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The goal of this review article is to provide a survey about the foundations of semilinear stochastic partial differential equations. In
particular, we provide a detailed study of the concepts of strong, weak, and mild solutions, establish their connections, and review
a standard existence and uniqueness result. The proof of the existence result is based on a slightly extended version of the Banach
fixed point theorem.

1. Introduction

Semilinear stochastic partial differential equations (SPDEs)
have a broad spectrum of applications including natural
sciences and economics. The goal of this review article is to
provide a survey on the foundations of SPDEs, which have
been presented in the monographs [1–3]. It may be beneficial
for students who are already aware about stochastic calculus
in finite dimensions and who wish to have survey material
accompanying the aforementioned references. In particular,
we review the relevant results from functional analysis about
unbounded operators in Hilbert spaces and strongly contin-
uous semigroups.

A large part of this paper is devoted to a detailed study of
the concepts of strong, weak, and mild solutions to SPDEs,
to establish their connections and to review and prove a
standard existence and uniqueness result. The proof of the
existence result is based on a slightly extended version of the
Banach fixed point theorem.

In the last part of this paper, we study invariant manifolds
for weak solutions to SPDEs.This topic does not belong to the
general theory of SPDEs, but it uses and demonstrates many
of the results and techniques of the previous sections. It arises
from the natural desire to express the solutions of SPDEs,
which generally live in an infinite dimensional state space,
by means of a finite dimensional state process and thus to
ensure larger analytical tractability.

This paper should also serve as an introductory study
to the general theory of SPDEs, and it should enable the
reader to learn about further topics and generalizations in this
field. Possible further directions are the study of martingale
solutions (see, e.g., [1, 3]), SPDEs with jumps (see, e.g., [4] for
SPDEs driven by the Lévy processes and [5–8] for SPDEs
driven by Poisson random measures), and support theorems
as well as further invariance results for SPDEs; see, for
example, [9, 10].

The remainder of this paper is organized as follows: In
Sections 2 and 3, we review the required results from func-
tional analysis. In particular, we collect the relevant material
about unbounded operators and strongly continuous semi-
groups. In Section 4 we review stochastic processes in infinite
dimension. In particular, we recall the definition of a trace
class Wiener process and outline the construction of the
Itô integral. In Section 5 we present the solution concepts for
SPDEs and study their various connections. In Section 6 we
review results about the regularity of stochastic convolution
integrals, which is essential for the study of mild solutions
to SPDEs. In Section 7 we review a standard existence and
uniqueness result. Finally, in Section 8 we deal with invariant
manifolds for weak solutions to SPDEs.

2. Unbounded Operators in the Hilbert Spaces

In this section, we review the relevant properties about
unbounded operators. We will start with operators in Banach
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spaces and focus on operators in Hilbert spaces later on. The
reader can find the proofs of the upcoming results in any
textbook about functional analysis, such as [11] or [12].

Let 𝑋 and 𝑌 be Banach spaces. For a linear operator 𝐴 :

𝑋 ⊃ D(𝐴) → 𝑌, defined on some subspace D(𝐴) of 𝑋, we
callD(𝐴) the domain of 𝐴.

Definition 1. A linear operator 𝐴 : 𝑋 ⊃ D(𝐴) → 𝑌 is called
closed, if for every sequence (𝑥

𝑛
)
𝑛∈N ⊂ D(𝐴), such that the

limits 𝑥 = lim
𝑛→∞

𝑥
𝑛

∈ 𝑋 and 𝑦 = lim
𝑛→∞

𝐴𝑥
𝑛

∈ 𝑌 exist,
one has 𝑥 ∈ D(𝐴) and 𝐴𝑥 = 𝑦.

Definition 2. A linear operator 𝐴 : 𝑋 ⊃ D(𝐴) → 𝑌 is
called densely defined, if its domainD(𝐴) is dense in 𝑋; that
is,D(𝐴) = 𝑋.

Definition 3. Let 𝐴 : 𝑋 ⊃ D(𝐴) → 𝑋 be a linear operator.

(1) The resolvent set of 𝐴 is defined as

𝜌 (𝐴) := {𝜆 ∈ C : 𝜆 − 𝐴 : D (𝐴) 󳨀→ 𝑋 is bijective and

(𝜆 − 𝐴)
−1

∈ 𝐿 (𝑋)} .

(1)

(2) The spectrum of 𝐴 is defined as 𝜎(𝐴) := C \ 𝜌(𝐴).
(3) For 𝜆 ∈ 𝜌(𝐴), one defines the resolvent 𝑅(𝜆, 𝐴) ∈

𝐿(𝑋) as

𝑅 (𝜆, 𝐴) := (𝜆 − 𝐴)
−1

. (2)

Now, we will introduce the adjoint operator of a densely
defined operator in a Hilbert space. Recall that for a bounded
linear operator 𝑇 ∈ 𝐿(𝐻

1
, 𝐻

2
), mapping between two Hilbert

spaces𝐻
1
and𝐻

2
, the adjoint operator is the unique bounded

linear operator 𝑇∗

∈ 𝐿(𝐻
2
, 𝐻

1
) such that

⟨𝑇𝑥, 𝑦⟩
𝐻
2

= ⟨𝑥, 𝑇
∗

𝑦⟩
𝐻
1

∀𝑥 ∈ 𝐻
1
, 𝑦 ∈ 𝐻

2
. (3)

In order to extend this definition to unbounded operators,
one recalls the following extension result for linear operators.

Proposition 4. Let 𝑋 be a normed space, let 𝑌 be a Banach
space, let𝐷 ⊂ 𝑋 be a dense subspace, and letΦ : 𝐷 → 𝑌 be a
continuous linear operator.Then there exists a unique continu-
ous extension Φ̂ : 𝑋 → 𝑌, that is, a continuous linear operator
with Φ̂|

𝐷
= Φ. Moreover, one has ‖Φ̂‖ = ‖Φ‖.

Now, let𝐻 be aHilbert space.We recall the representation
theorem of Fréchet-Riesz. In the sequel, the space𝐻

󸀠 denotes
the dual space of 𝐻.

Theorem 5. For every 𝑥
󸀠

∈ 𝐻
󸀠, there exists a unique element

𝑥 ∈ 𝐻 with ⟨𝑥
󸀠

, ∙⟩ = ⟨𝑥, ∙⟩. In addition, one has ‖𝑥‖ = ‖𝑥
󸀠

‖.

Let 𝐴 : 𝐻 ⊃ D(𝐴) → 𝐻 be a densely defined operator.
One defines the subspace

D (𝐴
∗

) := {𝑦 ∈ 𝐻 : 𝑥 󳨃󳨀→ ⟨𝐴𝑥, 𝑦⟩ is continuous

on D (𝐴) } .

(4)

Let 𝑦 ∈ D(𝐴
∗

) be arbitrary. By virtue of the extension result
for linear operators (Proposition 4), the operator

D (𝐴) 󳨃󳨀→ R, 𝑥 󳨃󳨀→ ⟨𝐴𝑥, 𝑦⟩ , (5)

has a unique extension to a linear functional 𝑧󸀠 ∈ 𝐻
󸀠. By the

representation theorem of Fréchet-Riesz (Theorem 5), there
exists a unique element 𝑧 ∈ 𝐻 with ⟨𝑧

󸀠

, ∙⟩ = ⟨𝑧, ∙⟩. This
implies that

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ ∀𝑥 ∈ D (𝐴) . (6)

Setting 𝐴
∗

𝑦 := 𝑧, this defines a linear operator 𝐴
∗

: 𝐻 ⊃

D(𝐴
∗

) → 𝐻, and one has

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴
∗

𝑦⟩ ∀𝑥 ∈ D (𝐴) , 𝑦 ∈ D (𝐴
∗

) . (7)

Definition 6. The operator 𝐴
∗

: 𝐻 ⊃ D(𝐴
∗

) → 𝐻 is called
the adjoint operator of 𝐴.

Proposition 7. Let 𝐴 : 𝐻 ⊃ D(𝐴) → 𝐻 be densely defined
and closed. Then 𝐴

∗ is densely defined and one has 𝐴 = 𝐴
∗∗.

Lemma 8. Let 𝐻 be a separable Hilbert space and let 𝐴 :

𝐻 ⊃ D(𝐴) → 𝐻 be a closed operator. Then the domain
(D(𝐴), ‖ ⋅ ‖D(𝐴)

) endowed with the graph norm

‖𝑥‖D(𝐴)
= (‖𝑥‖

2

+ ‖𝐴𝑥‖
2

)
1/2 (8)

is a separable Hilbert space, too.

3. Strongly Continuous Semigroups

In this section, we present the required results about strongly
continuous semigroups. Concerning the proofs of the
upcoming results, the reader is referred to any textbook about
functional analysis, such as [11] or [12]. Throughout this sec-
tion, let 𝑋 be a Banach space.

Definition 9. Let (𝑆
𝑡
)
𝑡≥0

be a family of continuous linear
operators 𝑆

𝑡
: 𝑋 → 𝑋, 𝑡 ≥ 0.

(1) The family (𝑆
𝑡
)
𝑡≥0

is a called a strongly continuous
semigroup (or 𝐶

0
-semigroup), if the following condi-

tions are satisfied:

(i) 𝑆
0
= Id,

(ii) 𝑆
𝑠+𝑡

= 𝑆
𝑠
𝑆
𝑡
for all 𝑠, 𝑡 ≥ 0,

(iii) lim
𝑡→0

𝑆
𝑡
𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

(2) The family (𝑆
𝑡
)
𝑡≥0

is called a norm continuous semi-
group, if the following conditions are satisfied:

(i) 𝑆
0
= Id,

(ii) 𝑆
𝑠+𝑡

= 𝑆
𝑠
𝑆
𝑡
for all 𝑠, 𝑡 ≥ 0,

(iii) lim
𝑡→0

‖𝑆
𝑡
− Id‖ = 0.

Note that every norm continuous semigroup is also a 𝐶
0
-

semigroup. The following growth estimate (9) will often be
used when dealing with SPDEs.
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Lemma 10. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup. Then there are

constants 𝑀 ≥ 1 and 𝜔 ∈ R such that
󵄩󵄩󵄩󵄩𝑆𝑡

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒
𝜔𝑡

∀𝑡 ≥ 0. (9)

Definition 11. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup.

(1) The semigroup (𝑆
𝑡
)
𝑡≥0

is called a semigroup of contrac-
tions (or contractive), if

󵄩󵄩󵄩󵄩𝑆𝑡
󵄩󵄩󵄩󵄩 ≤ 1 ∀𝑡 ≥ 0; (10)

that is, the growth estimate (9) is satisfied with𝑀 = 1

and 𝜔 = 0.
(2) The semigroup (𝑆

𝑡
)
𝑡≥0

is called a semigroup of pseu-
docontractions (or pseudocontractive), if there exists a
constant 𝜔 ∈ R such that

󵄩󵄩󵄩󵄩𝑆𝑡
󵄩󵄩󵄩󵄩 ≤ 𝑒

𝜔𝑡

∀𝑡 ≥ 0; (11)

that is, the growth estimate (9) is satisfiedwith𝑀 = 1.

If (𝑆
𝑡
)
𝑡≥0

is a semigroup of pseudocontractions with
growth estimate (11), then (𝑇

𝑡
)
𝑡≥0

given by

𝑇
𝑡
:= 𝑒

−𝜔𝑡

𝑆
𝑡
, 𝑡 ≥ 0, (12)

is a semigroup of contractions. Hence, every pseudocon-
tractive semigroup can be transformed into a semigroup of
contractions, which explains the term pseudocontractive.

Lemma 12. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup. Then the following

statements are true.

(1) The mapping

R
+
× 𝑋 󳨀→ 𝑋, (𝑡, 𝑥) 󳨃󳨀→ 𝑆

𝑡
𝑥, (13)

is continuous.
(2) For all 𝑥 ∈ 𝑋 and 𝑇 ≥ 0, the mapping

[0, 𝑇] 󳨀→ 𝑋, 𝑡 󳨃󳨀→ 𝑆
𝑡
𝑥, (14)

is uniformly continuous.

Definition 13. Let (𝑆
𝑡
)
𝑡≥0

be a𝐶
0
-semigroup.The infinitesimal

generator (in short generator) of (𝑆
𝑡
)
𝑡≥0

is the linear operator
𝐴 : 𝑋 ⊃ D(𝐴) → 𝑋, which is defined on the domain

D (𝐴) := {𝑥 ∈ 𝑋 : lim
𝑡→0

𝑆
𝑡
𝑥 − 𝑥

𝑡
exists} (15)

and given by

𝐴𝑥 := lim
𝑡→0

𝑆
𝑡
𝑥 − 𝑥

𝑡
. (16)

Note that the domain D(𝐴) is indeed a subspace of 𝑋.
The following result gives some properties of the infinitesimal
generator of a𝐶

0
-semigroup. Recall thatwe have provided the

required concepts in Definitions 1 and 2.

Proposition 14. The infinitesimal generator 𝐴 : 𝑋 ⊃

D(𝐴) → 𝑋 of a 𝐶
0
-semigroup (𝑆

𝑡
)
𝑡≥0

is densely defined and
closed.

We proceed with some examples of 𝐶
0
-semigroups and

their generators.

Example 15. For every bounded linear operator𝐴 ∈ 𝐿(𝑋) the
family (𝑒

𝑡𝐴

)
𝑡≥0

given by

𝑒
𝑡𝐴

:=

∞

∑

𝑛=0

𝑡
𝑛

𝐴
𝑛

𝑛!
(17)

is a norm continuous semigroup with generator 𝐴. In partic-
ular, one hasD(𝐴) = 𝑋.

Example 16. We consider the separable Hilbert space 𝑋 =

𝐿
2

(R). Let (𝑆
𝑡
)
𝑡≥0

be the shift semigroup that is defined as

𝑆
𝑡
𝑓 := 𝑓 (𝑡 + ∙) , 𝑡 ≥ 0. (18)

Then (𝑆
𝑡
)
𝑡≥0

is a semigroup of contractions with generator𝐴 :

𝐿
2

(R) ⊃ D(𝐴) → 𝐿
2

(R) given by

D (𝐴) = {𝑓 ∈ 𝐿
2

(R) : 𝑓 is absolutely continuous

and 𝑓
󸀠

∈ 𝐿
2

(R)} ,

𝐴𝑓 = 𝑓
󸀠

.

(19)

Example 17. On the separable Hilbert space 𝑋 = 𝐿
2

(R𝑑

) we
define the heat semigroup (𝑆

𝑡
)
𝑡≥0

by 𝑆
0
:= Id and

(𝑆
𝑡
𝑓) (𝑥) :=

1

(4𝜋𝑡)
𝑑/2

∫
R𝑑

exp(−

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

4𝑡
)𝑓 (𝑦) 𝑑𝑦,

𝑡 > 0;

(20)

that is, 𝑆
𝑡
𝑓 arises as the convolution of 𝑓 with the density of

the normal distribution 𝑁(0, 2𝑡). Then (𝑆
𝑡
)
𝑡≥0

is a semigroup
of contractions with generator 𝐴 : 𝐿

2

(R𝑑

) ⊃ D(𝐴) →

𝐿
2

(R𝑑

) given by

D (𝐴) = 𝑊
2

(R
𝑑

) , 𝐴𝑓 = Δ𝑓. (21)

Here, 𝑊2

(R𝑑

) denotes the Sobolev space

𝑊
2

(R
𝑑

) = {𝑓 ∈ 𝐿
2

(R
𝑑

) : 𝐷
(𝛼)

𝑓 ∈ 𝐿
2

(R
𝑑

) exists

∀𝛼 ∈ N
𝑑

0
with |𝛼| ≤ 2}

(22)

and Δ the Laplace operator

Δ =

𝑑

∑

𝑖=1

𝜕
2

𝜕𝑥
2

𝑖

. (23)

We proceedwith some results regarding calculations with
strongly continuous semigroups and their generators.
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Lemma 18. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup with infinitesimal

generator 𝐴. Then the following statements are true.

(1) For every 𝑥 ∈ D(𝐴), the mapping

R
+
󳨀→ 𝑋, 𝑡 󳨃󳨀→ 𝑆

𝑡
𝑥, (24)

belongs to class 𝐶
1

(R
+
; 𝑋), and for all 𝑡 ≥ 0, one has

𝑆
𝑡
𝑥 ∈ D(𝐴) and

𝑑

𝑑𝑡
𝑆
𝑡
𝑥 = 𝐴𝑆

𝑡
𝑥 = 𝑆

𝑡
𝐴𝑥. (25)

(2) For all 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, one has ∫𝑡
0

𝑆
𝑠
𝑥𝑑𝑠 ∈ D(𝐴) and

𝐴(∫

𝑡

0

𝑆
𝑠
𝑥 𝑑𝑠) = 𝑆

𝑡
𝑥 − 𝑥. (26)

(3) For all 𝑥 ∈ D(𝐴) and 𝑡 ≥ 0, one has

∫

𝑡

0

𝑆
𝑠
𝐴𝑥𝑑𝑠 = 𝑆

𝑡
𝑥 − 𝑥. (27)

The following result shows that the strongly continuous
semigroup (𝑆

𝑡
)
𝑡≥0

associated with generator𝐴 is unique.This
explains the term generator.

Proposition 19. Two 𝐶
0
-semigroups (𝑆

𝑡
)
𝑡≥0

and (𝑇
𝑡
)
𝑡≥0

with
the same infinitesimal generator 𝐴 coincide; that is, one has
𝑆
𝑡
= 𝑇

𝑡
for all 𝑡 ≥ 0.

The next result characterizes all norm continuous semi-
groups in terms of their generators.

Proposition 20. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup with infinitesi-

mal generator𝐴. Then the following statements are equivalent.

(1) The semigroup (𝑆
𝑡
)
𝑡≥0

is norm continuous.
(2) The operator 𝐴 is continuous.
(3) The domain of 𝐴 is given byD(𝐴) = 𝑋.

If the previous conditions are satisfied, then one has 𝑆
𝑡
= 𝑒

𝑡𝐴

for all 𝑡 ≥ 0.

Now, we are interested in characterizing all linear opera-
tors 𝐴 which are the infinitesimal generator of some strongly
continuous semigroup (𝑆

𝑡
)
𝑡≥0

. The following theorem of
Hille-Yosida gives a characterization in terms of the resolvent,
which we have introduced in Definition 3.

Theorem 21 (Hille-Yosida theorem). Let 𝐴 : 𝑋 ⊃ D(𝐴) →

𝑋 be a linear operator and let𝑀 ≥ 1,𝜔 ∈ R be constants.Then
the following statements are equivalent.

(1) 𝐴 is the generator of a 𝐶
0
-semigroup (𝑆

𝑡
)
𝑡≥0

with
growth estimate (9).

(2) 𝐴 is densely defined and closed and one has (𝜔,∞) ⊂

𝜌(𝐴) and
󵄩󵄩󵄩󵄩𝑅(𝜆, 𝐴)

𝑛󵄩󵄩󵄩󵄩 ≤ 𝑀(𝜆 − 𝜔)
−𝑛

∀𝜆 ∈ (𝜔,∞) , 𝑛 ∈ N. (28)

In particular, we obtain the following characterization of
the generators of semigroups of contractions.

Corollary 22. For a linear operator 𝐴 : 𝑋 ⊃ D(𝐴) → 𝑋 the
following statements are equivalent.

(1) 𝐴 is the generator of a semigroup (𝑆
𝑡
)
𝑡≥0

of contractions.
(2) 𝐴 is densely defined and closed, and one has (0,∞) ⊂

𝜌(𝐴) and

‖𝑅 (𝜆, 𝐴)‖ ≤
1

𝜆
∀𝜆 ∈ (0,∞) . (29)

Proposition 23. Let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup on 𝑋 with

generator 𝐴. Then the family (𝑆
𝑡
|D(𝐴)

)
𝑡≥0

is a 𝐶
0
-semigroup

on (D(𝐴), ‖ ⋅ ‖D(𝐴)
) with generator 𝐴 : D(𝐴

2

) ⊂ D(𝐴) →

D(𝐴
2

), where the domain is given by

D (𝐴
2

) = {𝑥 ∈ D (𝐴) : 𝐴𝑥 ∈ D (𝐴)} . (30)

Recall that we have introduced the adjoint operator for
operators in the Hilbert spaces in Definition 6.

Proposition 24. Let 𝐻 be a Hilbert space and let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup on 𝐻 with generator 𝐴. Then the family

of adjoint operators (𝑆
∗

𝑡
)
𝑡≥0

is a 𝐶
0
-semigroup on 𝐻 with

generator 𝐴∗.

4. Stochastic Processes in Infinite Dimension

In this section, we recall the required foundations about
stochastic processes in infinite dimension. In particular, we
recall the definition of a trace class Wiener process and out-
line the construction of the Itô integral.

In the sequel, (Ω,F, (F
𝑡
)
𝑡≥0

,P) denotes a filtered prob-
ability space satisfying the usual conditions. Let H be a
separable Hilbert space and let 𝑄 ∈ 𝐿(H) be a nuclear, self-
adjoint, positive definite linear operator.

Definition 25. A H-valued, adapted, continuous process 𝑊

is called a 𝑄-Wiener process, if the following conditions are
satisfied.

(i) One has 𝑊
0
= 0.

(ii) The random variable 𝑊
𝑡
− 𝑊

𝑠
and the 𝜎-algebra F

𝑠

are independent for all 0 ≤ 𝑠 ≤ 𝑡.
(iii) One has 𝑊

𝑡
− 𝑊

𝑠
∼ 𝑁(0, (𝑡 − 𝑠)𝑄) for all 0 ≤ 𝑠 ≤ 𝑡.

In Definition 25, the distribution 𝑁(0, (𝑡 − 𝑠)𝑄) is a
Gaussian measure with mean 0 and covariance operator (𝑡 −

𝑠)𝑄; see, for example, [1, Section 2.3.2].The operator𝑄 is also
called the covariance operator of the Wiener process 𝑊. As
𝑄 is a trace class operator, we also call 𝑊 a trace class Wiener
process.

Now, let 𝑊 be a 𝑄-Wiener process. Then, there exist an
orthonormal basis (𝑒

𝑗
)
𝑗∈N of H and a sequence (𝜆

𝑗
)
𝑗∈N ⊂

(0,∞) with ∑
𝑗∈N 𝜆

𝑗
< ∞ such that

𝑄𝑢 = ∑

𝑗∈N

𝜆
𝑗
⟨𝑢, 𝑒

𝑗
⟩
H
𝑒
𝑗
, 𝑢 ∈ H. (31)
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Namely, the 𝜆
𝑗
are the eigenvalues of 𝑄, and each 𝑒

𝑗
is an

eigenvector corresponding to 𝜆
𝑗
. The space H

0
:= 𝑄

1/2

(H),
equipped with the inner product

⟨𝑢, V⟩H
0

:= ⟨𝑄
−1/2

𝑢, 𝑄
−1/2V⟩

H
, (32)

is another separable Hilbert space, and (√𝜆
𝑗
𝑒
𝑗
)
𝑗∈N

is an
orthonormal basis. According to [1, Proposition 4.1], the
sequence of stochastic processes (𝛽𝑗)

𝑗∈N defined as

𝛽
𝑗

:=
1

√𝜆
𝑗

⟨𝑊, 𝑒
𝑗
⟩
H
, 𝑗 ∈ N, (33)

is a sequence of real-valued independent standard Wiener
processes, and one has the expansion

𝑊 = ∑

𝑗∈N

√𝜆
𝑗
𝛽
𝑗

𝑒
𝑗
. (34)

Now, let us briefly sketch the construction of the Itô integral
with respect to the Wiener process 𝑊. Further details can be
found in [1, 3]. We denote by 𝐿

0

2
(𝐻) := 𝐿

2
(H

0
, 𝐻) the space

of Hilbert-Schmidt operators from H
0
into𝐻, endowed with

the Hilbert-Schmidt norm

‖Φ‖
𝐿
0

2
(𝐻)

:= (∑

𝑗∈N

𝜆
𝑗

󵄩󵄩󵄩󵄩󵄩
Φ𝑒

𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

1/2

, Φ ∈ 𝐿
0

2
(𝐻) , (35)

which itself is a separable Hilbert space. The construction of
the Itô integral is divided into three steps as follows.

(1) For every 𝐿(H, 𝐻)-valued simple process of the form

𝑋 = 𝑋
0
1
{0}

+

𝑛

∑

𝑖=1

𝑋
𝑖
1
(𝑡
𝑖
,𝑡
𝑖+1
]
, (36)

with 0 = 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛+1

= 𝑇 and F
𝑡
𝑖

-measurable
random variables 𝑋

𝑖
: Ω → 𝐿(H, 𝐻) for 𝑖 = 1, . . . , 𝑛,

we set

∫

𝑡

0

𝑋
𝑠
𝑑𝑊

𝑠
:=

𝑛

∑

𝑖=1

𝑋
𝑖
(𝑊

𝑡∧𝑡
𝑖+1

− 𝑊
𝑡∧𝑡
𝑖

) . (37)

(2) For every predictable 𝐿
0

2
(𝐻)-valued process 𝑋 satis-

fying

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠] < ∞, (38)

we extend the Itô integral ∫𝑡
0

𝑋
𝑠
𝑑𝑊

𝑠
by an extension

argument for linear operators. In particular, we obtain
the Itô isometry as follows:

E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

𝑋
𝑠
𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

] = E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠] . (39)

(3) By localization, we extend the Itô integral ∫𝑡
0

𝑋
𝑠
𝑑𝑊

𝑠

for every predictable 𝐿
0

2
(𝐻)-valued process𝑋 satisfy-

ing

P(∫

𝑡

0

󵄩󵄩󵄩󵄩Φ𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠 < ∞) = 1 ∀𝑡 ≥ 0. (40)

The Itô integral (∫
𝑡

0

𝑋
𝑠
𝑑𝑊

𝑠
)
𝑡≥0

is an 𝐻-valued, continuous,
local martingale, and we have the series expansion

∫

𝑡

0

𝑋
𝑠
𝑑𝑊

𝑠
= ∑

𝑗∈N

∫

𝑡

0

𝑋
𝑗

𝑠
𝑑𝛽

𝑗

𝑠
, 𝑡 ≥ 0, (41)

where 𝑋
𝑗

:= √𝜆
𝑗
𝑋𝑒

𝑗
for each 𝑗 ∈ N. An indispensable tool

for stochastic calculus in infinite dimensions is Itô’s formula,
which we will recall here.

Theorem 26 (Itô’s formula). Let 𝐸 be another separable
Hilbert space, let 𝑓 ∈ 𝐶

1,2,loc
𝑏

(R
+
× 𝐻; 𝐸) be a function, and

let 𝑋 be an 𝐻-valued Itô process of the form

𝑋
𝑡
= 𝑋

0
+ ∫

𝑡

0

𝑌
𝑠
𝑑𝑠 + ∫

𝑡

0

𝑍
𝑠
𝑑𝑊

𝑠
, 𝑡 ≥ 0. (42)

Then (𝑓(𝑡, 𝑋
𝑡
))
𝑡≥0

is an 𝐸-valued Itô process, and one has P-
almost surely

𝑓 (𝑡, 𝑋
𝑡
)

= 𝑓 (0, 𝑋
0
) + ∫

𝑡

0

(𝐷
𝑠
𝑓 (𝑠, 𝑋

𝑠
) + 𝐷

𝑥
𝑓 (𝑠, 𝑋

𝑠
) 𝑌

𝑠

+
1

2
∑

𝑗∈N

𝐷
𝑥𝑥

𝑓 (𝑠, 𝑋
𝑠
) (𝑍

𝑗

𝑠
, 𝑍

𝑗

𝑠
))𝑑𝑠

+ ∫

𝑡

0

𝐷
𝑥
𝑓 (𝑠, 𝑋

𝑠
) 𝑍

𝑠
𝑑𝑊

𝑠
, 𝑡 ≥ 0,

(43)

where one uses the notation 𝑍
𝑗

:= √𝜆
𝑗
𝑍𝑒

𝑗
for each 𝑗 ∈ N.

Proof. This result is a consequence of [3, Theorem 2.9].

5. Solution Concepts for SPDEs

In this section, we present the concepts of strong, mild, and
weak solutions to SPDEs and discuss their relations.

Let 𝐻 be a separable Hilbert space, and let (𝑆
𝑡
)
𝑡≥0

be a
𝐶
0
-semigroup on 𝐻 with infinitesimal generator 𝐴. Further-

more, let𝑊 be a trace classWiener process on some separable
Hilbert space H. We consider the SPDE:

𝑑𝑋
𝑡
= (𝐴𝑋

𝑡
+ 𝛼 (𝑡, 𝑋

𝑡
)) 𝑑𝑡 + 𝜎 (𝑡, 𝑋

𝑡
) 𝑑𝑊

𝑡

𝑋
0
= ℎ

0
.

(44)

Here 𝛼 : R
+

× 𝐻 → 𝐻 and 𝜎 : R
+

× 𝐻 → 𝐿
0

2
(𝐻) are

measurable mappings.
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Definition 27. Let ℎ
0
: Ω → 𝐻 be aF

0
-measurable random

variable, and let 𝜏 > 0 be a strictly positive stopping time. Fur-
thermore, let𝑋 = 𝑋

(ℎ
0
) be an𝐻-valued, continuous, adapted

process such that

P(∫

𝑡∧𝜏

0

(
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋

𝑠
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

) 𝑑𝑠 < ∞)

= 1 ∀𝑡 ≥ 0.

(45)

(1) 𝑋 is called a local strong solution to (44), if

𝑋
𝑡∧𝜏

∈ D (𝐴) ∀𝑡 ≥ 0, P-almost surely, (46)

P(∫

𝑡∧𝜏

0

󵄩󵄩󵄩󵄩𝐴𝑋
𝑠

󵄩󵄩󵄩󵄩 𝑑𝑠 < ∞) = 1 ∀𝑡 ≥ 0, (47)

and P-almost surely one has

𝑋
𝑡∧𝜏

= ℎ
0
+ ∫

𝑡∧𝜏

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(48)

(2) 𝑋 is called a local weak solution to (44), if for all 𝜁 ∈

D(𝐴
∗

) the following equation is fulfilled P-almost
surely:

⟨𝜁, 𝑋
𝑡∧𝜏

⟩ = ⟨𝜁, ℎ
0
⟩ + ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(49)

(3) 𝑋 is called a local mild solution to (44), if P-almost
surely one has

𝑋
𝑡∧𝜏

= 𝑆
𝑡∧𝜏

ℎ
0
+ ∫

𝑡∧𝜏

0

𝑆
(𝑡∧𝜏)−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

𝑆
(𝑡∧𝜏)−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(50)

One calls 𝜏 the lifetime of 𝑋. If 𝜏 ≡ ∞, then one calls 𝑋 a
strong, weak ormild solution to (44), respectively.

Remark 28. Note that the concept of a strong solution is
rather restrictive, because condition (46) has to be fulfilled.

For what follows, we fix a F
0
-measurable random vari-

able ℎ
0
: Ω → 𝐻 and a strictly positive stopping time 𝜏 > 0.

Proposition 29. Every local strong solution 𝑋 to (44) with
lifetime 𝜏 is also a local weak solution to (44) with lifetime 𝜏.

Proof. Let 𝑋 be a local strong solution to (44) with lifetime
𝜏. Furthermore, let 𝜁 ∈ D(𝐴

∗

) be arbitrary. Then we have
P-almost surely for all 𝑡 ≥ 0 the identities

⟨𝜁, 𝑋
𝑡∧𝜏

⟩ = ⟨𝜁, ℎ
0
+ ∫

𝑡∧𝜏

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+∫

𝑡∧𝜏

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩

= ⟨𝜁, ℎ
0
⟩ + ∫

𝑡∧𝜏

0

⟨𝜁, 𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡∧𝜏

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, ℎ
0
⟩ + ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩𝑑𝑊

𝑠
,

(51)

showing that 𝑋 is also a local weak solution to (44) with
lifetime 𝜏.

Proposition 30. Let 𝑋 be a stochastic process with 𝑋
0

= ℎ
0
.

Then the following statements are equivalent.

(1) The process 𝑋 is a local strong solution to (44) with
lifetime 𝜏.

(2) The process 𝑋 is a local weak solution to (44) with
lifetime 𝜏, and one has (46), (47).

Proof. (1)⇒(2): This implication is a direct consequence of
Proposition 29.

(2)⇒(1): Let 𝜁 ∈ D(𝐴
∗

) be arbitrary. Then we have P-
almost surely for all 𝑡 ≥ 0 the identities

⟨𝜁, 𝑋
𝑡∧𝜏

⟩ = ⟨𝜁, ℎ
0
⟩ + ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, ℎ
0
⟩ + ∫

𝑡∧𝜏

0

⟨𝜁, 𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡∧𝜏

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, ℎ
0
+ ∫

𝑡∧𝜏

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+∫

𝑡∧𝜏

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩ .

(52)
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By Proposition 7, the domainD(𝐴
∗

) is dense in𝐻, and hence
we obtain P-almost surely

𝑋
𝑡∧𝜏

= ℎ
0
+ ∫

𝑡∧𝜏

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+ ∫

𝑡∧𝜏

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(53)

Consequently, the process 𝑋 is also a local strong solution to
(44) with lifetime 𝜏.

Corollary 31. Let M ⊂ D(𝐴) be a subset such that 𝐴 is
continuous on M, and let 𝑋 be a local weak solution to (44)
with lifetime 𝜏 such that

𝑋
𝑡∧𝜏

∈ M ∀𝑡 ≥ 0, P-𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦. (54)

Then 𝑋 is also a local strong solution to (44) with lifetime 𝜏.

Proof. Since M ⊂ D(𝐴), condition (54) implies that (46) is
fulfilled. Moreover, by the continuity of 𝐴 onM, the sample
paths of the process 𝐴𝑋 are P-almost surely continuous; and
hence, we obtain (47). Consequently, using Proposition 30,
the process 𝑋 is also a local strong solution to (44) with
lifetime 𝜏.

Proposition 32. Every strong solution𝑋 to (44) is also a mild
solution to (44).

Proof. According to Lemma 8, the domain (D(𝐴), ‖ ⋅ ‖D(𝐴)
)

endowed with the graph norm is a separable Hilbert space,
too. Hence, by Lemma 18, for all 𝑡 ≥ 0, the function

𝑓 : [0, 𝑡] × D (𝐴) 󳨀→ 𝐻, 𝑓 (𝑠, 𝑥) := 𝑆
𝑡−𝑠

𝑥, (55)

belongs to the class 𝐶
1,2,loc
𝑏

([0, 𝑡] × D(𝐴);𝐻) with partial
derivatives

𝐷
𝑡
𝑓 (𝑡, 𝑥) = −𝐴𝑆

𝑡−𝑠
𝑥,

𝐷
𝑥
𝑓 (𝑡, 𝑥) = 𝑆

𝑡−𝑠
,

𝐷
𝑥𝑥

𝑓 (𝑡, 𝑥) = 0.

(56)

Hence, by Itô’s formula (see Theorem 26) and Lemma 18, we
obtain P-almost surely:

𝑋
𝑡
= 𝑓 (𝑡, 𝑋

𝑡
)

= 𝑓 (0, ℎ
0
) + ∫

𝑡

0

(𝐷
𝑠
𝑓 (𝑠, 𝑋

𝑠
)

+𝐷
𝑥
𝑓 (𝑠, 𝑋

𝑠
) (𝐴𝑋

𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
))) 𝑑𝑠

+ ∫

𝑡

0

𝐷
𝑥
𝑓 (𝑠, 𝑋

𝑠
) 𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝑊

𝑠

= 𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

(−𝐴𝑆
𝑡−𝑠

𝑋
𝑠
+ 𝑆

𝑡−𝑠
(𝐴𝑋

𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
))) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= 𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
.

(57)

Thus, 𝑋 is also a mild solution to (44).

We recall the following technical auxiliary result without
proof and refer, for example, to [3, Section 3.1].

Lemma 33. Let 𝑇 ≥ 0 be arbitrary. Then the linear space

𝑈
𝑇

:= lin {𝑔𝜁 : 𝑔 ∈ 𝐶
1

([0, 𝑇] ;R) , 𝜁 ∈ D (𝐴
∗

)} (58)

is dense in 𝐶
1

([0, 𝑇],D(𝐴
∗

)), where (D(𝐴
∗

), ‖ ⋅ ‖D(𝐴
∗
)
) is

endowed with the graph norm.

Lemma 34. Let𝑋 be a weak solution to (44). Then for all 𝑇 ≥

0 and all 𝑓 ∈ 𝐶
1

([0, 𝑇],D(𝐴
∗

)), one has P-almost surely

⟨𝑓 (𝑡) , 𝑋
𝑡
⟩

= ⟨𝑓 (0) , ℎ
0
⟩

+ ∫

𝑡

0

(⟨𝑓
󸀠

(𝑠) + 𝐴
∗

𝑓 (𝑠) , 𝑋
𝑠
⟩ + ⟨𝑓 (𝑠) , 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠

+ ∫

𝑡

0

⟨𝑓 (𝑠) , 𝜎 (𝑠, 𝑋
𝑠
)⟩𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] .

(59)

Proof. By virtue of Lemma 33, it suffices to prove formula (59)
for all 𝑓 ∈ 𝑈

𝑇
. Let 𝑓 ∈ 𝑈

𝑇
be arbitrary. Then there are

𝑔
1
, . . . , 𝑔

𝑛
∈ 𝐶

1

([0, 𝑇];R) and 𝜁
1
, . . . , 𝜁

𝑛
∈ D(𝐴

∗

) for some
𝑛 ∈ N such that

𝑓 (𝑡) =

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡) 𝜁

𝑖
, 𝑡 ∈ [0, 𝑇] . (60)

We define the function

𝐹 : [0, 𝑇] × R
𝑛

󳨀→ R, 𝐹 (𝑡, 𝑥) :=

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡) 𝑥

𝑖
. (61)

Then, we have𝐹 ∈ 𝐶
1,2

([0, 𝑇]×R𝑛

;R)with partial derivatives

𝐷
𝑡
𝐹 (𝑡, 𝑥) =

𝑛

∑

𝑖=1

𝑔
󸀠

𝑖
(𝑡) 𝑥

𝑖
,

𝐷
𝑥
𝐹 (𝑡, 𝑥) = ⟨𝑔 (𝑡) , ∙⟩

R𝑛
,

𝐷
𝑥𝑥

𝐹 (𝑡, 𝑥) = 0.

(62)
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Since 𝑋 is a weak solution to (44), the R𝑛-valued process

⟨𝜁, 𝑋⟩ := ⟨𝜁
𝑖
, 𝑋⟩

𝑖=1,...,𝑛
, (63)

is an Itô process with representation

⟨𝜁, 𝑋
𝑡
⟩ = ⟨𝜁, ℎ

0
⟩ + ∫

𝑡

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(64)

By Itô’s formula (Theorem 26), we obtain P-almost surely

⟨𝑓 (𝑡) , 𝑋
𝑡
⟩ = ⟨

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡) 𝜁

𝑖
, 𝑋

𝑡
⟩ =

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡) ⟨𝜁

𝑖
, 𝑋

𝑡
⟩

= 𝐹 (𝑡, ⟨𝜁, 𝑋
𝑡
⟩) = 𝐹 (0, ⟨𝜁, ℎ

0
⟩)

+ ∫

𝑡

0

(𝐷
𝑠
𝐹 (𝑠, ⟨𝜁, 𝑋

𝑠
⟩) + 𝐷

𝑥
𝐹 (𝑠, ⟨𝜁, 𝑋

𝑠
⟩)

× (⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩)) 𝑑𝑠

+ ∫

𝑡

0

𝐷
𝑥
𝐹 (𝑠, ⟨𝜁, 𝑋

𝑠
⟩) ⟨𝜁, 𝜎 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑊

𝑠

=

𝑛

∑

𝑖=1

𝑔
𝑖
(0) ⟨𝜁

𝑖
, ℎ

0
⟩

+ ∫

𝑡

0

(

𝑛

∑

𝑖=1

𝑔
󸀠

𝑖
(𝑡) ⟨𝜁

𝑖
, 𝑋

𝑠
⟩

+

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡) (⟨𝐴

∗

𝜁
𝑖
, 𝑋

𝑠
⟩

+ ⟨𝜁
𝑖
, 𝛼 (𝑠, 𝑋

𝑠
)⟩))𝑑𝑠

+ ∫

𝑡

0

(

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑠) ⟨𝜁

𝑖
, 𝜎 (𝑠, 𝑋

𝑠
)⟩)𝑑𝑊

𝑠
,

𝑡 ∈ [0, 𝑇] ,

(65)

and hence

⟨𝑓 (𝑡) , 𝑋
𝑡
⟩

= ⟨

𝑛

∑

𝑖=1

𝑔
𝑖
(0) 𝜁

𝑖
, ℎ

0
⟩

+ ∫

𝑡

0

(⟨

𝑛

∑

𝑖=1

𝑔
󸀠

𝑖
(𝑠) 𝜁

𝑖
, 𝑋

𝑠
⟩ + ⟨𝐴

∗

(

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑠) 𝜁

𝑖
) ,𝑋

𝑠
⟩

+⟨

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑠) 𝜁

𝑖
, 𝛼 (𝑠, 𝑋

𝑠
)⟩)𝑑𝑠

+ ∫

𝑡

0

⟨

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑠) 𝜁

𝑖
, 𝜎 (𝑠, 𝑋

𝑠
)⟩𝑑𝑊

𝑠

= ⟨𝑓 (0) , ℎ
0
⟩ + ∫

𝑡

0

(⟨𝑓
󸀠

(𝑠) + 𝐴
∗

𝑓 (𝑠) , 𝑋
𝑠
⟩

+ ⟨𝑓 (𝑠) , 𝛼 (𝑠, 𝑋
𝑠
)⟩ ) 𝑑𝑠

+ ∫

𝑡

0

⟨𝑓 (𝑠) , 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] .

(66)

This concludes the proof.

Proposition 35. Every weak solution 𝑋 to (44) is also a mild
solution to (44).

Proof. By Proposition 24, the family (𝑆
∗

𝑡
)
𝑡≥0

is a 𝐶
0
-semi-

group with generator 𝐴
∗. Thus, Proposition 23 yields that

the family of restrictions (𝑆
∗

𝑡
|
D(𝐴
∗
)
)
𝑡≥0

is a 𝐶
0
-semigroup

on (D(𝐴
∗

), ‖ ⋅ ‖D(𝐴
∗
)
) with generator 𝐴

∗

: D((𝐴
∗

)
2

) ⊂

D(𝐴
∗

) → D((𝐴
∗

)
2

).
Now, let 𝑡 ≥ 0 and 𝜁 ∈ D((𝐴

∗

)
2

) be arbitrary. We define
the function

𝑓 : [0, 𝑡] 󳨀→ D (𝐴
∗

) , 𝑓 (𝑠) := 𝑆
∗

𝑡−𝑠
𝜁. (67)

By Lemma 18 we have 𝑓 ∈ 𝐶
1

([0, 𝑡];D(𝐴
∗

)) with derivative

𝑓
󸀠

(𝑠) = −𝐴
∗

𝑆
∗

𝑡−𝑠
𝜁 = −𝐴

∗

𝑓 (𝑠) . (68)

Using Lemma 34, we obtain P-almost surely

⟨𝜁, 𝑋
𝑡
⟩ = ⟨𝑓 (𝑡) , 𝑋

𝑡
⟩

= ⟨𝑓 (0) , ℎ
0
⟩ + ∫

𝑡

0

⟨𝑓 (𝑠) , 𝛼 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨𝑓 (𝑠) , 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝑆
∗

𝑡
𝜁, ℎ

0
⟩ + ∫

𝑡

0

⟨𝑆
∗

𝑡−𝑠
𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨𝑆
∗

𝑡−𝑠
𝜁, 𝜎 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, 𝑆
𝑡
ℎ
0
⟩ + ∫

𝑡

0

⟨𝜁, 𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, 𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩ .

(69)
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Since, by Proposition 14, the domain D((𝐴
∗

)
2

) is dense in
(D(𝐴

∗

), ‖ ⋅ ‖D(𝐴
∗
)
), we get P-almost surely for all 𝜁 ∈ D(𝐴

∗

)

the identity

⟨𝜁, 𝑋
𝑡
⟩ = ⟨𝜁, 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩ .

(70)

Since, by Proposition 14, the domainD(𝐴
∗

) is dense in𝐻, we
obtain P-almost surely

𝑋
𝑡
= 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, (71)

proving that 𝑋 is a mild solution to (44).

Remark 36. Now, the proof of Proposition 32 is an immediate
consequence of Propositions 29 and 35.

We have just seen that every weak solution to (44) is also a
mild solution. Under the following regularity condition (72),
the converse of this statement holds true as well.

Proposition 37. Let 𝑋 be a mild solution to (44) such that

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠] < ∞ ∀𝑇 ≥ 0. (72)

Then 𝑋 is also a weak solution to (44).

Proof. Let 𝑡 ≥ 0 and 𝜁 ∈ D(𝐴
∗

) be arbitrary.Using Lemma 18,
we obtain P-almost surely

∫

𝑡

0

⟨𝐴
∗

𝜁, 𝑆
𝑠
ℎ
0
⟩ 𝑑𝑠

= ⟨𝐴
∗

𝜁, ∫

𝑡

0

𝑆
𝑠
ℎ
0
𝑑𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈D(𝐴)

⟩ = ⟨𝜁,𝐴(∫

𝑡

0

𝑆
𝑠
ℎ
0
𝑑𝑠)⟩

= ⟨𝜁, 𝑆
𝑡
ℎ
0
− ℎ

0
⟩ = ⟨𝜁, 𝑆

𝑡
ℎ
0
⟩ − ⟨𝜁, ℎ

0
⟩.

(73)

By Fubini’s theorem for Bochner integrals (see [3, Section 1.1,
page 21]) and Lemma 18. we obtain P-almost surely

∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢⟩𝑑𝑠

= ⟨𝐴
∗

𝜁, ∫

𝑡

0

(∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢)𝑑𝑠⟩

= ⟨𝐴
∗

𝜁, ∫

𝑡

0

(∫

𝑡

𝑢

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑠) 𝑑𝑢⟩

= ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑡

𝑢

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑠⟩𝑑𝑢

= ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑡−𝑠

0

𝑆
𝑢
𝛼 (𝑠, 𝑋

𝑠
) 𝑑𝑢

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈D(𝐴)

⟩𝑑𝑠

= ∫

𝑡

0

⟨𝜁,𝐴(∫

𝑡−𝑠

0

𝑆
𝑢
𝛼 (𝑠, 𝑋

𝑠
) 𝑑𝑢)⟩𝑑𝑠

= ∫

𝑡

0

⟨𝜁, 𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑋

𝑠
)⟩ 𝑑𝑠

= ⟨𝜁, ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠⟩ − ∫

𝑡

0

⟨𝜁, 𝛼 (𝑠, 𝑋
𝑠
)⟩𝑑𝑠.

(74)

Due to assumption (72), we may use Fubini’s theorem for
stochastic integrals (see [3, Theorem 2.8]), which, together
with Lemma 18, gives us P-almost surely

∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
⟩𝑑𝑠

= ⟨𝐴
∗

𝜁, ∫

𝑡

0

(∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
)𝑑𝑠⟩

= ⟨𝐴
∗

𝜁, ∫

𝑡

0

(∫

𝑡

𝑢

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑠) 𝑑𝑊

𝑢
⟩

= ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑡

𝑢

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑠⟩𝑑𝑊

𝑢

= ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑡−𝑠

0

𝑆
𝑢
𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝑢

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈D(𝐴)

⟩𝑑𝑊
𝑠

= ∫

𝑡

0

⟨𝜁,𝐴(∫

𝑡−𝑠

0

𝑆
𝑢
𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝑢)⟩𝑑𝑊

𝑠

= ∫

𝑡

0

⟨𝜁, 𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑋

𝑠
)⟩𝑑𝑊

𝑠

= ⟨𝜁, ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩ − ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
.

(75)

Therefore, and since 𝑋 is a mild solution to (44), we obtain
P-almost surely

⟨𝜁, 𝑋
𝑡
⟩

= ⟨𝜁, 𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩

= ⟨𝜁, 𝑆
𝑡
ℎ
0
⟩ + ⟨𝜁, ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠⟩

+ ⟨𝜁, ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
⟩
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= ⟨𝜁, ℎ
0
⟩ + ∫

𝑡

0

⟨𝐴
∗

𝜁, 𝑆
𝑠
ℎ
0
⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢⟩𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝛼 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑠

+ ∫

𝑡

0

⟨𝐴
∗

𝜁, ∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
⟩𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
,

(76)

and hence

⟨𝜁, 𝑋
𝑡
⟩ = ⟨𝜁, ℎ

0
⟩ + ∫

𝑡

0

⟨𝐴
∗

𝜁, 𝑆
𝑠
ℎ
0
+ ∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢 + ∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑠

⟩𝑑𝑠

+ ∫

𝑡

0

⟨𝜁, 𝛼 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑠 + ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠

= ⟨𝜁, ℎ
0
⟩ + ∫

𝑡

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑠, 𝑋

𝑠
)⟩) 𝑑𝑠 + ∫

𝑡

0

⟨𝜁, 𝜎 (𝑠, 𝑋
𝑠
)⟩ 𝑑𝑊

𝑠
.

(77)

Consequently, the process 𝑋 is also a weak solution to (44).

Next, we provide conditions which ensure that a mild
solution to (44) is also a strong solution.

Proposition 38. Let𝑋 be a mild solution to (44) such that P-
almost surely one has

𝑋
𝑠
, 𝛼 (𝑠, 𝑋

𝑠
) ∈ D (𝐴) , 𝜎 (𝑠, 𝑋

𝑠
) ∈ 𝐿

0

2
(D (𝐴)) ∀𝑠 ≥ 0,

(78)

as well as

P(∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩D(𝐴)
+

󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩D(𝐴)

) 𝑑𝑠 < ∞) = 1 ∀𝑡 ≥ 0,

(79)

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(D(𝐴))

𝑑𝑠] < ∞ ∀𝑇 ≥ 0. (80)

Then 𝑋 is also a strong solution to (44).

Proof. By hypotheses (78) and (79), we have (46) and (47).
Let 𝑡 ≥ 0 be arbitrary. By Lemma 18, we have

𝑆
𝑡
ℎ
0
− ℎ

0
= ∫

𝑡

0

𝐴𝑆
𝑠
ℎ
0
𝑑𝑠. (81)

Furthermore, by Lemma 18 and Fubini’s theorem for Bochner
integrals (see [3, Section 1.1, page 21]) we haveP-almost surely

∫

𝑡

0

(𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

= ∫

𝑡

0

(∫

𝑡−𝑠

0

𝐴𝑆
𝑢
𝛼 (𝑠, 𝑋

𝑠
) 𝑑𝑢)𝑑𝑠

= ∫

𝑡

0

(∫

𝑡

𝑢

𝐴𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑠) 𝑑𝑢

= ∫

𝑡

0

(∫

𝑠

0

𝐴𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢)𝑑𝑠

= ∫

𝑡

0

𝐴(∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢)𝑑𝑠.

(82)

Due to assumption (80), we may use Fubini’s theorem for
stochastic integrals (see [3, Theorem 2.8]), which, together
with Lemma 18, gives us P-almost surely

∫

𝑡

0

(𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑋

𝑠
)) 𝑑𝑊

𝑠

= ∫

𝑡

0

(∫

𝑡−𝑠

0

𝐴𝑆
𝑢
𝜎 (𝑠, 𝑋

𝑠
) 𝑑𝑢)𝑑𝑊

𝑠

= ∫

𝑡

0

(∫

𝑡

𝑢

𝐴𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑠) 𝑑𝑊

𝑢

= ∫

𝑡

0

(∫

𝑠

0

𝐴𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
)𝑑𝑠

= ∫

𝑡

0

𝐴(∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
)𝑑𝑠.

(83)
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Since 𝑋 is a mild solution to (44), we have P-almost surely

𝑋
𝑡
= 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= ℎ
0
+ ∫

𝑡

0

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

+ (𝑆
𝑡
ℎ
0
− ℎ

0
) + ∫

𝑡

0

(𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+ ∫

𝑡

0

(𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑋

𝑠
)) 𝑑𝑊

𝑠
,

(84)

and, hence, combining the latter identities, we obtain P-
almost surely

𝑋
𝑡
= ℎ

0
+ ∫

𝑡

0

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

+ ∫

𝑡

0

𝐴𝑆
𝑠
ℎ
0
𝑑𝑠 + ∫

𝑡

0

𝐴(∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢)𝑑𝑠

+ ∫

𝑡

0

𝐴(∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
)𝑑𝑠,

(85)

which implies that

𝑋
𝑡
= ℎ

0
+ ∫

𝑡

0

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

+ ∫

𝑡

0

𝐴(𝑆
𝑠
ℎ
0
+ ∫

𝑠

0

𝑆
𝑠−𝑢

𝛼 (𝑢,𝑋
𝑢
) 𝑑𝑢 + ∫

𝑠

0

𝑆
𝑠−𝑢

𝜎 (𝑢,𝑋
𝑢
) 𝑑𝑊

𝑢
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑠

𝑑𝑠

= ℎ
0
+ ∫

𝑡

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
.

(86)

This proves that 𝑋 is also a strong solution to (44).

The following result shows that for norm continuous
semigroups, the concepts of strong, weak, and mild solutions
are equivalent. In particular, this applies for finite dimen-
sional state spaces.

Proposition 39. Suppose that the semigroup (𝑆
𝑡
)
𝑡≥0

is norm
continuous. Let 𝑋 be a stochastic process with 𝑋

0
= ℎ

0
. Then

the following statements are equivalent.

(1) The process 𝑋 is a strong solution to (44).

(2) The process 𝑋 is a weak solution to (44).

(3) The process 𝑋 is a mild solution to (44).

Proof. (1)⇒(2): This implication is a consequence of
Proposition 29.

(2)⇒(3): This implication is a consequence of
Proposition 35.

(3)⇒(1): By Proposition 20, we have 𝐴 ∈ 𝐿(𝐻) and 𝑆
𝑡
=

𝑒
𝑡𝐴, 𝑡 ≥ 0. Furthermore, the family (𝑒

𝑡𝐴

)
𝑡∈R is a 𝐶

0
-group on

𝐻. Therefore, and since 𝑋 is a mild solution to (44), we have
P-almost surely

𝑋
𝑡
= 𝑒

𝑡𝐴

ℎ
0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= 𝑒
𝑡𝐴

ℎ
0
+ 𝑒

𝑡𝐴

∫

𝑡

0

𝑒
−𝑠𝐴

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ 𝑒
𝑡𝐴

∫

𝑡

0

𝑒
−𝑠𝐴

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(87)

Let 𝑌 be the Itô process:

𝑌
𝑡
:= ∫

𝑡

0

𝑒
−𝑠𝐴

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑒
−𝑠𝐴

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0.

(88)

Then, we have P-almost surely

𝑋
𝑡
= 𝑒

𝑡𝐴

(ℎ
0
+ 𝑌

𝑡
) , 𝑡 ≥ 0, (89)

and, by Lemma 18, we have

𝑒
𝑡𝐴

ℎ
0
− ℎ

0
= ∫

𝑡

0

𝐴𝑒
𝑠𝐴

ℎ
0
𝑑𝑠. (90)

Defining the function

𝑓 : R
+
× 𝐻 󳨀→ 𝐻, 𝑓 (𝑠, 𝑦) := 𝑒

𝑠𝐴

𝑦, (91)

by Lemma 18, we have 𝑓 ∈ 𝐶
1,2,loc
𝑏

(R
+
× 𝐻;𝐻) with partial

derivatives

𝐷
𝑠
𝑓 (𝑠, 𝑦) = 𝐴𝑒

𝑠𝐴

𝑦,

𝐷
𝑦
𝑓 (𝑠, 𝑦) = 𝑒

𝑠𝐴

,

𝐷
𝑦𝑦

𝑓 (𝑠, 𝑦) = 0.

(92)
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By Itô’s formula (Theorem 26), we get P-almost surely

𝑒
𝑡𝐴

𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
)

= 𝑓 (0, 0)

+ ∫

𝑡

0

(𝐷
𝑠
𝑓 (𝑠, 𝑌

𝑠
) + 𝐷

𝑦
𝑓 (𝑠, 𝑌

𝑠
) 𝑒

−𝑠𝐴

𝛼 (𝑠, 𝑋
𝑠
)) 𝑑𝑠

+ ∫

𝑡

0

𝐷
𝑦
𝑓 (𝑠, 𝑌

𝑠
) 𝑒

−𝑠𝐴

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= ∫

𝑡

0

(𝐴𝑒
𝑠𝐴

𝑌
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
.

(93)

Combining the previous identities, we obtainP-almost surely

𝑋
𝑡
= 𝑒

𝑡𝐴

(ℎ
0
+ 𝑌

𝑡
)

= ℎ
0
+ (𝑒

𝑡𝐴

ℎ
0
− ℎ

0
) + 𝑒

𝑡𝐴

𝑌
𝑡

= ℎ
0
+ ∫

𝑡

0

𝐴𝑒
𝑠𝐴

ℎ
0
𝑑𝑠 + ∫

𝑡

0

(𝐴𝑒
𝑠𝐴

𝑌
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠

+ ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= ℎ
0
+ ∫

𝑡

0

(𝐴𝑒
𝑠𝐴

(ℎ
0
+ 𝑌

𝑠
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑠

+ 𝛼 (𝑠, 𝑋
𝑠
))𝑑𝑠

+ ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

= ℎ
0
+ ∫

𝑡

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑠, 𝑋

𝑠
)) 𝑑𝑠 + ∫

𝑡

0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
,

𝑡 ≥ 0,

(94)

proving that 𝑋 is a strong solution to (44).

6. Stochastic Convolution Integrals

In this section, we deal with the regularity of stochastic
convolution integrals, which occur when dealing with mild
solutions to SPDEs of the type (44).

Let 𝐸 be a separable Banach space, and let (𝑆
𝑡
)
𝑡≥0

be a 𝐶
0
-

semigroup on 𝐸. We start with the drift term.

Lemma 40. Let 𝑓 : R
+

→ 𝐸 be a measurable mapping such
that

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑓 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠 < ∞ ∀𝑡 ≥ 0. (95)

Then the mapping

𝐹 : R
+
󳨀→ 𝐸, 𝐹 (𝑡) := ∫

𝑡

0

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠, (96)

is continuous.

Proof. Let 𝑡 ∈ R
+
be arbitrary. It suffices to prove that 𝐹 is

right-continuous and left-continuous in 𝑡.

(1) Let (𝑡
𝑛
)
𝑛∈N ⊂ R

+
be a sequence such that 𝑡

𝑛
↓ 𝑡. Then

for every 𝑛 ∈ N we have
󵄩󵄩󵄩󵄩𝐹 (𝑡) − 𝐹 (𝑡

𝑛
)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡
𝑛

0

𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡
𝑛

𝑡

𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑡−𝑠

𝑓 (𝑠) − 𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ ∫

𝑡
𝑛

𝑡

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(97)

By Lemma 12, the mapping

R
+
× 𝐸 󳨀→ 𝐸, (𝑢, 𝑥) 󳨃󳨀→ 𝑆

𝑢
𝑥, (98)

is continuous. Thus, taking into account estimate (9)
from Lemma 10, by Lebesgue’s dominated conver-
gence theorem we obtain

󵄩󵄩󵄩󵄩𝐹 (𝑡) − 𝐹 (𝑡
𝑛
)
󵄩󵄩󵄩󵄩 󳨀→ 0 for 𝑛 󳨀→ ∞. (99)

(2) Let (𝑡
𝑛
)
𝑛∈N ⊂ R

+
be a sequence such that 𝑡

𝑛
↑ 𝑡. Then

for every 𝑛 ∈ N we have
󵄩󵄩󵄩󵄩𝐹 (𝑡) − 𝐹 (𝑡

𝑛
)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡
𝑛

0

𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
𝑛

0

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡
𝑛

𝑆
𝑡−𝑠

𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡
𝑛

0

𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡
𝑛

0

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑡−𝑠

𝑓 (𝑠) − 𝑆
𝑡
𝑛
−𝑠
𝑓 (𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠 + ∫

𝑡

𝑡
𝑛

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠𝑓 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠.

(100)

Proceeding as in the previous situation, by Lebesgue’s
dominated convergence theorem we obtain

󵄩󵄩󵄩󵄩𝐹 (𝑡) − 𝐹 (𝑡
𝑛
)
󵄩󵄩󵄩󵄩 󳨀→ 0 for 𝑛 󳨀→ ∞. (101)

This completes the proof.

Proposition 41. Let 𝑋 be a progressively measurable process
satisfying

P(∫

𝑡

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩 𝑑𝑠 < ∞) = 1 ∀𝑡 ≥ 0. (102)

Then the process 𝑌 defined as

𝑌
𝑡
:= ∫

𝑡

0

𝑆
𝑡−𝑠

𝑋
𝑠
𝑑𝑠, 𝑡 ≥ 0, (103)

is continuous and adapted.
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Proof. The continuity of 𝑌 is a consequence of Lemma 40.
Moreover, 𝑌 is adapted, because 𝑋 is progressively measur-
able.

Now, we will deal with stochastic convolution integrals
driven by the Wiener processes. Let𝐻 be a separable Hilbert
space, and let (𝑆

𝑡
)
𝑡≥0

be a 𝐶
0
-semigroup on 𝐻. Moreover, let

𝑊 be a trace class Wiener process on some separable Hilbert
space H.

Definition 42. Let 𝑋 be a 𝐿
0

2
(𝐻)-valued predictable process

such that

P(∫

𝑡

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠 < ∞) = 1 ∀𝑡 ≥ 0. (104)

One defines the stochastic convolution 𝑋 ⋆ 𝑊 as

(𝑋 ⋆ 𝑊)
𝑡
:= ∫

𝑡

0

𝑆
𝑡−𝑠

𝑋
𝑠
𝑑𝑊

𝑠
, 𝑡 ≥ 0. (105)

One recalls the following result concerning the regularity
of stochastic convolutions.

Proposition 43. Let 𝑋 be a 𝐿
0

2
(𝐻)-valued predictable process

such that one of the following two conditions is satisfied.

(1) There exists a constant 𝑝 > 1 such that

E [∫

𝑡

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝐿
0

2
(𝐻)

𝑑𝑠] < ∞ ∀𝑡 ≥ 0. (106)

(2) The semigroup (𝑆
𝑡
)
𝑡≥0

is a semigroup of pseudocontrac-
tions, and one has

E [∫

𝑡

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠] < ∞ ∀𝑡 ≥ 0. (107)

Then the stochastic convolution 𝑋 ⋆ 𝑊 has a continuous
version.

Proof. See [3, Lemma 3.3].

7. Existence and Uniqueness Results for SPDEs

In this section, we will present results concerning existence
and uniqueness of solutions to the SPDE (44).

First, we recall the Banach fixed point theorem,whichwill
be a basic result for proving the existence of mild solutions to
(44).

Definition 44. Let (𝐸, 𝑑) be ametric space, and letΦ : 𝐸 → 𝐸

be a mapping.

(1) ThemappingΦ is called a contraction, if for some con-
stant 0 ≤ 𝐿 < 1 one has

𝑑 (Φ (𝑥) , Φ (𝑦)) ≤ 𝐿 ⋅ 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐸. (108)

(2) An element 𝑥 ∈ 𝐸 is called a fixed point of Φ, if one
has

Φ (𝑥) = 𝑥. (109)

The following result is the well-known Banach fixed point
theorem. Its proof can be found, for example, in [13,Theorem
3.48].

Theorem 45 (The Banach fixed point theorem). Let 𝐸 be a
complete metric space, and let Φ : 𝐸 → 𝐸 be a contraction.
Then the mapping Φ has a unique fixed point.

In this text, we will use the following slight extension of
the Banach fixed point theorem.

Corollary 46. Let 𝐸 be a complete metric space, and let Φ :

𝐸 → 𝐸 be a mapping such that for some 𝑛 ∈ N the mapping
Φ
𝑛 is a contraction. Then the mapping Φ has a unique fixed

point.

Proof. According to the Banach fixed point theorem
(Theorem 45) the mapping Φ

𝑛 has a unique fixed point; that
is, there exists a unique element 𝑥 ∈ 𝐸 such that Φ𝑛

(𝑥) = 𝑥.
Therefore, we have

Φ (𝑥) = Φ (Φ
𝑛

(𝑥)) = Φ
𝑛

(Φ (𝑥)) , (110)

showing thatΦ(𝑥) is a fixedpoint ofΦ𝑛. SinceΦ𝑛 has a unique
fixed point, we deduce thatΦ(𝑥) = 𝑥, showing that𝑥 is a fixed
point of Φ.

In order to prove uniqueness, let 𝑦 ∈ 𝐸 be another fixed
point ofΦ; that is, we haveΦ(𝑦) = 𝑦. By induction, we obtain

Φ
𝑛

(𝑦) = Φ
𝑛−1

(Φ (𝑦)) = Φ
𝑛−1

(𝑦) = ⋅ ⋅ ⋅ = Φ (𝑦) = 𝑦, (111)

showing that 𝑦 is a fixed point of Φ𝑛. Since the mapping Φ
𝑛

has exactly one fixed point, we obtain 𝑥 = 𝑦.

An indispensable tool for proving uniqueness of mild
solutions to (44) will be the following version of Gronwall’s
inequality; see, for example, [14, Theorem 5.1].

Lemma 47 (Gronwall’s inequality). Let 𝑇 ≥ 0 be fixed, let
𝑓 : [0, 𝑇] → R

+
be a nonnegative continuous mapping, and

let 𝛽 ≥ 0 be a constant such that

𝑓 (𝑡) ≤ 𝛽∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ∀𝑡 ∈ [0, 𝑇] . (112)

Then one has 𝑓 ≡ 0.

The following result shows that local Lipschitz continuity
of 𝛼 and 𝜎 ensures the uniqueness of mild solutions to the
SPDE (44).

Theorem 48. One supposes that for every 𝑛 ∈ N there exists a
constant 𝐿

𝑛
≥ 0 such that
󵄩󵄩󵄩󵄩𝛼 (𝑡, ℎ

1
) − 𝛼 (𝑡, ℎ

2
)
󵄩󵄩󵄩󵄩 ≤ 𝐿

𝑛

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝜎 (𝑡, ℎ
1
) − 𝜎 (𝑡, ℎ

2
)
󵄩󵄩󵄩󵄩𝐿0
2
(𝐻)

≤ 𝐿
𝑛

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 ,

(113)

for all 𝑡 ≥ 0 and all ℎ
1
, ℎ

2
∈ 𝐻 with ‖ℎ

1
‖, ‖ℎ

2
‖ ≤ 𝑛. Let ℎ

0
, 𝑔

0
:

Ω → 𝐻 be twoF
0
-measurable random variables, let 𝜏 > 0 be

a strictly positive stopping time, and let 𝑋, 𝑌 be two local mild
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solutions to (44) with initial conditions ℎ
0
, 𝑔

0
and lifetime 𝜏.

Then one has up to indistinguishability

𝑋
𝜏

1
{ℎ
0
=𝑔
0
}
= 𝑌

𝜏

1
{ℎ
0
=𝑔
0
}

(114)

(Two processes 𝑋 and 𝑌 are called indistinguishable if the set
{𝜔 ∈ Ω : 𝑋

𝑡
(𝜔) ̸= 𝑌

𝑡
(𝜔) for some 𝑡 ∈ R

+
} is a P-nullset.)

Proof. Defining the stopping times (𝜏
𝑛
)
𝑛∈N as

𝜏
𝑛
:= 𝜏 ∧ inf {𝑡 ≥ 0 :

󵄩󵄩󵄩󵄩𝑋𝑡

󵄩󵄩󵄩󵄩 ≥ 𝑛} ∧ inf {𝑡 ≥ 0 :
󵄩󵄩󵄩󵄩𝑌𝑡

󵄩󵄩󵄩󵄩 ≥ 𝑛} ,

(115)

we have P(𝜏
𝑛

→ 𝜏) = 1. Let 𝑛 ∈ N and 𝑇 ≥ 0 be arbitrary,
and set

Γ := {ℎ
0
= 𝑔

0
} ∈ F

0
. (116)

The mapping

𝑓 : [0, 𝑇] 󳨀→ R, 𝑓 (𝑡) := E [1
Γ

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡∧𝜏
𝑛

− 𝑌
𝑡∧𝜏
𝑛

󵄩󵄩󵄩󵄩󵄩

2

] ,

(117)

is nonnegative, and it is continuous by Lebesgue’s dominated
convergence theorem. For all 𝑡 ∈ [0, 𝑇] we have

𝑓 (𝑡) = E [1
Γ

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑡∧𝜏
𝑛

− 𝑌
𝑡∧𝜏
𝑛

󵄩󵄩󵄩󵄩󵄩

2

]

≤ 3E [1
Γ

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑡∧𝜏
𝑛

(ℎ
0
− 𝑔

0
)
󵄩󵄩󵄩󵄩󵄩

2

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ 3E[1
Γ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡∧𝜏
𝑛

0

𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

]

+ 3E[1
Γ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡∧𝜏
𝑛

0

𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
)) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

]

= 3E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡∧𝜏
𝑛

0

1
Γ
𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

]

+ 3E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡∧𝜏
𝑛

0

1
Γ
𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
)) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

] ,

(118)

and hence, by the Cauchy-Schwarz inequality, the Itô isom-
etry (39), the growth estimate (9) from Lemma 10, and the
local Lipschitz conditions (113) we obtain

𝑓 (𝑡)

≤ 3𝑇E [∫

𝑡∧𝜏
𝑛

0

󵄩󵄩󵄩󵄩󵄩
1
Γ
𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
))

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠]

+ 3E [∫

𝑡∧𝜏
𝑛

0

󵄩󵄩󵄩󵄩󵄩
1
Γ
𝑆
(𝑡∧𝜏
𝑛
)−𝑠

(𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
))

󵄩󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

≤ 3𝑇(𝑀𝑒
𝜔𝑇

)
2

E [∫

𝑡∧𝜏
𝑛

0

1
Γ

󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
)
󵄩󵄩󵄩󵄩

2

𝑑𝑠]

+ 3(𝑀𝑒
𝜔𝑇

)
2

E [∫

𝑡∧𝜏
𝑛

0

1
Γ

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

≤ 3 (𝑇 + 1) (𝑀𝑒
𝜔𝑇

)
2

𝐿
2

𝑛
∫

𝑡

0

E [1
Γ

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑠∧𝜏
𝑛

− 𝑌
𝑠∧𝜏
𝑛

󵄩󵄩󵄩󵄩󵄩

2

] 𝑑𝑠

= 3 (𝑇 + 1) (𝑀𝑒
𝜔𝑇

)
2

𝐿
2

𝑛
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠.

(119)

Using Gronwall’s inequality (see Lemma 47) we deduce that
𝑓 ≡ 0. Thus, by the continuity of the sample paths of 𝑋 and
𝑌, we obtain

P(⋂

𝑡≥0

{𝑋
𝑡∧𝜏
𝑛

1
Γ
= 𝑌

𝑡∧𝜏
𝑛

1
Γ
}) = 1 ∀𝑛 ∈ N, (120)

and hence, by the continuity of the probability measureP, we
conclude that

P(⋂

𝑡≥0

{𝑋
𝑡∧𝜏

1
Γ
= 𝑌

𝑡∧𝜏
1
Γ
})

= P(⋂

𝑛∈N

⋂

𝑡≥0

{𝑋
𝑡∧𝜏
𝑛

1
Γ
= 𝑌

𝑡∧𝜏
𝑛

1
Γ
})

= lim
𝑛→∞

P(⋂

𝑡≥0

{𝑋
𝑡∧𝜏
𝑛

1
Γ
= 𝑌

𝑡∧𝜏
𝑛

1
Γ
}) = 1,

(121)

which completes the proof.

The local Lipschitz conditions (113) are, in general, not
sufficient in order to ensure the existence of mild solutions to
the SPDE (44). Now, we will prove that the existence of mild
solutions follows from global Lipschitz and linear growth
conditions on 𝛼 and 𝜎. For this, we recall an auxiliary result
which extends the Itô isometry (39).

Lemma 49. Let 𝑇 ≥ 0 be arbitrary, and let 𝑋 = (𝑋
𝑡
)
𝑡∈[0,𝑇]

be
a 𝐿

0

2
(𝐻)-valued, predictable process such that

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠] < ∞. (122)
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Then, for every 𝑝 ≥ 1 one has

E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

𝑋
𝑠
𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

] ≤ 𝐶
𝑝
E[∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

𝑝

, (123)

where the constant 𝐶
𝑝
> 0 is given by

𝐶
𝑝
= (𝑝 (2𝑝 − 1))

𝑝

(
2𝑝

2𝑝 − 1
)

2𝑝
2

. (124)

Proof. See [3, Lemma 3.1].

Theorem 50. Suppose that there exists a constant 𝐿 ≥ 0 such
that

󵄩󵄩󵄩󵄩𝛼 (𝑡, ℎ
1
) − 𝛼 (𝑡, ℎ

2
)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 , (125)
󵄩󵄩󵄩󵄩𝜎 (𝑡, ℎ

1
) − 𝜎 (𝑡, ℎ

2
)
󵄩󵄩󵄩󵄩𝐿0
2
(𝐻)

≤ 𝐿
󵄩󵄩󵄩󵄩ℎ1 − ℎ

2

󵄩󵄩󵄩󵄩 , (126)

for all 𝑡 ≥ 0 and all ℎ
1
, ℎ

2
∈ 𝐻, and suppose that there exists a

constant 𝐾 ≥ 0 such that

‖𝛼 (𝑡, ℎ)‖ ≤ 𝐾 (1 + ‖ℎ‖) , (127)

‖𝜎 (𝑡, ℎ)‖
𝐿
0

2
(𝐻)

≤ 𝐾 (1 + ‖ℎ‖) , (128)

for all 𝑡 ≥ 0 and all ℎ ∈ 𝐻. Then, for every F
0
-measurable

random variable ℎ
0

: Ω → 𝐻, there exists a (up to
indistinguishability) unique mild solution 𝑋 to (44).

Proof. The uniqueness of mild solutions to (44) is a direct
consequence of Theorem 48, and hence, we may concentrate
on the existence proof, which we divide into the following
several steps.

Step 1. First, we suppose that the initial condition ℎ
0
satisfies

E[‖ℎ
0
‖
2𝑝

] < ∞ for some 𝑝 > 1. Let 𝑇 ≥ 0 be arbitrary. We
define the Banach space

𝐿
2𝑝

𝑇
(𝐻) := 𝐿

2𝑝

(Ω × [0, 𝑇] ,P
𝑇
,P ⊗ 𝑑𝑡;𝐻) , (129)

and prove that the variation of constants equation

𝑋
𝑡
= 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] ,

(130)

has a unique solution in the space 𝐿
2𝑝

𝑇
(𝐻). This is done in the

following three steps.

Step 1.1. For 𝑋 ∈ 𝐿
2𝑝

𝑇
(𝐻) we define the process Φ𝑋 by

(Φ𝑋)
𝑡
= 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] .

(131)

Then the process Φ𝑋 is well defined. Indeed, by the growth
estimate (9), the linear growth condition (127), and Hölder’s
inequality we have

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠𝛼 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩 𝑑𝑠]

≤ 𝑀𝑒
𝜔𝑇

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩 𝑑𝑠]

≤ 𝑀𝑒
𝜔𝑇

𝐾E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩) 𝑑𝑠]

= 𝑀𝑒
𝜔𝑇

𝐾(𝑇 + E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩 𝑑𝑠])

≤ 𝑀𝑒
𝜔𝑇

𝐾(𝑇 + 𝑇
1−1/2𝑝

× E[∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]

1/2𝑝

) < ∞.

(132)

Furthermore, by the growth estimate (9), the linear growth
condition (128), and Hölder’s inequality we have

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

≤ (𝑀𝑒
𝜔𝑇

)
2

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

≤ (𝑀𝑒
𝜔𝑇

𝐾)
2

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩)
2

𝑑𝑠]

≤ 2(𝑀𝑒
𝜔𝑇

𝐾)
2

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

) 𝑑𝑠]

= 2(𝑀𝑒
𝜔𝑇

𝐾)
2

(𝑇 + E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝑑𝑠])

≤ 2(𝑀𝑒
𝜔𝑇

𝐾)
2

(𝑇 + 𝑇
1−1/𝑝

E[∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

]

1/𝑝

) < ∞.

(133)

The previous two estimates show that Φ is a well-defined
mapping on 𝐿

2𝑝

𝑇
(𝐻).

Step 1.2. Next, we show that themappingΦmaps 𝐿2𝑝
𝑇
(𝐻) into

itself; that is, we haveΦ : 𝐿
2𝑝

𝑇
(𝐻) → 𝐿

2𝑝

𝑇
(𝐻). Indeed, let𝑋 ∈

𝐿
2𝑝

𝑇
(𝐻) be arbitrary. Defining the processesΦ

𝛼
𝑋 andΦ

𝜎
𝑋 as

(Φ
𝛼
𝑋)

𝑡
:= ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(Φ
𝜎
𝑋)

𝑡
:= ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] ,

(134)

we have

(Φ𝑋)
𝑡
= 𝑆

𝑡
ℎ
0
+ (Φ

𝛼
𝑋)

𝑡
+ (Φ

𝜎
𝑋)

𝑡
, 𝑡 ∈ [0, 𝑇] . (135)
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By the growth estimate (9), we have

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑆𝑡ℎ0
󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡] ≤ (𝑀𝑒
𝜔𝑇

)
2𝑝

𝑇E [
󵄩󵄩󵄩󵄩ℎ0

󵄩󵄩󵄩󵄩

2𝑝

] < ∞. (136)

By Hölder’s inequality and the growth estimate (9), we have

E [∫

𝑇

0

󵄩󵄩󵄩󵄩(Φ𝛼
𝑋)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

= E[∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

≤ 𝑡
2𝑝−1

E [∫

𝑇

0

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠𝛼 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠 𝑑𝑡]

≤ 𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

)
2𝑝

E [∫

𝑇

0

∫

𝑡

0

󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠 𝑑𝑡] ,

(137)

and hence, by the linear growth condition (127) and Hölder’s
inequality, we obtain

E [∫

𝑇

0

󵄩󵄩󵄩󵄩(Φ𝛼
𝑋)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

≤ 𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

𝐾)
2𝑝

E [∫

𝑇

0

∫

𝑡

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩)
2𝑝

𝑑𝑠 𝑑𝑡]

≤ 𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

𝐾)
2𝑝

2
2𝑝−1

E [∫

𝑇

0

∫

𝑡

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

) 𝑑𝑠 𝑑𝑡]

≤ (2𝑇)
2𝑝−1

(𝑀𝑒
𝜔𝑇

𝐾)
2𝑝

(
𝑇
2

2
+ 𝑇E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]) < ∞.

(138)

Furthermore, by Lemma 49 and the growth estimate (9), we
have

E [∫

𝑇

0

󵄩󵄩󵄩󵄩(Φ𝜎
𝑋)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

= E[∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

= ∫

𝑇

0

E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

]𝑑𝑡

≤ 𝐶
𝑝
∫

𝑇

0

E[∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

𝑝

𝑑𝑡

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

)
2𝑝

∫

𝑇

0

E[∫

𝑡

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

𝑝

𝑑𝑡,

(139)

and hence, by the linear growth condition (128) and Hölder’s
inequality, we obtain

E [∫

𝑇

0

󵄩󵄩󵄩󵄩(Φ𝜎
𝑋)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑡]

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

)
2𝑝

𝑡
𝑝−1

E [∫

𝑇

0

∫

𝑡

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2𝑝

𝐿
0

2
(𝐻)

𝑑𝑠 𝑑𝑡]

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

𝐾)
2𝑝

𝑇
𝑝−1

E [∫

𝑇

0

∫

𝑡

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩)
2𝑝

𝑑𝑠 𝑑𝑡]

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

𝐾)
2𝑝

𝑇
𝑝−1

2
2𝑝−1

E [∫

𝑇

0

∫

𝑡

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

) 𝑑𝑠 𝑑𝑡]

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

𝐾)
2𝑝

2
𝑝

(2𝑇)
𝑝−1

× (
𝑇
2

2
+ 𝑇E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]) < ∞.

(140)

The previous three estimates show that Φ𝑋 ∈ 𝐿
2𝑝

(𝐻).
Consequently, the mapping Φ maps 𝐿2𝑝

𝑇
(𝐻) into itself.

Step 1.3. Now, we show that for some index 𝑛 ∈ N the map-
ping Φ

𝑛 is a contraction on 𝐿
2𝑝

𝑇
(𝐻). Let 𝑋,𝑌 ∈ 𝐿

2𝑝

𝑇
(𝐻), and

𝑡 ∈ [0, 𝑇] be arbitrary. By Hölder’s inequality, the growth
estimate (9), and the Lipschitz condition (125) we have

E [
󵄩󵄩󵄩󵄩(Φ𝛼

𝑋)
𝑡
− (Φ

𝛼
𝑌)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

]

= E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 − ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑌
𝑠
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

]

= E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

(𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

]

≤ 𝑡
2𝑝−1

E [∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠 (𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
))
󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]

≤ 𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

)
2𝑝

E [∫

𝑡

0

󵄩󵄩󵄩󵄩𝛼 (𝑠, 𝑋
𝑠
) − 𝛼 (𝑠, 𝑌

𝑠
)
󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]

≤ 𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

𝐿)
2𝑝

∫

𝑡

0

E [
󵄩󵄩󵄩󵄩𝑋𝑠

− 𝑌
𝑠

󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑠.

(141)

Furthermore, by Lemma 49, the growth estimate (9), the
Lipschitz condition (126), and Hölder’s inequality we obtain

E [
󵄩󵄩󵄩󵄩(Φ𝜎

𝑋)
𝑡
− (Φ

𝜎
𝑌)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

]

= E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
− ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑌
𝑠
) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

]

= E[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑡−𝑠

(𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
)) 𝑑𝑊

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

]
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≤ 𝐶
𝑝
E[∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑡−𝑠 (𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
))
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

𝑝

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

)
2𝑝

E[∫

𝑡

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
) − 𝜎 (𝑠, 𝑌

𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

𝑑𝑠]

𝑝

≤ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

𝐿)
2𝑝

∫

𝑡

0

E [
󵄩󵄩󵄩󵄩𝑋𝑠

− 𝑌
𝑠

󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑠.

(142)

Therefore, defining the constant

𝐶 := 2
2𝑝−1

(𝑇
2𝑝−1

(𝑀𝑒
𝜔𝑇

𝐿)
2𝑝

+ 𝐶
𝑝
(𝑀𝑒

𝜔𝑇

𝐿)
2𝑝

) , (143)

by Hölder’s inequality, we get

E [
󵄩󵄩󵄩󵄩(Φ𝑋)

𝑡
− (Φ𝑌)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

]

≤ 2
2𝑝−1

(E [
󵄩󵄩󵄩󵄩(Φ𝛼

𝑋)
𝑡
− (Φ

𝛼
𝑌)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

]

+E [
󵄩󵄩󵄩󵄩(Φ𝜎

𝑋)
𝑡
− (Φ

𝜎
𝑌)

𝑡

󵄩󵄩󵄩󵄩

2𝑝

])

≤ 𝐶∫

𝑡

0

E [
󵄩󵄩󵄩󵄩𝑋𝑠

− 𝑌
𝑠

󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑠.

(144)

Thus, by induction for every 𝑛 ∈ N, we obtain

󵄩󵄩󵄩󵄩Φ
𝑛

𝑋 − Φ
𝑛

𝑌
󵄩󵄩󵄩󵄩𝐿
2𝑝

𝑇
(𝐻)

= (∫

𝑇

0

E [
󵄩󵄩󵄩󵄩󵄩
(Φ

𝑛

𝑋)
𝑡
1

− (Φ
𝑛

𝑌)
𝑡
1

󵄩󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑡
1
)

1/2𝑝

≤ (𝐶∫

𝑇

0

(∫

𝑡
1

0

E [
󵄩󵄩󵄩󵄩󵄩󵄩
(Φ

𝑛−1

𝑋)
𝑡
2

−(Φ
𝑛−1

𝑌)
𝑡
2

󵄩󵄩󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑡
2
)𝑑𝑡

1
)

1/2𝑝

≤ ⋅ ⋅ ⋅ ≤ (𝐶
𝑛

∫

𝑇

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑛−1

0

(∫

𝑡
𝑛

0

E [
󵄩󵄩󵄩󵄩𝑋𝑠

− 𝑌
𝑠

󵄩󵄩󵄩󵄩

2𝑝

] 𝑑𝑠)

× 𝑑𝑡
𝑛
⋅ ⋅ ⋅ 𝑑𝑡

2
𝑑𝑡

1
)

1/2𝑝

≤ (𝐶
𝑛

(∫

𝑇

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑛−1

0

1𝑑𝑡
𝑛
⋅ ⋅ ⋅ 𝑑𝑡

2
𝑑𝑡

1
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑇
𝑛
/𝑛!

× E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠
− 𝑌

𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠])

1/2𝑝

= (
(𝐶𝑇)

𝑛

𝑛!
)

1/2𝑝

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

→0 for 𝑛→∞

‖𝑋 − 𝑌‖
𝐿
2𝑝

𝑇
(𝐻)

.

(145)

Consequently, there exists an index 𝑛 ∈ N such that Φ
𝑛 is

a contraction, and hence, according to the extension of the
Banach fixed point theorem (see Corollary 46), the mapping
Φ has a unique fixed point 𝑋 ∈ 𝐿

2𝑝

𝑇
(𝐻). This fixed point 𝑋 is

a solution to the variation of constants equation (130). Since
𝑇 ≥ 0 was arbitrary, there exists a process 𝑋 which is a solu-
tion of the variation of constants equation:

𝑋
𝑡
= 𝑆

𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
,

𝑡 ≥ 0.

(146)

Step 1.4. In order to prove that 𝑋 is a mild solution to (44),
it remains to show that 𝑋 has a continuous version. By
Lemma 12, the process

𝑡 󳨃󳨀→ 𝑆
𝑡
ℎ
0
, 𝑡 ≥ 0, (147)

is continuous, and by Proposition 41, the process

∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠, 𝑡 ≥ 0, (148)

is continuous, too. Moreover, for every 𝑇 ≥ 0, we have, by the
linear growth condition (128), Hölder’s inequality, and since
𝑋 ∈ 𝐿

2𝑝

𝑇
(𝐻), the following estimate:

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2𝑝

𝐿
0

2
(𝐻)

𝑑𝑠]

≤ 𝐾
2𝑝

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩)
2𝑝

𝑑𝑠]

≤ 𝐾
2𝑝

2
2𝑝−1

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

) 𝑑𝑠]

= 𝐾(2𝐾)
2𝑝−1

(𝑇 + E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]) < ∞.

(149)

Thus, by Proposition 43 the stochastic convolution 𝜎 ⋆ 𝑊

given by

(𝜎 ⋆ 𝑊)
𝑡
= ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0, (150)

has a continuous version, and consequently, the process𝑋has
a continuous version, too. This continuous version is a mild
solution to (44).

Step 2. Now let ℎ
0
: Ω → 𝐻 be an arbitraryF

0
-measurable

random variable. We define the sequence (ℎ
𝑛
)
𝑛∈N of F

0
-

measurable random variables as

ℎ
𝑛

0
:= ℎ

0
1
{‖ℎ
0
‖≤𝑛}

, 𝑛 ∈ N. (151)

Let 𝑛 ∈ N be arbitrary. Then, as ℎ
𝑛

0
is bounded, we have

E[‖ℎ
𝑛

0
‖
2𝑝

] < ∞ for all 𝑝 > 1. By Step 1 the SPDE

𝑑𝑋
𝑛

𝑡
= (𝐴𝑋

𝑛

𝑡
+ 𝛼 (𝑡, 𝑋

𝑛

𝑡
)) 𝑑𝑡 + 𝜎 (𝑡, 𝑋

𝑛

𝑡
) 𝑑𝑊

𝑡
,

𝑋
𝑛

0
= ℎ

𝑛

0
,

(152)
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has amild solution𝑋
𝑛.We define the sequence (Ω

𝑛
)
𝑛∈N ⊂ F

0

as

Ω
𝑛
:= {

󵄩󵄩󵄩󵄩ℎ0
󵄩󵄩󵄩󵄩 ≤ 𝑛} , 𝑛 ∈ N. (153)

Then, we have Ω
𝑛
⊂ Ω

𝑚
for 𝑛 ≤ 𝑚, Ω = ⋃

𝑛∈N Ω
𝑛
, and

Ω
𝑛
⊂ {ℎ

𝑛

0
= ℎ

𝑚

0
} ⊂ {ℎ

𝑛

0
= ℎ

0
} ∀𝑛 ≤ 𝑚. (154)

Thus, byTheorem 48 we have (up to indistinguishability)

𝑋
𝑛

1
Ω
𝑛

= 𝑋
𝑚

1
Ω
𝑛

∀𝑛 ≤ 𝑚. (155)

Consequently, the process

𝑋 := lim
𝑛→∞

𝑋
𝑛

1
Ω
𝑛

(156)

is a well-defined, continuous, and adapted process, and we
have

𝑋
𝑛

1
Ω
𝑛

= 𝑋
𝑚

1
Ω
𝑛

= 𝑋1
Ω
𝑛

∀𝑛 ≤ 𝑚. (157)

Furthermore, we obtain P-almost surely

𝑋
𝑡
= lim

𝑛→∞

𝑋
𝑛

𝑡
1
Ω
𝑛

= lim
𝑛→∞

1
Ω
𝑛

(𝑆
𝑡
ℎ
𝑛

0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝑠

+∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝑊

𝑠
)

= lim
𝑛→∞

(𝑆
𝑡
(1

Ω
𝑛

ℎ
𝑛

0
) + ∫

𝑡

0

1
Ω
𝑛

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝑠

+ ∫

𝑡

0

1
Ω
𝑛

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝑊

𝑠
)

= lim
𝑛→∞

(𝑆
𝑡
(1

Ω
𝑛

ℎ
0
) + ∫

𝑡

0

1
Ω
𝑛

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

1
Ω
𝑛

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
)

= lim
𝑛→∞

1
Ω
𝑛

(𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
)

= 𝑆
𝑡
ℎ
0
+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝛼 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑡−𝑠

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝑊

𝑠
, 𝑡 ≥ 0,

(158)

proving that 𝑋 is a mild solution to (44).

Remark 51. For the proof of Theorem 50, we have used
Corollary 46, which is a slight extension of the Banach fixed
point theorem. Such an idea has been applied, for example, in
[15].

Remark 52. A recent method for proving existence and
uniqueness of mild solutions to the SPDE (44) is the method
of the moving frame presented in [6]; see also [8]. It allows
to reduce SPDE problems to the study of SDEs in infinite
dimension. In order to apply this method, we need that the
semigroup (𝑆

𝑡
)
𝑡≥0

is a semigroup of pseudocontractions.

We close this section with a consequence about the
existence of weak solutions.

Corollary 53. Suppose that conditions (125)–(128) are ful-
filled. Let ℎ

0
: Ω → 𝐻 be aF

0
-measurable random variable

such that E[‖ℎ
0
‖
2𝑝

] < ∞ for some 𝑝 > 1. Then there exists a
(up to indistinguishability) unique weak solution 𝑋 to (44).

Proof. According to Proposition 35, every weak solution𝑋 to
(44) is also a mild solution to (44).Therefore, the uniqueness
of weak solutions to (44) is a consequence of Theorem 48.

It remains to prove the existence of a weak solution to
(44). Let 𝑇 ≥ 0 be arbitrary. By Theorem 50 and its proof,
there exists a mild solution𝑋 ∈ 𝐿

2𝑝

𝑇
(𝐻) to (44). By the linear

growth condition (128) and Hölder’s inequality we obtain

E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝜎 (𝑠, 𝑋
𝑠
)
󵄩󵄩󵄩󵄩

2

𝐿
0

2
(𝐻)

]

≤ 𝐾
2

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩)
2

𝑑𝑠]

≤ 2𝐾
2

E [∫

𝑇

0

(1 +
󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

) 𝑑𝑠]

= 2𝐾
2

(𝑇 + E [∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2

𝑑𝑠])

≤ 2𝐾
2

(𝑇 + 𝑇
1−1/𝑝

E[∫

𝑇

0

󵄩󵄩󵄩󵄩𝑋𝑠

󵄩󵄩󵄩󵄩

2𝑝

𝑑𝑠]

1/𝑝

) < ∞,

(159)

showing that condition (72) is fulfilled. Thus, by
Proposition 37, the process 𝑋 is also a weak solution to
(44).

8. Invariant Manifolds for Weak
Solutions to SPDEs

In this section, we deal with invariant manifolds for time-
homogeneous SPDEs of the type (44). This topic arises from
the natural desire to express the solutions of the SPDE (44),
which generally live in the infinite dimensional Hilbert space
𝐻, by means of a finite dimensional state process and thus
to ensure larger analytical tractability. Our goal is to find
conditions on the generator 𝐴 and the coefficients 𝛼, 𝜎 such
that for every starting point of a finite dimensional submani-
fold the solution process stays on the submanifold.

We start with the required preliminaries about finite
dimensional submanifolds inHilbert spaces. In the sequel, let
𝐻 be a separable Hilbert space.

Definition 54. Let 𝑚, 𝑘 ∈ N be positive integers. A subset
M ⊂ 𝐻 is called an 𝑚-dimensional 𝐶𝑘-submanifold of 𝐻,
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if for every ℎ ∈ M there exist an open neighborhood 𝑈 ⊂ 𝐻

of ℎ, an open set 𝑉 ⊂ R𝑚, and a mapping 𝜙 ∈ 𝐶
2

(𝑉;𝐻) such
that

(1) the mapping 𝜙 : 𝑉 → 𝑈 ∩ M is a homeomorphism;
(2) for all 𝑦 ∈ 𝑉 the mapping 𝐷𝜙(𝑦) is injective.

The mapping 𝜙 is called a parametrization ofM around ℎ.

In what follows, let M be an 𝑚-dimensional 𝐶
𝑘-

submanifold of 𝐻.

Lemma 55. Let 𝜙
𝑖

: 𝑉
𝑖

→ 𝑈
𝑖
∩ M, 𝑖 = 1, 2 be two

parametrizations with𝑊:= 𝑈
1
∩𝑈

2
∩M ̸= 0.Then themapping

𝜙
−1

1
∘ 𝜙

2
: 𝜙

−1

2
(𝑊) 󳨀→ 𝜙

−1

1
(𝑊) (160)

is a 𝐶
𝑘-diffeomorphism.

Proof. See [16, Lemma 6.1.1].

Corollary 56. Let ℎ ∈ M be arbitrary, and let 𝜙
𝑖

: 𝑉
𝑖

→

𝑈
𝑖
∩M, 𝑖 = 1, 2 be two parametrizations ofM around ℎ. Then

one has

𝐷𝜙
1
(𝑦

1
) (R

𝑚

) = 𝐷𝜙
2
(𝑦

2
) (R

𝑚

) , (161)

where 𝑦
𝑖
= 𝜙

−1

𝑖
(ℎ) for 𝑖 = 1, 2.

Proof. Since𝑈
1
and𝑈

2
are open neighborhoods of ℎ, we have

𝑊:= 𝑈
1
∩ 𝑈

2
∩ M ̸= 0. Thus, by Lemma 55 the mapping

𝜙
−1

1
∘ 𝜙

2
: 𝜙

−1

2
(𝑊) 󳨀→ 𝜙

−1

1
(𝑊) (162)

is a 𝐶
𝑘-diffeomorphism. Using the chain rule, we obtain

𝐷𝜙
2
(𝑦

2
) (R

𝑚

)

= 𝐷 (𝜙
1
∘ (𝜙

−1

1
∘ 𝜙

2
)) (𝑦

2
) (R

𝑚

)

= 𝐷𝜙
1
(𝑦

1
)𝐷 (𝜙

−1

1
∘ 𝜙

2
) (𝑦

2
) (R

𝑚

)

⊂ 𝐷𝜙
1
(𝑦

1
) (R

𝑚

) ,

(163)

and, analogously, we prove that 𝐷𝜙
1
(𝑦

1
)(R𝑚

) ⊂

𝐷𝜙
2
(𝑦

2
)(R𝑚

).

Definition 57. Let ℎ ∈ M be arbitrary.The tangent space ofM
to ℎ is the subspace

𝑇
ℎ
M := 𝐷𝜙 (𝑦) (R

𝑚

) , (164)

where 𝑦 = 𝜙
−1

(ℎ) and 𝜙 : 𝑉 → 𝑈 ∩ M denotes a
parametrization ofM around ℎ.

Remark 58. Note that, according to Corollary 56, the
Definition 57 of the tangent space 𝑇

ℎ
M does not depend on

the choice of the parametrization 𝜙 : 𝑉 → 𝑈 ∩ M.

Proposition 59. Let ℎ ∈ M be arbitrary, and let 𝜙 : 𝑉 →

𝑈 ∩ M be a parametrization ofM around ℎ. Then there exist
an open set 𝑉

0
⊂ 𝑉, an open neighborhood 𝑈

0
⊂ 𝑈 of ℎ, and

a mapping 𝜙 ∈ 𝐶
𝑘

𝑏
(R𝑚

; 𝐻) with 𝜙|
𝑉
0

= 𝜙|
𝑉
0

such that 𝜙|
𝑉
0

:

𝑉
0

→ 𝑈
0
∩ M is a parametrization ofM around ℎ, too.

Proof. See [16, Remark 6.1.1].

Remark 60. By Proposition 59 we may assume that any
parametrization 𝜙 : 𝑉 → 𝑈 ∩ M has an extension 𝜙 ∈

𝐶
𝑘

𝑏
(R𝑚

; 𝐻).

Proposition 61. Let 𝐷 ⊂ 𝐻 be a dense subset. For every ℎ
0
∈

M there exist 𝜁
1
, . . . , 𝜁

𝑚
∈ 𝐷 and a parametrization 𝜙 : 𝑉 →

𝑈 ∩ M around ℎ
0
such that

𝜙 (⟨𝜁, ℎ⟩) = ℎ ∀ℎ ∈ 𝑈 ∩ M, (165)

where one uses the notation ⟨𝜁, ℎ⟩ := (⟨𝜁
1
, ℎ⟩, . . . , ⟨𝜁

𝑚
, ℎ⟩) ∈

R𝑚.

Proof. See [16, Proposition 6.1.2].

Proposition 62. Let 𝜙 : 𝑉 → 𝑈 ∩ M be a parametrization
as in Proposition 61. Then the following statements are true.

(1) The elements 𝜁
1
, . . . , 𝜁

𝑚
are linearly independent in 𝐻.

(2) For every ℎ ∈ 𝑈 ∩ M, one has the direct sum decom-
position

𝐻 = 𝑇
ℎ
M ⊕ ⟨𝜁

1
, . . . , 𝜁

𝑚
⟩
⊥

. (166)

(3) For every ℎ ∈ 𝑈 ∩ M the mapping

Π
ℎ
= 𝐷𝜙 (𝑦) (⟨𝜁, ∙⟩) : 𝐻 󳨀→ 𝑇

ℎ
M, 𝑤ℎ𝑒𝑟𝑒 𝑦 = ⟨𝜁, ℎ⟩,

(167)

is the corresponding projection according to (166) from
𝐻 onto 𝑇

ℎ
M, that is, we have

Π
ℎ
∈ 𝐿 (𝐻) , Π

2

ℎ
= Π

ℎ
, ran (Π

ℎ
) = 𝑇

ℎ
M,

ker (Π
ℎ
) = ⟨𝜁

1
, . . . , 𝜁

𝑚
⟩
⊥

.

(168)

Proof. See [16, Lemma 6.1.3].

From now on, we assume that M is an 𝑚-dimensional
𝐶
2-submanifold of 𝐻.

Proposition 63. Let 𝜙 : 𝑉 → 𝑈 ∩ M be a parametrization
as in Proposition 61. Furthermore, let 𝜎 ∈ 𝐶

1

(𝐻) be a mapping
such that

𝜎 (ℎ) ∈ 𝑇
ℎ
M ∀ℎ ∈ 𝑈 ∩ M. (169)

Then, for every ℎ ∈ 𝑈 ∩ M the direct sum decomposition of
𝐷𝜎(ℎ)𝜎(ℎ) according to (166) is given by

𝐷𝜎 (ℎ) 𝜎 (ℎ)

= 𝐷𝜙 (𝑦) (⟨𝜁, 𝐷𝜎 (ℎ) 𝜎 (ℎ)⟩)

+ 𝐷
2

𝜙 (𝑦) (⟨𝜁, 𝜎 (ℎ)⟩ , ⟨𝜁, 𝜎 (ℎ)⟩) ,

(170)

where 𝑦 = 𝜙
−1

(ℎ).
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Proof. Since𝑉 is an open subset ofR𝑚, there exists 𝜖 > 0 such
that

𝑦 + 𝑡𝐷𝜙(𝑦)
−1

𝜎 (ℎ) ∈ 𝑉 ∀𝑡 ∈ (−𝜖, 𝜖) . (171)

Therefore, the curve

𝑐 : (−𝜖, 𝜖) 󳨀→ 𝑈 ∩ M, 𝑐 (𝑡) := 𝜙 (𝑦 + 𝑡𝐷𝜙(𝑦)
−1

𝜎 (ℎ)) ,

(172)

is well defined, and we have 𝑐 ∈ 𝐶
1

((−𝜖, 𝜖);𝐻) with 𝑐(0) = ℎ

and 𝑐
󸀠

(0) = 𝜎(ℎ). Hence, we have

𝑑

𝑑𝑡
𝜎 (𝑐 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝐷𝜎 (ℎ) 𝜎 (ℎ) . (173)

Moreover, by condition (169) and Proposition 62, we have

𝑑

𝑑𝑡
𝜎 (𝑐 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

=
𝑑

𝑑𝑡
Π
𝑐(𝑡)

𝜎 (𝑐 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

=
𝑑

𝑑𝑡
𝐷𝜙 (⟨𝜁, 𝑐 (𝑡)⟩) (⟨𝜁, 𝜎 (𝑐 (𝑡))⟩)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝐷𝜙 (𝑦) (⟨𝜁, 𝐷𝜎 (ℎ) 𝜎 (ℎ)⟩)

+ 𝐷
2

𝜙 (𝑦) (⟨𝜁, 𝜎 (ℎ)⟩ , ⟨𝜁, 𝜎 (ℎ)⟩) .

(174)

The latter two identities prove the desired decomposition
(170).

After these preliminaries, we will study invariant mani-
folds for time-homogeneous SPDEs of the form

𝑑𝑋
𝑡
= (𝐴𝑋

𝑡
+ 𝛼 (𝑋

𝑡
)) 𝑑𝑡 + 𝜎 (𝑋

𝑡
) 𝑑𝑊

𝑡

𝑋
0
= ℎ

0
,

(175)

with measurable mappings 𝛼 : 𝐻 → 𝐻 and 𝜎 : 𝐻 →

𝐿
0

2
(𝐻). As in the previous sections, the operator 𝐴 is the

infinitesimal generator of a 𝐶
0
-semigroup (𝑆

𝑡
)
𝑡≥0

on 𝐻. Note
that, by (41), the SPDE (175) can be rewritten equivalently as

𝑑𝑋
𝑡
= (𝐴𝑋

𝑡
+ 𝛼 (𝑋

𝑡
)) 𝑑𝑡 + ∑

𝑗∈N

𝜎
𝑗

(𝑋
𝑡
) 𝑑𝛽

𝑗

𝑡
,

𝑋
0
= ℎ

0
,

(176)

where (𝛽
𝑗

)
𝑗∈N denotes the sequence of real-valued inde-

pendent standard Wiener processes defined in (33) and the
mappings 𝜎𝑗 : 𝐻 → 𝐻, 𝑗 ∈ N are given by 𝜎

𝑗

= √𝜆
𝑗
𝜎𝑒

𝑗
.

For the rest of this section, we assume that there exist a
constant 𝐿 ≥ 0 such that

󵄩󵄩󵄩󵄩𝛼 (ℎ
1
) − 𝛼 (ℎ

2
)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 , ℎ
1
, ℎ

2
∈ 𝐻, (177)

and a sequence (𝜅
𝑗
)
𝑗∈N ⊂ R

+
with ∑

𝑗∈N 𝜅
2

𝑗
< ∞ such that for

every 𝑗 ∈ N we have
󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ
1
) − 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜅

𝑗

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 , ℎ
1
, ℎ

2
∈ 𝐻, (178)

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜅

𝑗
(1 + ‖ℎ‖) , ℎ ∈ 𝐻. (179)

Proposition 64. For every ℎ
0

∈ 𝐻 there exists a (up to
indistinguishability) unique weak solution to (176).

Proof. By (178), for all ℎ
1
, ℎ

2
∈ 𝐻 we have

󵄩󵄩󵄩󵄩𝜎 (ℎ
1
) − 𝜎 (ℎ

2
)
󵄩󵄩󵄩󵄩𝐿0
2
(𝐻)

= (∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ
1
) − 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

2

)

1/2

≤ (∑

𝑗∈N

𝜅
2

𝑗
)

1/2

󵄩󵄩󵄩󵄩ℎ1 − ℎ
2

󵄩󵄩󵄩󵄩 .

(180)

Moreover, by (177), for every ℎ ∈ 𝐻 we have

‖𝛼 (ℎ)‖ ≤ ‖𝛼 (ℎ) − 𝛼 (0)‖ + ‖𝛼 (0)‖

≤ 𝐿 ‖ℎ‖ + ‖𝛼 (0)‖

≤ max {𝐿, ‖𝛼 (0)‖} (1 + ‖ℎ‖) ,

(181)

and, by (179) we obtain

‖𝜎 (ℎ)‖
𝐿
0

2
(𝐻)

= (∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩

2

)

1/2

≤ (∑

𝑗∈N

𝜅
2

𝑗
)

1/2

(1 + ‖ℎ‖) .

(182)

Therefore, conditions (125)–(128) are fulfilled, and hence,
applying Corollary 53 completes the proof.

Recall that M denotes a finite dimensional 𝐶
2-

submanifold of 𝐻.

Definition 65. The submanifold M is called locally invariant
for (176), if for every ℎ

0
∈ M there exists a local weak solution

𝑋 to (176) with some lifetime 𝜏 > 0 such that

𝑋
𝑡∧𝜏

∈ M ∀𝑡 ≥ 0, P-almost surely. (183)

In order to investigate local invariance of M, we will
assume, from now on, that 𝜎𝑗 ∈ 𝐶

1

(𝐻) for all 𝑗 ∈ N.

Lemma 66. The following statements are true.

(1) For every ℎ ∈ 𝐻 one has

∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ) 𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩
< ∞. (184)

(2) The mapping

𝐻 󳨀→ 𝐻, ℎ 󳨃󳨀→ ∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) , (185)

is continuous.
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Proof. By (178) and (179), for every ℎ ∈ 𝐻 we have

∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ) 𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩

≤ ∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩

≤ (1 + ‖ℎ‖) ∑

𝑗∈N

𝜅
2

𝑗
< ∞,

(186)

showing (184). Moreover, for every 𝑗 ∈ N the mapping

𝐻 󳨃󳨀→ 𝐻, 𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) , (187)

is continuous, because for all ℎ
1
, ℎ

2
∈ 𝐻 we have

󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ
1
) 𝜎

𝑗

(ℎ
1
) − 𝐷𝜎

𝑗

(ℎ
2
) 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ
1
) 𝜎

𝑗

(ℎ
1
) − 𝐷𝜎

𝑗

(ℎ
1
) 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ
1
) 𝜎

𝑗

(ℎ
2
) − 𝐷𝜎

𝑗

(ℎ
2
) 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ
1
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ
1
) − 𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ
1
) − 𝐷𝜎

𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

(ℎ
2
)
󵄩󵄩󵄩󵄩󵄩
.

(188)

Let ] be the counting measure on (N,P(N)), which is given
by ]({𝑗}) = 1 for all 𝑗 ∈ N. Then we have

∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) = ∫
N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) ] (𝑑𝑗) . (189)

Hence, because of the estimate
󵄩󵄩󵄩󵄩󵄩
𝐷𝜎

𝑗

(ℎ) 𝜎
𝑗

(ℎ)
󵄩󵄩󵄩󵄩󵄩
≤ (1 + ‖ℎ‖) 𝜅

2

𝑗
, ℎ ∈ 𝐻, 𝑗 ∈ N, (190)

the continuity of the mapping (185) is a consequence of
Lebesgue’s dominated convergence theorem.

For a mapping 𝜙 ∈ 𝐶
2

𝑏
(R𝑚

; 𝐻) and elements 𝜁
1
, . . . , 𝜁

𝑚
∈

D(𝐴
∗

) we define the mappings 𝛼
𝜙,𝜁

: R𝑚

→ R𝑚 and 𝜎
𝑗

𝜙,𝜁
:

R𝑚

→ R𝑚, 𝑗 ∈ N as

𝛼
𝜙,𝜁

(𝑦) := ⟨𝐴
∗

𝜁, 𝜙 (𝑦)⟩ + ⟨𝜁, 𝛼 (𝜙 (𝑦))⟩ ,

𝜎
𝑗

𝜙,𝜁
(𝑦) := ⟨𝜁, 𝜎

𝑗

(𝜙 (𝑦))⟩ .

(191)

Proposition 67. Let 𝜙 ∈ 𝐶
2

𝑏
(R𝑚

; 𝐻) and 𝜁
1
, . . . , 𝜁

𝑚
∈ D(𝐴

∗

)

be arbitrary. Then, for every 𝑦
0

∈ R𝑚 there exists a (up to
indistinguishability) unique strong solution to the SDE:

𝑑𝑌
𝑡
= 𝛼

𝜙,𝜁
(𝑌

𝑡
) 𝑑𝑡 + ∑

𝑗∈N

𝜎
𝑗

𝜙,𝜁
(𝑌

𝑡
) 𝑑𝛽

𝑗

𝑡
,

𝑌
0
= 𝑦

0
.

(192)

Proof. By virtue of the assumption 𝜙 ∈ 𝐶
2

𝑏
(R𝑚

; 𝐻) and (177)–
(179), there exist a constant 𝐿̃ ≥ 0 such that

󵄩󵄩󵄩󵄩󵄩
𝛼
𝜙,𝜁

(𝑦
1
) − 𝛼

𝜙,𝜁
(𝑦

2
)
󵄩󵄩󵄩󵄩󵄩R𝑚

≤ 𝐿̃
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩R𝑚
, 𝑦

1
, 𝑦

2
∈ R

𝑚

,

(193)

and a sequence (𝜅
𝑗
)
𝑗∈N ⊂ R

+
with ∑

𝑗∈N 𝜅
2

𝑗
< ∞ such that for

every 𝑗 ∈ N we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

𝜙,𝜁
(𝑦

1
) − 𝜎

𝑗

𝜙,𝜁
(𝑦

2
)
󵄩󵄩󵄩󵄩󵄩󵄩R𝑚

≤ 𝜅
𝑗

󵄩󵄩󵄩󵄩𝑦1 − 𝑦
2

󵄩󵄩󵄩󵄩R𝑚
, 𝑦

1
, 𝑦

2
∈ R

𝑚

,

󵄩󵄩󵄩󵄩󵄩󵄩
𝜎
𝑗

𝜙,𝜁
(𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩R𝑚
≤ 𝜅

𝑗
(1 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩R𝑚

) , 𝑦 ∈ R
𝑚

.

(194)

Therefore, by Proposition 64, for every 𝑦
0
∈ R𝑚 there exists

a (up to indistinguishability) unique weak solution to (192),
which, according to Proposition 39 is also a strong solution
to (192). The uniqueness of strong solutions to (192) is a con-
sequence of Proposition 39 andTheorem 48.

Now, we are ready to formulate and prove ourmain result
of this section.

Theorem 68. The following statements are equivalent.

(1) The submanifoldM is locally invariant for (176).
(2) One has

M ⊂ D (𝐴) , (195)

𝜎
𝑗

(ℎ) ∈ 𝑇
ℎ
M ∀ℎ ∈ M, 𝑎𝑙𝑙 𝑗 ∈ N, (196)

𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) ∈ 𝑇
ℎ
M ∀ℎ ∈ M. (197)

(3) The operator 𝐴 is continuous onM, and for each ℎ
0
∈

M there exists a local strong solution 𝑋 to (176) with
some lifetime 𝜏 > 0 such that

𝑋
𝑡∧𝜏

∈ M ∀𝑡 ≥ 0, P-𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦. (198)

Proof. (1)⇒(2): Let ℎ ∈ M be arbitrary. By Proposition 61
and Remark 60 there exist elements 𝜁

1
, . . . , 𝜁

𝑚
∈ D(𝐴

∗

) and
a parametrization 𝜙 : 𝑉 → 𝑈 ∩ M around ℎ such that the
inverse 𝜙

−1

: 𝑈 ∩ M → 𝑉 is given by 𝜙
−1

= ⟨𝜁, ∙⟩, and 𝜙

has an extension 𝜙 ∈ 𝐶
2

𝑏
(R𝑚

; 𝐻). Since the submanifoldM is
locally invariant for (176), there exists a local weak solution𝑋

to (176) with initial condition ℎ and some lifetime 󰜚 > 0 such
that

𝑋
𝑡∧󰜚

∈ M ∀𝑡 ≥ 0, P-almost surely. (199)

Since𝑈 is an open neighborhood of ℎ, there exists 𝜖 > 0 such
that 𝐵

𝜖
(ℎ) ⊂ 𝑈, where 𝐵

𝜖
(ℎ) denotes the open ball:

𝐵
𝜖
(ℎ) = {𝑔 ∈ 𝐻 :

󵄩󵄩󵄩󵄩𝑔 − ℎ
󵄩󵄩󵄩󵄩 < 𝜖} . (200)

We define the stopping time

𝜏 := 󰜚 ∧ inf {𝑡 ≥ 0 : 𝑋
𝑡
∉ 𝐵

𝜖
(ℎ)} . (201)

Since the process𝑋 has continuous sample paths and satisfies
𝑋
0
= ℎ, we have 𝜏 > 0 and P-almost surely

𝑋
𝑡∧𝜏

∈ 𝑈 ∩ M ∀𝑡 ≥ 0. (202)
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Defining the R𝑚-valued process 𝑌 := ⟨𝜁, 𝑋⟩ we have P-
almost surely

𝑌
𝑡∧𝜏

∈ 𝑉 ∀𝑡 ≥ 0. (203)

Moreover, since 𝑋 is a weak solution to (176) with initial
condition ℎ, setting 𝑦 := ⟨𝜁, ℎ⟩ ∈ 𝑉 we have P-almost surely

𝑌
𝑡∧𝜏

= ⟨𝜁, ℎ⟩ + ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜁, 𝑋
𝑠
⟩ + ⟨𝜁, 𝛼 (𝑋

𝑠
)⟩) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

⟨𝜁, 𝜎
𝑗

(𝑋
𝑠
)⟩ 𝑑𝛽

𝑗

𝑠

= ⟨𝜁, ℎ⟩ + ∫

𝑡∧𝜏

0

𝛼
𝜙,𝜁

(⟨𝜁, 𝑋
𝑠
⟩) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝜎
𝑗

𝜙,𝜁
(⟨𝜁, 𝑋

𝑠
⟩) 𝑑𝛽

𝑗

𝑠

= 𝑦 + ∫

𝑡∧𝜏

0

𝛼
𝜙,𝜁

(𝑌
𝑠
) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝜎
𝑗

𝜙,𝜁
(𝑌

𝑠
) 𝑑𝛽

𝑗

𝑠
, 𝑡 ≥ 0,

(204)

showing that 𝑌 is a local strong solution to (192) with initial
condition 𝑦. By Itô’s formula (Theorem 26) we obtain P-
almost surely

𝑋
𝑡∧𝜏

= 𝜙 (𝑌
𝑡∧𝜏

)

= ℎ + ∫

𝑡∧𝜏

0

(𝐷𝜙 (𝑌
𝑠
) 𝛼

𝜙,𝜁
(𝑌

𝑠
)

+
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑌
𝑠
) (𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
) , 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
)))𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝐷𝜙 (𝑌
𝑠
) 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
) 𝑑𝛽

𝑗

𝑠
, 𝑡 ≥ 0.

(205)

Now, let 𝜉 ∈ D(𝐴
∗

) be arbitrary. Then we have P-almost
surely

⟨𝜉, 𝑋
𝑡∧𝜏

⟩

= ⟨𝜉, ℎ⟩

+ ∫

𝑡∧𝜏

0

⟨𝜉,𝐷𝜙 (𝑌
𝑠
) 𝛼

𝜙,𝜁
(𝑌

𝑠
)

+
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑌
𝑠
) (𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
) , 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
))⟩𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

⟨𝜉, 𝐷𝜙 (𝑌
𝑠
) 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
)⟩𝑑𝛽

𝑗

𝑠
, 𝑡 ≥ 0.

(206)

On the other hand, since 𝑋 is a local weak solution to (176)
with initial condition ℎ and lifetime 𝜏, we have P-almost
surely for all 𝑡 ≥ 0 the identity

⟨𝜉, 𝑋
𝑡∧𝜏

⟩ = ⟨𝜉, ℎ⟩ + ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜉, 𝑋
𝑠
⟩ + ⟨𝜉, 𝛼 (𝑋

𝑠
)⟩) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

⟨𝜉, 𝜎
𝑗

(𝑋
𝑠
)⟩ 𝑑𝛽

𝑗

𝑠
.

(207)

Combining (206) and (207) yields up to indistinguishability

𝐵 + 𝑀 = 0, (208)

where the processes 𝐵 and 𝑀 are defined as

𝐵
𝑡
:= ∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜉, 𝑋
𝑠
⟩ + ⟨𝜉, 𝛼 (𝑋

𝑠
) − 𝐷𝜙 (𝑌

𝑠
) 𝛼

𝜙,𝜁
(𝑌

𝑠
)

−
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑌
𝑠
)

× (𝜎
𝑗

𝜙,𝜁
(𝑌

𝑠
) , 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
))⟩) 𝑑𝑠,

𝑡 ≥ 0,

𝑀
𝑡
:= ∑

𝑗∈N

∫

𝑡∧𝜏

0

⟨𝜉, 𝜎
𝑗

(𝑋
𝑠
) − 𝐷𝜙 (𝑌

𝑠
) 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
)⟩ 𝑑𝛽

𝑗

𝑠
,

𝑡 ≥ 0.

(209)

The process 𝐵 + 𝑀 is a continuous semimartingale with
canonical decomposition (208). Since the canonical decom-
position of a continuous semimartingale is unique up to
indistinguishability, we deduce that 𝐵 = 𝑀 = 0 up to
indistinguishability. Using the Itô isometry (39) we obtain P-
almost surely

∫

𝑡∧𝜏

0

(⟨𝐴
∗

𝜉, 𝑋
𝑠
⟩

+ ⟨𝜉, 𝛼 (𝑋
𝑠
) − 𝐷𝜙 (𝑌

𝑠
) 𝛼

𝜙,𝜁
(𝑌

𝑠
)

−
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑌
𝑠
) (𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
) , 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
))⟩)𝑑𝑠

= 0, 𝑡 ≥ 0,

∫

𝑡∧𝜏

0

∑

𝑗∈N

󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝜉, 𝜎

𝑗

(𝑋
𝑠
) − 𝐷𝜙 (𝑌

𝑠
) 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
)⟩

󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠 = 0,

𝑡 ≥ 0.

(210)
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By the continuity of the processes 𝑋 and 𝑌 we obtain for all
𝜉 ∈ D(𝐴

∗

) the following identities:

⟨𝐴
∗

𝜉, ℎ⟩ + ⟨𝜉, 𝛼 (ℎ) − 𝐷𝜙 (𝑦) 𝛼
𝜙,𝜁

(𝑦)

−
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑦) (𝜎
𝑗

𝜙,𝜁
(𝑦) , 𝜎

𝑗

𝜙,𝜁
(𝑦))⟩ = 0,

⟨𝜉, 𝜎
𝑗

(ℎ) − 𝐷𝜙 (𝑦) 𝜎
𝑗

𝜙,𝜁
(𝑦)⟩ = 0, 𝑗 ∈ N.

(211)

Consequently, the mapping 𝜉 󳨃→ ⟨𝐴
∗

𝜉, ℎ⟩ is continuous on
D(𝐴

∗

), and hence we have ℎ ∈ D(𝐴
∗∗

) by the definition
of the domain provided in (4). By Proposition 7 we have
𝐴 = 𝐴

∗∗, and thus we obtain ℎ ∈ D(𝐴), proving (195). By
Proposition 7, the domainD(𝐴

∗

) is dense in 𝐻, and thus

𝜎
𝑗

(ℎ) = 𝐷𝜙 (𝑦) 𝜎
𝑗

𝜙,𝜁
(𝑦) ∈ 𝑇

ℎ
M, 𝑗 ∈ N, (212)

showing (196). Moreover, for all 𝜉 ∈ D(𝐴
∗

) we have

⟨𝜉,𝐴ℎ + 𝛼 (ℎ) − 𝐷𝜙 (𝑦) 𝛼
𝜙,𝜁

(𝑦)

−
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑦) (𝜎
𝑗

𝜙,𝜁
(𝑦) , 𝜎

𝑗

𝜙,𝜁
(𝑦))⟩ = 0.

(213)

Since the domain D(𝐴
∗

) is dense in 𝐻, together with
Proposition 63, we obtain

𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)

= 𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

(𝐷𝜙 (𝑦) (⟨𝜁,𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩)

+𝐷
2

𝜙 (𝑦) (𝜎
𝑗

𝜙,𝜁
(𝑦) , 𝜎

𝑗

𝜙,𝜁
(𝑦)))

= 𝐷𝜙 (𝑦) 𝛼
𝜙,𝜁

(𝑦) −
1

2
∑

𝑗∈N

𝐷𝜙 (𝑦) (⟨𝜁,𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩)

= 𝐷𝜙 (𝑦)(𝛼
𝜙,𝜁

(𝑦) −
1

2
∑

𝑗∈N

⟨𝜁,𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩) ∈ 𝑇
ℎ
M,

(214)

which proves (197).
(2)⇒(1): Let ℎ

0
∈ M be arbitrary. By Proposition 61

and Remark 60 there exist 𝜁
1
, . . . , 𝜁

𝑚
∈ D(𝐴

∗

) and a
parametrization 𝜙 : 𝑉 → 𝑈 ∩ M around ℎ

0
such that the

inverse 𝜙
−1

: 𝑈 ∩ M → 𝑉 is given by 𝜙
−1

= ⟨𝜁, ∙⟩, and
𝜙 has an extension 𝜙 ∈ 𝐶

2

𝑏
(R𝑚

; 𝐻). Let ℎ ∈ 𝑈 ∩ M be

arbitrary, and set 𝑦 := ⟨𝜁, ℎ⟩ ∈ 𝑉. By relations (195), (197)
and Proposition 62, we obtain

𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)

= 𝐷𝜙 (𝑦)(⟨𝜁,𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩) ,

(215)

and thus

𝐴ℎ = 𝐷𝜙 (𝑦)( ⟨𝐴
∗

𝜁, ℎ⟩

+⟨𝜁, 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩)

− 𝛼 (ℎ) +
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ) .

(216)

Together with Lemma 66, this proves the continuity of 𝐴 on
𝑈∩M. Since ℎ

0
∈ Mwas arbitrary, this proves that𝐴 is con-

tinuous onM.
Furthermore, by (196) and Proposition 62 we have

𝜎
𝑗

(ℎ) = 𝐷𝜙 (𝑦) 𝜎
𝑗

𝜙,𝜁
(ℎ) for every 𝑗 ∈ N. (217)

Moreover, by (195), (197), and Propositions 62 and 63, we
obtain

𝐴ℎ + 𝛼 (ℎ) −
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)

= 𝐷𝜙 (𝑦)(⟨𝜁,𝐴ℎ + 𝛼 (ℎ)

−
1

2
∑

𝑗∈N

𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩)

= 𝐷𝜙 (𝑦) (⟨𝐴
∗

𝜁, ℎ⟩ + ⟨𝜁, 𝛼 (ℎ)⟩)

−
1

2
∑

𝑗∈N

𝐷𝜙 (𝑦) ⟨𝜁,𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)⟩

= 𝐷𝜙 (𝑦) 𝛼
𝜙,𝜁

(𝑦)

+
1

2
∑

𝑗∈N

(𝐷
2

𝜙 (𝑦) (𝜎
𝑗

𝜙,𝜁
(𝑦) , 𝜎

𝑗

𝜙,𝜁
(𝑦))

−𝐷𝜎
𝑗

(ℎ) 𝜎
𝑗

(ℎ)) .

(218)

This gives us

𝐴ℎ + 𝛼 (ℎ) = 𝐷𝜙 (𝑦) 𝛼
𝜙,𝜁

(𝑦)

+
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑦) (𝜎
𝑗

𝜙,𝜁
(𝑦) , 𝜎

𝑗

𝜙,𝜁
(𝑦)) .

(219)
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Now, let 𝑌 be the strong solution to (192) with initial
condition𝑦

0
:= ⟨𝜁, ℎ

0
⟩ ∈ 𝑉. Since𝑉 is open, there exists 𝜖 > 0

such that 𝐵
𝜖
(𝑦

0
) ⊂ 𝑉. We define the stopping time

𝜏 := inf {𝑡 ≥ 0 : 𝑌
𝑡
∉ 𝐵

𝜖
(𝑦

0
)} . (220)

Since the process 𝑌 has continuous sample paths and satisfies
𝑌
0
= 𝑦

0
, we have 𝜏 > 0 and P-almost surely

𝑌
𝑡∧𝜏

∈ 𝑉 ∀𝑡 ≥ 0. (221)

Therefore, defining the𝐻-valued process𝑋 := 𝜙(𝑌), we have
P-almost surely

𝑋
𝑡∧𝜏

∈ 𝑈 ∩ M ∀𝑡 ≥ 0. (222)

Moreover, using Itô’s formula (Theorem 26) and incorporat-
ing (217), (219), we obtain P-almost surely

𝑋
𝑡∧𝜏

= 𝜙 (𝑦
0
)

+ ∫

𝑡∧𝜏

0

(𝐷𝜙 (𝑌
𝑠
) 𝛼

𝜙,𝜁
(𝑌

𝑠
)

+
1

2
∑

𝑗∈N

𝐷
2

𝜙 (𝑌
𝑠
) 𝜙 (𝑌

𝑠
)

× (𝜎
𝑗

𝜙,𝜁
(𝑌

𝑠
) , 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
))) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝐷𝜙 (𝑌
𝑠
) 𝜎

𝑗

𝜙,𝜁
(𝑌

𝑠
) 𝑑𝛽

𝑗

𝑠

= 𝜙 (𝑦
0
) + ∫

𝑡∧𝜏

0

(𝐴𝜙 (𝑌
𝑠
) + 𝛼 (𝜙 (𝑌

𝑠
))) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝜎
𝑗

(𝜙 (𝑌
𝑠
)) 𝑑𝛽

𝑗

𝑠

= ℎ
0
+ ∫

𝑡∧𝜏

0

(𝐴𝑋
𝑠
+ 𝛼 (𝑋

𝑠
)) 𝑑𝑠

+ ∑

𝑗∈N

∫

𝑡∧𝜏

0

𝜎
𝑗

(𝑋
𝑠
) 𝑑𝛽

𝑗

𝑠
, 𝑡 ≥ 0,

(223)

showing that𝑋 is a local strong solution to (44) with lifetime
𝜏.

(3)⇒(1): This implication is a direct consequence of
Proposition 29.

The results from this section are closely related to the exis-
tence of finite dimensional realizations, that is, the existence
of invariantmanifolds for each starting point ℎ

0
, andwe point

out the papers [17–22] regarding this topic. Furthermore, we
mention thatTheorem 68 has been extended in [23] to SPDEs
with jumps.
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