡 (𝜔, 𝑥))

(62)

such that the following properties are satisfied.

(1) For any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, for any 𝑥 ∈ R𝑛, 𝑍
𝑟,𝑡
(𝜔, 𝑥) is

𝜎{�̆�
𝑇
(𝑠), 𝑠 ≤ 𝑟 ≤ 𝑡}measurable.

(2) For any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, for any 𝑥 ∈ R𝑛, the processes
(𝜔, 𝑟) → 𝑍

𝑟,𝑡
(𝜔, 𝑥) and (𝜔, 𝑟) → 𝑍

−1

𝑟,𝑡
(𝜔, 𝑥) belong to

L
𝑝,1

for some 𝑝 ≥ 2.
(3) Equation (C) is satisfied for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇P-a.s..

Theorem 26. Assume that �̆�
𝑇
is an 𝐸0 causal map continuous

from L𝑝 into I
𝛼,𝑝

for 𝛼 > 0 and 𝑝 ≥ 4 such that 𝛼𝑝 > 1.
Assume that 𝜎 is Lipschitz continuous and sublinear; see (96)
for the definition. Then, there exists a unique solution to (C).
Let 𝑍 denote this solution. For any (𝑟, 𝑟),

E [𝑍𝑟,𝑇 − 𝑍𝑟 ,𝑇


𝑝
] ≤ 𝑐


𝑟 − 𝑟



𝑝𝜂

. (63)

Moreover,

(𝜔, 𝑟) → 𝑍
𝑟,𝑠
(𝜔, 𝑍

𝑠,𝑡 (𝜔, 𝑥)) ∈ L
𝑝,1
,

for any 𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇.
(64)

Since this proof needs several lemmas, we defer it to
Section 5.2.

Theorem 27. Assume that �̆�
𝑇
is an 𝐸0-causal map continuous

fromL𝑝 intoI
𝛼,𝑝

for 𝛼 > 0 and 𝑝 ≥ 2 such that 𝛼𝑝 > 1. For
fixed 𝑇, there exists a bijection between the space of solutions
of (B) on [0, 𝑇] and the set of solutions of (C).

Proof. Set

𝑍
𝑟,𝑇 (�̆�, 𝑥) = 𝑌𝑇−𝑟,𝑇 (Θ

−1

𝑇
(�̆�) , 𝑥) (65)

or equivalently

𝑌
𝑟,𝑇 (𝜔, 𝑥) = 𝑍𝑇−𝑟,𝑇 (Θ𝑇 (𝜔) , 𝑥) . (66)

According to Theorem 21, 𝑌 satisfies (B) if and only if 𝑍
satisfies (C). The regularity properties are immediate since
L𝑝 is stable by 𝜏

𝑇
.

The first part of the next result is then immediate.

Corollary 28. Assume that �̆�
𝑇
is an 𝐸0-causal map contin-

uous from L𝑝 into I
𝛼,𝑝

for 𝛼 > 0 and 𝑝 ≥ 2 such that
𝛼𝑝 > 1. Then (B) has one and only one solution and for any
0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡, for any 𝑥 ∈ R𝑛, the following identity is satisfied:

𝑌
𝑟,𝑡 (𝜔, 𝑥) = 𝑌𝑟,𝑠 (𝜔, 𝑌𝑠,𝑡 (𝜔, 𝑥)) . (67)

Proof. According toTheorems 27 and 26, (B) has at most one
solution since (C) has a unique solution. As to the existence,
points from (1) to (3) are immediately deduced from the
corresponding properties of 𝑍 and (66).

According to Theorem 26, (𝜔, 𝑟) → 𝑌
𝑟,𝑠
(𝜔, 𝑌

𝑠,𝑡
(𝜔, 𝑥))

belongs to L
𝑝,1
; hence, we can apply the substitution formula

and
𝑌
𝑟,𝑠
(𝜔, 𝑌

𝑠,𝑡 (𝜔, 𝑥))

= 𝑌
𝑠,𝑡 (𝜔, 𝑥) − ∫

𝑠

𝑟

𝜎 (𝑌
𝜏,𝑠 (𝜔, 𝑥)) ∘ d𝑊

𝑉
(𝜏)

𝑥=𝑌
𝑠,𝑡
(𝜔,𝑥)

= 𝑥 − ∫

𝑡

𝑠

𝜎 (𝑌
𝜏,𝑡 (𝜔, 𝑥) ∘ d𝑊

𝑉
(𝜏)

− ∫

𝑠

𝑟

𝜎 (𝑌
𝜏,𝑠
(𝜔, 𝑌

𝑠,𝑡 (𝜔, 𝑥)) ) ∘ d𝑊
𝑉
(𝜏) .

(68)

Set

𝑅
𝜏,𝑡
= {

𝑌
𝜏,𝑡 (𝜔, 𝑥) for 𝑠 ≤ 𝜏 ≤ 𝑡
𝑌
𝜏,𝑠
(𝜔, 𝑌

𝑠,𝑡 (𝜔, 𝑥)) for 𝑟 ≤ 𝜏 ≤ 𝑠.
(69)

Then, in view of (68), 𝑅 appears to be the unique solution (B)
and thus 𝑅

𝑠,𝑡
(𝜔, 𝑥) = 𝑌

𝑠,𝑡
(𝜔, 𝑥). Point (4) is thus proved.

Corollary 29. For 𝑥 fixed, the random field (𝑌
𝑟,𝑡
(𝑥), 0 ≤ 𝑟 ≤

𝑡 ≤ 𝑇) admits a continuous version. Moreover,

E [𝑌𝑟,𝑠(𝑥) − 𝑌𝑟 ,𝑠(𝑥)


𝑝
]

≤ 𝑐 (1 + |𝑥|
𝑝
) (

𝑠

− 𝑠


𝑝𝜂

+

𝑟 − 𝑟



𝑝𝜂

) .

(70)

We still denote by 𝑌 this continuous version.

Proof. Without loss of generality, assume that 𝑠 ≤ 𝑠
 and

remark that 𝑌
𝑠,𝑠

(𝑥)

thus belongs to 𝜎{�̆�𝑇
𝑢
, 𝑢 ≥ 𝑠}:

E [𝑌𝑟,𝑠(𝑥) − 𝑌𝑟,𝑠(𝑥)


𝑝
]

≤ 𝑐 (E [𝑌𝑟,𝑠 (𝑥) − 𝑌𝑟 ,𝑠 (𝑥)


𝑝
]

+E [𝑌𝑟 ,𝑠 (𝑥) − 𝑌𝑟 ,𝑠 (𝑥)


𝑝
])

= 𝑐 (E [𝑌𝑟,𝑠 (𝑥) − 𝑌𝑟 ,𝑠 (𝑥)


𝑝
]

+E [𝑌𝑟 ,𝑠 (𝑥) − 𝑌𝑟 ,𝑠 (𝑌𝑠,𝑠 (𝑥))


𝑝
])

= 𝑐 (E [𝑍𝑠−𝑟,𝑠 (𝑥) − 𝑍𝑠−𝑟 ,𝑠 (𝑥)


𝑝
]

+E [𝑍𝑠−𝑟 ,𝑠 (𝑥) − 𝑍𝑠−𝑟 ,𝑠 (𝑌𝑠,𝑠 (𝑥))


𝑝
]) .

(71)

According toTheorem 37,

E [𝑍𝑠−𝑟,𝑠(𝑥) − 𝑍𝑠−𝑟 ,𝑠(𝑥)


𝑝
] ≤ 𝑐


𝑟 − 𝑟



𝑝𝜂

(1 + |𝑥|
𝑝
) . (72)

In view of Theorem 21, the stochastic integral which appears
in (C) is also a Stratonovitch integral; hence, we can apply the
substitution formula and say

𝑍
𝑠−𝑟

,𝑠
(𝑌

𝑠,𝑠
 (𝑥)) = 𝑍𝑠−𝑟 ,𝑠(𝑦)

𝑦=𝑌
𝑠,𝑠
 (𝑥)
. (73)
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Thus we can apply Theorem 37 and obtain that

E [𝑍𝑠−𝑟 ,𝑠(𝑥) − 𝑍𝑠−𝑟 ,𝑠(𝑌𝑠,𝑠(𝑥))


𝑝
]

≤ 𝑐E [𝑥 − 𝑌𝑠,𝑠 (𝑥)


𝑝
] .

(74)

The right hand side of this equation is in turn equal to
E[|𝑍

0,𝑠
 − 𝑍

𝑠

−𝑠,𝑠
(𝑥)|

𝑝
] thus, we get

E [𝑍𝑠−𝑟 ,𝑠 (𝑥) − 𝑍𝑠−𝑟 ,𝑠 (𝑌𝑠,𝑠 (𝑥))


𝑝
]

≤ 𝑐 (1 + |𝑥|
𝑝
)

𝑠

− 𝑠


𝑝𝜂

.

(75)

Combining (72) and (75) gives

E [𝑌𝑟,𝑠(𝑥) − 𝑌𝑟 ,𝑠(𝑥)


𝑝
]

≤ 𝑐 (1 + |𝑥|
𝑝
) (

𝑠

− 𝑠


𝑝𝜂

+

𝑟 − 𝑟



𝑝𝜂

) ,

(76)

hence the result comes

Thus, we have the main result of this paper.

Theorem 30. Assume that �̆�
𝑇
is an 𝐸0-causal map continuous

fromL𝑝 intoI
𝛼,𝑝

for 𝛼 > 0 and 𝑝 ≥ 4 such that 𝛼𝑝 > 1. Then
(A) has one and only one solution.

Proof. Under the hypothesis, we know that (B) has a unique
solution which satisfies (67). By definition a solution of (B),
the process 𝑌−1 : (𝜔, 𝑠) → 𝑌

−1

𝑠𝑡
(𝜔, 𝑥) belongs to L

𝑝,1
; hence,

we can apply the substitution formula. Following the lines of
proof of the previous theorem, we see that𝑌−1 is a solution of
(A).

In the reverse direction, two distinct solutions of (A)
would give rise to two solutions of (B) by the same principles.
Since this is definitely impossible in view of Corollary 28 (A)
has at most one solution.

5. Technical Proofs

5.1. Substitution Formula. The proof of Theorem 21 relies on
several lemmas including one known in anticipative calculus
as the substitution formula, compare [38].

Theorem 31. Assume that Hypothesis 1 (𝑝, 𝜂) holds. Let 𝑢
belong to L

𝑝,1
. If 𝑉∇W

𝑢 is of trace class, then

∫

𝑇

0

𝐷
W
𝑢 (𝑠) ds = trace (V∇Wu) . (77)

Moreover,

E [ trace(𝑉∇
W
𝑢)


𝑝

] ≤ 𝑐‖𝑢‖
𝑝

L
𝑝,1

. (78)

Proof. For each 𝑘, let (𝜙
𝑘,𝑚
, 𝑚 = 1, . . . , 2

𝑘
) be the functions

𝜙
𝑘,𝑚

= 2
𝑘/21

[(𝑚−1)2
−𝑘
,𝑚2
−𝑘
)
. Let 𝑃

𝑘
be the projection onto the

span of the 𝜙
𝑘,𝑚

; since ∇W
𝑉𝑢 is of trace class, we have (see

[42])

trace (𝑉∇W
𝑝
𝑡
𝑢) = lim

𝑘→+∞

trace (𝑃
𝑘
𝑉∇

W
𝑝
𝑡
𝑢 𝑃

𝑘
) . (79)

Now,

trace (𝑃
𝑘
𝑉∇

W
𝑢 𝑃

𝑘
)

=

𝑘

∑

𝑚=1

(𝑉∇
W
𝑝
𝑡
𝑢, 𝜙

𝑘,𝑚
⊗ 𝜙

𝑘,𝑚
)
L2⊗L2

=

𝑘

∑

𝑚=1

2
𝑘
∫

𝑚2
−𝑘
∧𝑡

(𝑚−1)2
−𝑘
∧𝑡

∫

𝑚2
−𝑘
∧𝑡

(𝑚−1)2
−𝑘
∧𝑡

𝑉(∇
W
𝑟
𝑢) (𝑠) d𝑠 d𝑟.

(80)

According to the proof of Theorem 20, the first part of the
theorem follows. The second part is then a rewriting of (51).

For 𝑝 ≥ 1, let Γ
𝑝
be the set of random fields:

𝑢 : R𝑚 → L
𝑝,1

𝑥 → ((𝜔, 𝑠) → 𝑢 (𝜔, 𝑠, 𝑥))

(81)

equipped with the seminorms,

𝑝
𝐾 (𝑢) = sup

𝑥∈𝐾

‖𝑢(𝑥)‖L
𝑝,1 (82)

for any compact𝐾 of R𝑚.

Corollary 32 (substitution formula). Assume that Hypothesis
1 (𝑝, 𝜂) holds. Let {𝑢(𝑥), 𝑥 ∈ R𝑚} belong to Γ

𝑝
. Let 𝐹 be a

random variable such that ((𝜔, 𝑠) → 𝑢(𝜔, 𝑠, 𝐹)) belongs toL
𝑝,1
.

Then,

∫

𝑇

0

𝑢 (𝑠, 𝐹) ∘ d𝑊𝑉
(𝑠) = ∫

𝑇

0

𝑢(𝑠, 𝑥) ∘ d𝑊𝑉

𝑠

𝑥=𝐹

. (83)

Proof. Simple random fields of the form:

𝑢 (𝜔, 𝑠, 𝑥) =

𝐾

∑

𝑙=1

𝐻
𝑙 (𝑥) 𝑢𝑙 (𝜔, 𝑠) (84)

with𝐻
𝑙
smooth and 𝑢

𝑙
in L

𝑝,1
are dense in Γ

𝑝
. In view of (53),

it is sufficient to prove the result for such random fields. By
linearity, we can reduce the proof to randomfields of the form
𝐻(𝑥)𝑢(𝜔, 𝑠). Now for any partition 𝜋,

𝛿
W
(∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∫

𝑡
𝑖+1
∧𝑡

𝑡
𝑖
∧𝑡

𝐻(𝐹)𝑉 (𝑢 (𝜔, .)) (𝑟) d𝑟 1[𝑡
𝑖
,𝑡
𝑖+1
)
)

= 𝐻 (𝐹) 𝛿
W
(∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∫

𝑡
𝑖+1
∧𝑡

𝑡
𝑖
∧𝑡

𝑉 (𝑢 (𝜔, .)) (𝑟) d𝑟 1[𝑡
𝑖
,𝑡
𝑖+1
)
)

− ∑

𝑡
𝑖
∈𝜋

∫

𝑡
𝑖+1
∧𝑡

𝑡
𝑖
∧𝑡

∫

𝑡
𝑖+1
∧𝑡

𝑡
𝑖
∧𝑡

𝐻

(𝐹) ∇

W
𝑠
𝐹 𝑉𝑢 (𝑟) d𝑠 d𝑟.

(85)

On the other hand,

∇
W
𝑠
(𝐻 (𝐹) 𝑢 (𝜔, 𝑟)) = 𝐻


(𝐹) ∇

W
𝑠
𝐹 𝑢 (𝑟) , (86)
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Hence,

∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∬
[𝑡
𝑖
∧𝑡,𝑡
𝑖+1
∧𝑡]
2

𝑉(∇
W
𝑟
𝐻(𝐹) 𝑢) (𝑠) d𝑠 d𝑟

= ∑

𝑡
𝑖
∈𝜋

1

𝜃
𝑖

∬
[𝑡
𝑖
∧𝑡,𝑡
𝑖+1
∧𝑡]
2

𝐻

(𝐹) ∇

W
𝑠
𝐹 𝑉𝑢 (𝑟) d𝑠 d𝑟.

(87)

According toTheorem 20, (83) is satisfied for simple random
fields.

Definition 33. For any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, for 𝑢 in L
𝑝,1
, we define

∫
𝑡

𝑟
𝑢(𝑠) ∘ d𝑊𝑉

(𝑠) as

∫

𝑡

𝑟

𝑢 (𝑠) ∘ d𝑊𝑉
(𝑠)

= ∫

𝑡

0

𝑢 (𝑠) ∘ d𝑊𝑉
(𝑠) − ∫

𝑟

0

𝑢 (𝑠) ∘ d𝑊𝑉
(𝑠)

= ∫

𝑇

0

𝑒
𝑡
𝑢 (𝑠) d𝑊𝑉

(𝑠) − ∫

𝑇

0

𝑒
𝑟
𝑢 (𝑠) ∘ d𝑊𝑉

(𝑠)

= 𝛿
W
(𝑉 (𝑒

𝑡
− 𝑒

𝑟
) 𝑢) + ∫

𝑡

𝑟

𝐷
W
𝑢 (𝑠) d𝑠.

(88)

By the very definition of trace class operators, the next
lemma is straightforward.

Lemma 34. Let 𝐴 and 𝐵 be two continuous maps from
L2
([0, 𝑇]; R𝑛) into itself.Then, themap 𝜏

𝑇
𝐴⊗𝐵 (resp.𝐴𝜏

𝑇
⊗𝐵)

is of trace class if and only if the map 𝐴 ⊗ 𝜏
𝑇
𝐵 (resp. 𝐴 ⊗ 𝐵𝜏

𝑇
)

is of trace class. Moreover, in such a situation,

trace (𝜏
𝑇
𝐴 ⊗ 𝐵)

= trace (𝐴 ⊗ 𝜏
𝑇
𝐵) , resp. trace (𝐴𝜏

𝑇
⊗ 𝐵)

= trace (𝐴 ⊗ 𝐵𝜏
𝑇
) .

(89)

Thenext corollary follows by a classical density argument.

Corollary 35. Let𝑢 ∈ L
2,1

such that∇W
⊗𝜏

𝑇
𝑉𝑢 and∇W

⊗𝑉𝜏
𝑇
𝑢

are of trace class. Then, 𝜏
𝑇
∇
W
⊗𝑉𝑢 and ∇W

𝜏
𝑇
⊗𝑉𝑢 are of trace

class. Moreover, we have

trace (∇W
⊗ 𝜏

𝑇
𝑉𝑢) = trace (𝜏

𝑇
∇
W
⊗ 𝑉𝑢) ,

trace (∇W
⊗ (𝑉𝜏

𝑇
) 𝑢) = trace (∇W

𝜏
𝑇
⊗ 𝑉𝑢) .

(90)

Proof of Theorem 21. We first study the divergence term. In
view of Theorem 3 we have

𝛿
𝐵
(𝑉 (𝑒

𝑇−𝑟
− 𝑒

𝑇−𝑡
) 𝜏

𝑇
�̆� ∘ Θ

𝑇
)

= 𝛿
𝐵
(𝑉𝜏

𝑇
(𝑒
𝑡
− 𝑒

𝑟
) �̆� ∘ Θ

𝑇
)

= 𝛿
𝐵
(𝜏
𝑇
�̆�
𝑇
(𝑒
𝑡
− 𝑒

𝑟
) �̆� ∘ Θ

𝑇
)

= ̆𝛿 (�̆�
𝑇
(𝑒
𝑡
− 𝑒

𝑟
) �̆�) (�̆�)

= ∫

𝑡

𝑟

�̆�
𝑇
(1
[𝑟,𝑡]
�̆�) (𝑠) d𝐵𝑇 (𝑠) .

(91)

According to Lemma 15 (�̆�
𝑇
)
∗ is �̆�

0
causal, and, according to

Lemma 9, it is strictly �̆�
0
causal. Thus, Theorem 14 implies

that ∇̆𝑉(𝑒
𝑡
− 𝑒

𝑟
)�̆� is of trace class and quasinilpotent. Hence

Corollary 35 induces that

𝜏
𝑇
�̆�
𝑇
𝜏
𝑇
⊗ 𝜏

𝑇
∇̆𝜏

𝑇
(𝑒
𝑡
− 𝑒

𝑟
) �̆� (92)

is trace class and quasinilpotent. Now, according to
Theorem 2, we have

𝜏
𝑇
�̆�
𝑇
𝜏
𝑇
⊗ 𝜏

𝑇
∇̆𝜏

𝑇
(𝑒
𝑡
− 𝑒

𝑟
) �̆�

= 𝑉 (∇𝜏
𝑇
(𝑒
𝑇−𝑟

− 𝑒
𝑇−𝑡
) �̆� ∘ Θ

𝑇
) .

(93)

According toTheorem 20, we have proved (54).

5.2. The Forward Equation

Lemma 36. Assume that Hypothesis 1 (𝑝, 𝜂) holds and that 𝜎
is Lipschitz continuous. Then, for any 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇, the map

�̆�
𝑇
∘ 𝜎 : 𝐶 ([0, 𝑇] ,R𝑛) → 𝐶 ([0, 𝑇] ,R𝑛)

𝜙 → �̆�
𝑇
(𝜎 ∘ 𝜓 1

[𝑎,𝑏]
)

(94)

is Lipschitz continuous and Gâteaux differentiable. Its differen-
tial is given by

𝑑�̆�
𝑇
∘ 𝜎 (𝜙) [𝜓] = �̆�

𝑇
(𝜎


∘ 𝜙 𝜓) . (95)

Assume furthermore that 𝜎 is sublinear; that is,

|𝜎 (𝑥)| ≤ 𝑐 (1 + |𝑥|) , for any 𝑥 ∈ R𝑛. (96)

Then, for any 𝜓 ∈ 𝐶([0, 𝑇],R𝑛), for any 𝑡 ∈ [0, 𝑇],


�̆�
𝑇
(𝜎 ∘ 𝜓) (𝑡)


≤ 𝑐𝑇

𝜂+1/𝑝
(1 + ∫

𝑡

0

𝜓 (𝑠)


𝑝ds)

≤ 𝑐𝑇
𝜂+1/𝑝

(1 +
𝜓
∞
) .

(97)

Proof. Let 𝜓 and 𝜙 be two continuous functions, since
𝐶([0, 𝑇],R𝑛) is continuously embedded inL𝑝 and �̆�

𝑇
(𝜎 ∘𝜓−

𝜎 ∘ 𝜙) belongs to Hol(𝜂). Moreover,

sup
𝑡≤𝑇


�̆�
𝑇
(𝜎 ∘ 𝜓1

[𝑎,𝑏]
) (𝑡) − �̆�𝑇 (𝜎 ∘ 𝜙 1

[𝑎,𝑏]
) (𝑡)



≤ 𝑐

�̆�
𝑇
((𝜎 ∘ 𝜓 − 𝜎 ∘ 𝜙) 1

[𝑎,𝑏]
)
Hol(𝜂)

≤ 𝑐
(𝜎 ∘ 𝜓 − 𝜎 ∘ 𝜙) 1[𝑎,𝑏]

L𝑝

≤ 𝑐
𝜙 − 𝜓

L𝑝([𝑎,𝑏])

≤ 𝑐 sup
𝑡≤𝑇

𝜓 (𝑡) − 𝜙 (𝑡)
 ,

(98)

since 𝜎 is Lipschitz continuous.
Let 𝜙 and 𝜓 be two continuous functions on [0, 𝑇]. Since

𝜎 is Lipschitz continuous, we have

𝜎 (𝜓 (𝑡) + 𝜀𝜙 (𝑡))

= 𝜎 (𝜓 (𝑡)) + 𝜀∫

1

0

𝜎

(𝑢𝜓 (𝑡) + (1 − 𝑢) 𝜙 (𝑡)) d𝑢.

(99)
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Moreover, since 𝜎 is Lipschitz, 𝜎 is bounded and

∫

𝑇

0



∫

1

0

𝜎

(𝑢𝜓(𝑡) + (1 − 𝑢)𝜙(𝑡))d𝑢



𝑝

d𝑡 ≤ 𝑐𝑇. (100)

This means that (𝑡 → ∫
1

0
𝜎

(𝑢𝜓(𝑡) + (1 − 𝑢)𝜙(𝑡))d𝑢) belongs

toL𝑝. Hence, according to Hypothesis 1,


�̆�
𝑇
(∫

1

0

𝜎

(𝑢𝜓(.) + (1 − 𝑢)𝜙(.)) d)

𝐶

≤ 𝑐𝑇. (101)

Thus,

lim
𝜀→0

𝜀
−1
(�̆�

𝑇
(𝜎 ∘ (𝜓 + 𝜀𝜙)) − �̆�

𝑇
(𝜎 ∘ 𝜓)) exists, (102)

and �̆�
𝑇
∘𝜎 is Gâteaux differentiable and its differential is given

by (95).
Since 𝜎∘𝜓 belongs to𝐶([0, 𝑇],R𝑛), according to Hypoth-

esis 1, we have


�̆�
𝑇
(𝜎 ∘ 𝜓) (𝑡)


≤ 𝑐(∫

𝑡

0

𝑠
𝜂𝑝𝜎(𝜓(𝑠))



𝑝d𝑠)
1/𝑝

≤ 𝑐𝑇
𝜂
(∫

𝑡

0

(1 +
𝜓(𝑠)



𝑝
)d𝑠)

1/𝑝

≤ 𝑐𝑇
𝜂+1/𝑝

(1 +
𝜓


𝑝

∞
)
1/𝑝

≤ 𝑐𝑇
𝜂+1/𝑝

(1 +
𝜓
∞
) .

(103)

The proof is thus complete.

Following [43], we then have the following nontrivial
result.

Theorem 37. Assume that Hypothesis 1 (𝑝, 𝜂) holds and that
𝜎 is Lipschitz continuous. Then, there exists one and only one
measurable map fromΩ× [0, 𝑇] × [0, 𝑇] intoG which satisfies
the first two points of Definition (C). Moreover,

E [𝑍𝑟,𝑡(𝑥) − 𝑍𝑟 ,𝑡(𝑥

)


𝑝

]

≤ 𝑐 (1 + |𝑥|
𝑝
∨

𝑥


𝑝

)

× (

𝑟 − 𝑟



𝑝𝜂

+

𝑥 − 𝑥



𝑝

) ,

(104)

and, for any 𝑥 ∈ R𝑛, for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 𝑇, we have

E [𝑍𝑟,𝑡(𝑥)


𝑝
] ≤ 𝑐 (1 + |𝑥|

𝑝
) 𝑒

𝑐𝑇
𝜂𝑝+1

. (105)

Note even if 𝑥 and 𝑥
 are replaced by 𝜎{�̆�𝑇(𝑢), 𝑡 ≤ 𝑢}

measurable random variables, the last estimates still hold.

Proof. Existence, uniqueness, and homeomorphy of a solu-
tion of (C) follow from [43]. The regularity with respect
to 𝑟 and 𝑥 is obtained as usual by BDG inequality and
Gronwall Lemma. For 𝑥 or 𝑥 random, use the independence
of 𝜎{�̆�𝑇(𝑢), 𝑡 ≤ 𝑢} and 𝜎{�̆�𝑇(𝑢), 𝑟 ∧ 𝑟 ≤ 𝑢 ≤ 𝑡}.

Theorem 38. Assume that Hypothesis 1 (𝑝, 𝜂) holds and that
𝜎 is Lipschitz continuous and sublinear. Then, for any 𝑥 ∈ R𝑛,
for any 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, (𝜔, 𝑟) → 𝑍

𝑟,𝑠
(𝜔, 𝑍

𝑠,𝑡
(𝑥)) and

(𝜔, 𝑟) → 𝑍
−1

𝑟,𝑡
(𝜔, 𝑥) belong to L

𝑝,1
.

Proof. According to ([44], Theorem 3.1), the differentiability
of 𝜔 → 𝑍

𝑟,𝑡
(𝜔, 𝑥) is ensured. Furthermore,

∇
𝑢
𝑍
𝑟,𝑡
= − �̆�

𝑇
(𝜎 ∘ 𝑍

.,𝑡
1
[𝑟,𝑡]
) (𝑢)

− ∫

𝑡

𝑟

�̆�
𝑇
(𝜎


(𝑍

.,𝑡
) .∇

𝑢
𝑍
.,𝑡
1
[𝑟,𝑡]
) (𝑠) d�̆� (𝑠) ,

(106)

where 𝜎 is the differential of 𝜎. For𝑀 > 0, let

𝜉
𝑀
= inf {𝜏, ∇𝑢𝑍𝜏,𝑡



𝑝
≥ 𝑀} , 𝑍

𝑀

𝜏,𝑡
= 𝑍

𝜏∨𝜉
𝑀
,𝑡
. (107)

Since �̆�
𝑇
is continuous fromL𝑝 into itself and 𝜎 is Lipschitz,

according to BDG inequality, for 𝑟 ≤ 𝑢,

E [∇𝑢𝑍
𝑀

𝑟,𝑡



𝑝

]

≤ 𝑐E [�̆�𝑇 (𝜎 ∘ 𝑍
𝑀

.,𝑡
1
[𝑟,𝑡]
) (𝑢)



𝑝

]

+ 𝑐E [∫
𝑡

𝑟


�̆�
𝑇
(𝜎


(𝑍

𝑀

.,𝑡
) ∇

𝑢
𝑍
𝑀

.,𝑡
1
[𝑟,𝑡]
) (𝑠)



𝑝

d𝑠]

≤ 𝑐 (1 + E [∫
𝑡

𝑟

𝑢
𝑝𝜂
∫

𝑢

𝑟

𝑍𝜏,𝑡


𝑝d𝜏 d𝑢]

+E [∫
𝑡

𝑟

𝑠
𝑝𝜂
∫

𝑠

𝑟


∇
𝑢
𝑍
𝑀

𝜏,𝑡



𝑝

d𝜏 d𝑠])

≤ 𝑐 (1 + E [∫
𝑡

𝑟

𝑍𝜏,𝑡


𝑝
(𝑡
𝑝𝜂+1

− 𝜏
𝑝𝜂+1

) d𝜏]

+E [∫
𝑡

𝑟


∇
𝑢
𝑍
𝑀

𝜏,𝑡



𝑝

(𝑡
𝑝𝜂+1

− 𝜏
𝑝𝜂+1

) d𝜏])

≤ 𝑐𝑡
𝑝𝜂+1

(1 + E [∫
𝑡

𝑟

𝑍𝜏,𝑡


𝑝d𝜏] + E [∫
𝑡

𝑟


∇
𝑢
𝑍
𝑀

𝜏,𝑡



𝑝

d𝜏]) .

(108)

Then, Gronwall Lemma entails that

E [∇𝑢𝑍
𝑀

𝑟,𝑡



𝑝

] ≤ 𝑐 (1 + E [∫
𝑡

𝑟

𝑍𝜏,𝑡


𝑝d𝜏]) , (109)

hence by Fatou lemma,

E [∇𝑢𝑍𝑟,𝑡


𝑝
] ≤ 𝑐 (1 + E [∫

𝑡

𝑟

𝑍𝜏,𝑡


𝑝d𝜏]) . (110)

The integrability of E[|∇
𝑢
𝑍
𝑟,𝑡
|
𝑝
] with respect to 𝑢 follows.

Now, since 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, 𝑍
𝑠,𝑡
(𝑥) is independent

of 𝑍
𝑟,𝑠
(𝑥), thus the previous computations still hold and

(𝜔, 𝑟) → 𝑍
𝑟,𝑠
(𝜔, 𝑍

𝑠,𝑡
(𝑥)) belongs to L

𝑝,1
.
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According to [45], to prove that 𝑍−1
𝑟,𝑡
(𝑥) belongs to D

𝑝,1
,

we need to prove that

(1) for every ℎ ∈ L2, there exists an absolutely continu-
ous version of the process (𝑡 → 𝑍

−1

𝑟,𝑡
(𝜔 + 𝑡ℎ, 𝑥)),

(2) there exists 𝐷𝑍−1
𝑟,𝑡
, an L2-valued random variable

such that, for every ℎ ∈L2,

1

𝑡
(𝑍

−1

𝑟,𝑡
(𝜔 + 𝑡ℎ, 𝑥) − 𝑍

−1

𝑟,𝑡
(𝜔, 𝑥))

𝑡→0

→ ∫

𝑇

0

𝐷𝑍
−1

𝑟,𝑡
(𝑠) ℎ (𝑠) d𝑠,

(111)

where the convergence holds in probability,
(3) 𝐷𝑍−1

𝑟,𝑡
belongs toL2

(Ω,L2
).

We first show that

E[


𝜕𝑍
𝑟,𝑡

𝜕𝑥
(𝜔, 𝑍

−1

𝑟,𝑡
(𝑥))



−𝑝

] is finite. (112)

Since

𝜕𝑍
𝑟,𝑡

𝜕𝑥
(𝜔, 𝑥)

= Id + ∫
𝑡

𝑟

�̆�
𝑇
(𝜎


(𝑍

.,𝑡 (𝑥))
𝜕𝑍

.,𝑡 (𝜔, 𝑥)

𝜕𝑥
) (𝑠) d�̆� (𝑠) ,

(113)

letΘ
𝑣
= sup

𝑢≤𝑣
|𝜕
𝑥
𝑍
𝑢,𝑡
(𝑥)|.The same kind of computations as

above entails that (for the sake of brevity, we do not detail the
localisation procedure as it is similar to the previous one)

E [Θ2𝑞

𝑣
]

≤ 𝑐 + 𝑐 E[∫
𝑡

𝑢

Θ
2(𝑞−1)

𝑠
(∫

𝑠

𝑢

𝜕𝑥𝑍𝜏,𝑡 (𝑥)


𝑝
| d𝜏)

2/𝑝

d𝑠]

+ 𝑐 E[(∫
𝑡

𝑢

Θ
𝑞−2

𝑠
(∫

𝑠

𝑢

𝜕𝑥𝑍𝜏,𝑡 (𝑥)


𝑝
| d𝜏)

2/𝑝

)

2

d𝑠] .

(114)

Hence,

E [Θ2𝑞

𝑣
] ≤ 𝑐 (1 + ∫

𝑡

𝑣

E [Θ2𝑞

𝑠
] d𝑠) , (115)

and (112) follows by Fatou and Gronwall lemmas. Since
𝑍
𝑟,𝑡
(𝜔, 𝑍

−1

𝑟,𝑡
(𝜔, 𝑥)) = 𝑥, the implicit function theorem implies

that 𝑍−1
𝑟,𝑡
(𝑥) satisfies the first two properties and that

∇𝑍
𝑟,𝑡
(𝜔, 𝑍

−1

𝑟,𝑡
(𝑥)) +

𝜕𝑍
𝑟,𝑡

𝜕𝑥
(𝜔, 𝑍

−1

𝑟,𝑡
(𝑥)) ∇̃𝑍

−1

𝑟,𝑡
(𝜔, 𝑥) . (116)

It follows by Hölder inequality and (112) that

𝐷𝑍

−1

𝑟,𝑡
(𝑥))

𝑝,1
≤ 𝑐
𝑍𝑟,𝑡(𝑥))

2𝑝,1


(𝜕
𝑥
𝑍
𝑟,𝑡
(𝑥))

−12𝑝
; (117)

hence 𝑍−1
𝑟,𝑡

belongs to L
𝑝,1
.
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Henri Poincaré. Probabilités et Statistiques, vol. 41, no. 4, pp. 781–
806, 2005.

[12] A. Lejay and N. Victoir, “On (𝑝, 𝑞)-rough paths,” Journal of
Differential Equations, vol. 225, no. 1, pp. 103–133, 2006.

[13] T. Lyons and N. Victoir, “An extension theorem to rough paths,”
Annales de l’Institut Henri Poincaré. Analyse Non Linéaire, vol.
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