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The main objective of this paper is to explore the relationship between the stochastic maximum principle (SMP in short) and
dynamic programming principle (DPP in short), for singular control problems of jump diffusions. First, we establish necessary
as well as sufficient conditions for optimality by using the stochastic calculus of jump diffusions and some properties of singular
controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint
equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation.
Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian
motion with jumps.

1. Introduction

In this paper, we consider a mixed classical-singular control
problem, in which the state evolves according to a stochastic
differential equation, driven by a Poisson random measure
and an independent multidimensional Brownian motion, of
the following form:

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝑡 + 𝜎 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝐵

𝑡

+ ∫
𝐸

𝛾 (𝑡, 𝑥
𝑡−
, 𝑢

𝑡
, 𝑒) �̃� (𝑑𝑡, 𝑑𝑒) + 𝐺

𝑡
𝑑𝜉

𝑡
,

𝑥
0
= 𝑥,

(1)

where 𝑏, 𝜎, 𝛾, and 𝐺 are given deterministic functions and 𝑥
is the initial state. The control variable is a suitable process
(𝑢, 𝜉), where 𝑢 : [0, 𝑇] × Ω → 𝐴

1
⊂ R𝑑 is the usual

classical absolutely continuous control and 𝜉 : [0, 𝑇] × Ω →

𝐴
2
= ([0,∞))

𝑚 is the singular control, which is an increasing

process, continuous on the right with limits on the left, with
𝜉
0−
= 0. The performance functional has the form

𝐽 (𝑢, 𝜉) = 𝐸 [∫

𝑇

0

𝑓 (𝑡, 𝑥
𝑡
, 𝑢

𝑡
) 𝑑𝑡 + ∫

𝑇

0

𝑘 (𝑡) 𝑑𝜉
𝑡
+ 𝑔 (𝑥

𝑇
)] .

(2)

The objective of the controller is to choose a couple
(𝑢

⋆
, 𝜉

⋆
) of adapted processes, in order to maximize the

performance functional.
In the first part of our present work, we investigate

the question of necessary as well as sufficient optimality
conditions, in the form of a Pontryagin stochastic maximum
principle. In the second part, we give under regularity
assumptions, a useful verification theorem. Then, we show
that the adjoint process coincides with the spatial gradient of
the value function, evaluated along the optimal trajectory of
the state equation. Finally, using these theoretical results, we
solve explicitly an example, on optimal harvesting strategy
for a geometric Brownian motion, with jumps. Note that
our results improve those in [1, 2] to the jump diffusion
setting. Moreover we generalize results in [3, 4], by allowing
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both classical and singular controls, at least in the complete
information setting. Note that in our control problem, there
are two types of jumps for the state process, the inaccessible
ones which come from the Poisson martingale part and
the predictable ones which come from the singular control
part. The inclusion of these jump terms introduces a major
difference with respect to the case without singular control.

Stochastic control problems of singular type have received
considerable attention, due to their wide applicability in
a number of different areas; see [4–8]. In most cases,
the optimal singular control problem was studied through
dynamic programming principle; see [9], where it was shown
in particular that the value function is continuous and is the
unique viscosity solution of the HJB variational inequality.

The one-dimensional problems of the singular type,
without the classical control, have been studied by many
authors. It was shown that the value function satisfies a
variational inequality, which gives rise to a free boundary
problem, and the optimal state process is a diffusion reflected
at the free boundary. Bather and Chernoff [10] were the first
to formulate such a problem. Beneš et al. [11] explicitly solved
a one-dimensional example by observing that the value
function in their example is twice continuously differentiable.
This regularity property is called the principle of smooth fit.
The optimal control can be constructed by using the reflected
Brownian motion; see Lions and Sznitman [12] for more
details. Applications to irreversible investment, industry
equilibrium, and portfolio optimization under transaction
costs can be found in [13]. A problem of optimal harvesting
from a population in a stochastic crowded environment is
proposed in [14] to represent the size of the population at
time 𝑡 as the solution of the stochastic logistic differential
equation. The two-dimensional problem that arises in port-
folio selection models, under proportional transaction costs,
is of singular type and has been considered by Davis and
Norman [15]. The case of diffusions with jumps is studied
by Øksendal and Sulem [8]. For further contributions on
singular control problems and their relationshipwith optimal
stopping problems, the reader is referred to [4, 5, 7, 16, 17].

The stochastic maximum principle is another power-
ful tool for solving stochastic control problems. The first
result that covers singular control problems was obtained
by Cadenillas and Haussmann [18], in which they consider
linear dynamics, convex cost criterion, and convex state
constraints. A first-orderweak stochasticmaximumprinciple
was developed via convex perturbations method for both
absolutely continuous and singular components by Bahlali
and Chala [1]. The second-order stochastic maximum prin-
ciple for nonlinear SDEs with a controlled diffusion matrix
was obtained by Bahlali and Mezerdi [19], extending the
Peng maximum principle [20] to singular control problems.
A similar approach has been used by Bahlali et al. in [21], to
study the stochastic maximum principle in relaxed-singular
optimal control in the case of uncontrolled diffusion. Bahlali
et al. in [22] discuss the stochastic maximum principle in
singular optimal control in the case where the coefficients
are Lipschitz continuous in 𝑥, provided that the classical
derivatives are replaced by the generalized ones. See also the
recent paper by Øksendal and Sulem [4], where Malliavin

calculus techniques have been used to define the adjoint
process.

Stochastic control problems in which the system is
governed by a stochastic differential equation with jumps,
without the singular part, have been also studied, both by
the dynamic programming approach and by the Pontryagin
maximum principle. The HJB equation associated with this
problems is a nonlinear second-order parabolic integro-
differential equation. Pham [23] studied a mixed optimal
stopping and stochastic control of jump diffusion processes
by using the viscosity solutions approach. Some verification
theorems of various types of problems for systems governed
by this kind of SDEs are discussed by Øksendal and Sulem
[8]. Some results that cover the stochasticmaximumprinciple
for controlled jump diffusion processes are discussed in [3,
24, 25]. In [3] the sufficient maximum principle and the
link with the dynamic programming principle are given
by assuming the smoothness of the value function. Let us
mention that in [24] the verification theorem is established
in the framework of viscosity solutions and the relation-
ship between the adjoint processes and some generalized
gradients of the value function are obtained. Note that Shi
and Wu [24] extend the results of [26] to jump diffusions.
See also [27] for systematic study of the continuous case.
The second-order stochastic maximum principle for optimal
controls of nonlinear dynamics, with jumps and convex state
constraints, was developed via spike variation method, by
Tang and Li [25]. These conditions are described in terms of
two adjoint processes, which are linear backward SDEs. Such
equations have important applications in hedging problems
[28]. Existence and uniqueness for solutions to BSDEs with
jumps and nonlinear coefficients have been treated by Tang
and Li [25] and Barles et al. [29].The linkwith integral-partial
differential equations is studied in [29].

The plan of the paper is as follows. In Section 2, we
give some preliminary results and notations. The purpose of
Section 3 is to derive necessary as well as sufficient optimality
conditions. In Section 4, we give, under-regularity assump-
tions, a verification theorem for the value function. Then, we
prove that the adjoint process is equal to the derivative of the
value function evaluated at the optimal trajectory, extending
in particular [2, 3]. An example has been solved explicitly, by
using the theoretical results.

2. Assumptions and Problem Formulation

The purpose of this section is to introduce some notations,
which will be needed in the subsequent sections. In all what
follows, we are given a probability space (Ω,F, (F

𝑡
)
𝑡≤𝑇
,P),

such that F
0
contains the P-null sets, F

𝑇
= F for an

arbitrarily fixed time horizon 𝑇, and (F
𝑡
)
𝑡≤𝑇

satisfies the
usual conditions. We assume that (F

𝑡
)
𝑡≤𝑇

is generated by a
𝑑-dimensional standard Brownianmotion𝐵 and an indepen-
dent jump measure 𝑁 of a Lévy process 𝜂, on [0, 𝑇] × 𝐸,
where 𝐸 ⊂ R𝑚

\ {0} for some 𝑚 ≥ 1. We denote by (F𝐵

𝑡
)
𝑡≤𝑇

(resp., (F𝑁

𝑡
)
𝑡≤𝑇

) the P-augmentation of the natural filtration
of 𝐵 (resp.,𝑁). We assume that the compensator of𝑁 has the
form 𝜇(𝑑𝑡, 𝑑𝑒) = ](𝑑𝑒)𝑑𝑡, for some 𝜎-finite Lévy measure ]
on 𝐸, endowed with its Borel 𝜎-fieldB(𝐸). We suppose that
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∫
𝐸
1∧ |𝑒|

2](𝑑𝑒) < ∞ and set �̃�(𝑑𝑡, 𝑑𝑒) = 𝑁(𝑑𝑡, 𝑑𝑒) − ](𝑑𝑒)𝑑𝑡,
for the compensated jumpmartingale randommeasure of𝑁.

Obviously, we have

F
𝑡
= 𝜎 [∫∫

𝐴×(0,𝑠]

𝑁(𝑑𝑟, 𝑑𝑒) ; 𝑠 ≤ 𝑡, 𝐴 ∈B (𝐸)]

∨ 𝜎 [𝐵
𝑠
; 𝑠 ≤ 𝑡] ∨N,

(3)

whereN denotes the totality of ]-null sets and𝜎
1
∨ 𝜎

2
denotes

the 𝜎-field generated by 𝜎
1
∪ 𝜎

2
.

Notation. Any element 𝑥 ∈ R𝑛 will be identified with a
column vector with 𝑛 components, and its norm is |𝑥| =
|𝑥

1
| + ⋅ ⋅ ⋅ + |𝑥

𝑛
|. The scalar product of any two vectors 𝑥 and

𝑦 on R𝑛 is denoted by 𝑥𝑦 or ∑𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖. For a function ℎ, we

denote by ℎ
𝑥
(resp., ℎ

𝑥𝑥
) the gradient or Jacobian (resp., the

Hessian) of ℎ with respect to the variable 𝑥.
Given 𝑠 < 𝑡, let us introduce the following spaces.

(i) L2

],(𝐸;R𝑛) or L
2

] is the set of square integrable functions
l(⋅) : 𝐸 → R𝑛 such that

‖l (𝑒)‖2L2
],(𝐸;R𝑛)

:= ∫
𝐸

|l (𝑒)|2] (𝑑𝑒) < ∞. (4)

(ii) S2

([𝑠,𝑡];R𝑛) is the set of R𝑛-valued adapted cadlag
processes 𝑃 such that

‖𝑃‖S2
([𝑠,𝑡];R𝑛)

:= E[ sup
𝑟∈[𝑠,𝑡]

𝑃𝑟

2

]

1/2

< ∞. (5)

(iii) M2

([𝑠,𝑡];R𝑛) is the set of progressively measurable R𝑛-
valued processes 𝑄 such that

‖𝑄‖M2
([𝑠,𝑡];R𝑛)

:= E[∫
𝑡

𝑠

𝑄𝑟


2

𝑑𝑟]

1/2

< ∞. (6)

(iv) L2

],([𝑠,𝑡];R𝑛) is the set of B([0, 𝑇] × Ω) ⊗ B(𝐸)

measurable maps 𝑅 : [0, 𝑇] × Ω × 𝐸 → R𝑛 such
that

‖𝑅‖L2
],([𝑠,𝑡];R𝑛)

:= E[∫
𝑡

𝑠

∫
𝐸

𝑅𝑟
(𝑒)

2] (𝑑𝑒) 𝑑𝑟]

1/2

< ∞. (7)

To avoid heavy notations, we omit the subscript
([𝑠, 𝑡];R𝑛

) in these notations when (𝑠, 𝑡) = (0, 𝑇).
Let 𝑇 be a fixed strictly positive real number; 𝐴

1
is a

closed convex subset ofR𝑛 and𝐴
2
= ([0,∞)

𝑚
). Let us define

the class of admissible control processes (𝑢, 𝜉).

Definition 1. An admissible control is a pair of measurable,
adapted processes 𝑢 : [0, 𝑇]×Ω → 𝐴

1
, and 𝜉 : [0, 𝑇]×Ω →

𝐴
2
, such that

(1) 𝑢 is a predictable process, 𝜉 is of bounded variation,
nondecreasing, right continuous with left-hand lim-
its, and 𝜉

0−
= 0,

(2) E[sup
𝑡∈[0,𝑇]

|𝑢
𝑡
|
2
+ |𝜉

𝑇
|
2
] < ∞.

We denote by U = U
1
× U

2
the set of all admissible

controls. Here U
1
(resp., U

2
) represents the set of the

admissible controls 𝑢 (resp., 𝜉).

Assume that, for (𝑢, 𝜉) ∈ U, 𝑡 ∈ [0, 𝑇], the state 𝑥
𝑡
of our

system is given by

𝑑𝑥
𝑡
= 𝑏 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝑡 + 𝜎 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) 𝑑𝐵

𝑡

+ ∫
𝐸

𝛾 (𝑡, 𝑥
𝑡−
, 𝑢

𝑡
, 𝑒) �̃� (𝑑𝑡, 𝑑𝑒) + 𝐺

𝑡
𝑑𝜉

𝑡
,

𝑥
0
= 𝑥,

(8)

where 𝑥 ∈ R𝑛 is given, representing the initial state.
Let

𝑏 : [0, 𝑇] ×R
𝑛
× 𝐴

1
→ R

𝑛
,

𝜎 : [0, 𝑇] ×R
𝑛
× 𝐴

1
→ R

𝑛×𝑑
,

𝛾 : [0, 𝑇] ×R
𝑛
× 𝐴

1
× 𝐸 → R

𝑛
,

𝐺 : [0, 𝑇] → R
𝑛×𝑚

(9)

be measurable functions.
Notice that the jump of a singular control 𝜉 ∈ U

2
at any

jumping time 𝜏 is defined by Δ𝜉
𝜏
= 𝜉

𝜏
− 𝜉

𝜏−
, and we let

𝜉
𝑐

𝑡
= 𝜉

𝑡
− ∑

0<𝜏≤𝑡

Δ𝜉
𝜏
, (10)

be the continuous part of 𝜉.
We distinguish between the jumps of 𝑥

𝜏
caused by the

jump of𝑁(𝜏, 𝑒), defined by

Δ
𝑁
𝑥
𝜏
:= ∫

𝐸

𝛾 (𝜏, 𝑥
𝜏−
, 𝑢

𝜏
, 𝑒)𝑁 ({𝜏} , 𝑑𝑒)

:= {
𝛾 (𝜏, 𝑥

𝜏−
, 𝑢

𝜏
, 𝑒) if 𝜂 has a jump of size 𝑒 at 𝜏,

0 otherwise,
(11)

and the jump of 𝑥
𝜏
caused by the singular control 𝜉, denoted

by Δ
𝜉
𝑥
𝜏
:= 𝐺

𝜏
Δ𝜉

𝜏
. In the above, 𝑁({𝜏}, ⋅) represents the

jump in the Poisson randommeasure, occurring at time 𝜏. In
particular, the general jump of the state process at 𝜏 is given
by Δ𝑥

𝜏
= 𝑥

𝜏
− 𝑥

𝜏−
= Δ

𝜉
𝑥
𝜏
+ Δ

𝑁
𝑥
𝜏
.

If 𝜑 is a continuous real function, we let

Δ
𝜉
𝜑 (𝑥

𝜏
) := 𝜑 (𝑥

𝜏
) − 𝜑 (𝑥

𝜏−
+ Δ

𝑁
𝑥
𝜏
) . (12)

The expression (12) defines the jump in the value of
𝜑(𝑥

𝜏
) caused by the jump of 𝑥 at 𝜏. We emphasize that the

possible jumps in 𝑥
𝜏
coming from the Poisson measure are

not included in Δ
𝜉
𝜑(𝑥

𝜏
).

Suppose that the performance functional has the form

𝐽 (𝑢, 𝜉) = E [∫
𝑇

0

𝑓 (𝑡, 𝑥
𝑡
, 𝑢

𝑡
) 𝑑𝑡 + 𝑔 (𝑥

𝑇
) + ∫

𝑇

𝑠

𝑘
𝑡
𝑑𝜉

𝑡
] ,

for (𝑢, 𝜉) ∈ U,
(13)
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where 𝑓 : [0, 𝑇] × R𝑛
× 𝐴

1
→ R, 𝑔 : R𝑛

→ R, and 𝑘 :
[0, 𝑇] → ([0,∞))

𝑚, with 𝑘
𝑡
𝑑𝜉

𝑡
= ∑

𝑚

𝑙=1
𝑘
𝑙

𝑡
𝑑𝜉

𝑙

𝑡
.

An admissible control (𝑢⋆, 𝜉⋆) is optimal if

𝐽 (𝑢
⋆
, 𝜉

⋆
) = sup

(𝑢,𝜉)∈U

𝐽 (𝑢, 𝜉) . (14)

Let us assume the following.

(H
1
) Themaps 𝑏,𝜎, 𝛾, and𝑓 are continuously differentiable
with respect to (𝑥, 𝑢) and 𝑔 is continuously differen-
tiable in 𝑥.

(H
2
) The derivatives 𝑏

𝑥
, 𝑏

𝑢
, 𝜎

𝑥
, 𝜎

𝑢
, 𝛾

𝑥
, 𝛾

𝑢
, 𝑓

𝑥
, 𝑓

𝑢
, and 𝑔

𝑥
are

continuous in (𝑥, 𝑢) and uniformly bounded.

(H
3
) 𝑏, 𝜎, 𝛾, and 𝑓 are bounded by𝐾

1
(1 + |𝑥| + |𝑢|), and 𝑔

is bounded by 𝐾
1
(1 + |𝑥|), for some𝐾

1
> 0.

(H
4
) For all (𝑢, 𝑒) ∈ 𝐴

1
× 𝐸, the map

(𝑥, 𝜁) ∈ R
𝑛
×R

𝑛
→ 𝑎 (𝑡, 𝑥, 𝑢, 𝜁; 𝑒)

:= 𝜁
T
(𝛾

𝑥
(𝑡, 𝑥, 𝑢, 𝑒) + 𝐼

𝑑
) 𝜁

(15)

satisfies uniformly in (𝑥, 𝜁) ∈ R𝑛
×R𝑛,

𝑎 (𝑡, 𝑥, 𝑢, 𝜁; 𝑒) ≥
𝜁

2

𝐾
−1

2
, for some 𝐾

2
> 0. (16)

(H
5
) 𝐺, 𝑘 are continuous and bounded.

3. The Stochastic Maximum Principle

Let us first define the usual Hamiltonian associated to the
control problem by

𝐻(𝑡, 𝑥, 𝑢, 𝑝, 𝑞,X (⋅)) = 𝑓 (𝑡, 𝑥, 𝑢) + 𝑝𝑏 (𝑡, 𝑥, 𝑢)

+

𝑛

∑

𝑗=1

𝑞
𝑗
𝜎
𝑗
(𝑡, 𝑥, 𝑢)

+ ∫
𝐸

X (𝑒) 𝛾 (𝑡, 𝑥, 𝑢, 𝑒) ] (𝑑𝑒) ,

(17)

where (𝑡, 𝑥, 𝑢, 𝑝, 𝑞,X(⋅)) ∈ [0, 𝑇]×R𝑛
×𝐴

1
×R𝑛

×R𝑛×𝑛
×L2

] . 𝑞
𝑗

and 𝜎𝑗 for 𝑗 = 1, . . . , 𝑛, denote the 𝑗th column of the matrices
𝑞 and 𝜎, respectively.

Let (𝑢⋆, 𝜉⋆) be an optimal control and let 𝑥⋆ be the
corresponding optimal trajectory. Then, we consider a triple
(𝑝, 𝑞, 𝑟(⋅)) of square integrable adapted processes associated
with (𝑢⋆, 𝑥⋆), with values in R𝑛

×R𝑛×𝑑
×R𝑛 such that

𝑑𝑝
𝑡
= −𝐻

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) 𝑑𝑡

+ 𝑞
𝑡
𝑑𝐵

𝑡
+ ∫

𝐸

𝑟
𝑡
(𝑒) �̃� (𝑑𝑡, 𝑑𝑒) ,

𝑝
𝑇
= 𝑔

𝑥
(𝑥

⋆

𝑇
) .

(18)

3.1. Necessary Conditions of Optimality. The purpose of this
section is to derive optimality necessary conditions, satisfied
by an optimal control, assuming that the solution exists. The
proof is based on convex perturbations for both absolutely
continuous and singular components of the optimal control
and on some estimates of the state processes. Note that our
results generalize [1, 2, 21] for systems with jumps.

Theorem 2 (necessary conditions of optimality). Let (𝑢⋆, 𝜉⋆)
be an optimal control maximizing the functional 𝐽 overU, and
let 𝑥⋆ be the corresponding optimal trajectory.Then there exists
an adapted process (𝑝, 𝑞, 𝑟(⋅)) ∈ S2

× M2
× L2

] , which is
the unique solution of the BSDE (18), such that the following
conditions hold.

(i) For all V ∈ 𝐴
1

𝐻
𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (V

𝑡
− 𝑢

⋆

𝑡
) ≤ 0,

𝑑𝑡—𝑎.𝑒., P—𝑎.𝑠.
(19)

(ii) For all 𝑡 ∈ [0, 𝑇], with probability 1

𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
≤ 0, for 𝑖 = 1, . . . , 𝑚, (20)

𝑚

∑

𝑖=1

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

⋆𝑐𝑖

𝑡
= 0, (21)

𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) ≤ 0, for 𝑖 = 1, . . . , 𝑚, (22)

𝑚

∑

𝑖=1

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)≤0}
Δ𝜉

⋆𝑖

𝑡
= 0, (23)

where Δ
𝑁
𝑝
𝑡
= ∫

𝐸
𝑟
𝑡
(𝑒)𝑁({𝑡}, 𝑑𝑒).

In order to prove Theorem 2, we present some auxiliary
results.

3.1.1. Variational Equation. Let (V, 𝜉) ∈ U be such that (𝑢⋆ +
V, 𝜉⋆+𝜉) ∈ U.The convexity condition of the control domain
ensures that for 𝜀 ∈ (0, 1) the control (𝑢⋆+𝜀V, 𝜉⋆+𝜀𝜉) is also in
U.We denote by𝑥𝜀 the solution of the SDE (8) corresponding
to the control (𝑢⋆ + 𝜀V, 𝜉⋆ + 𝜀𝜉). Then by standard arguments
from stochastic calculus, it is easy to check the following
estimate.

Lemma 3. Under assumptions (H
1
)–(H

5
), one has

lim
𝜀→0

E[ sup
𝑡∈[0,𝑇]

𝑥
𝜀

𝑡
− 𝑥

⋆

𝑡


2

] = 0. (24)

Proof. From assumptions (H
1
)–(H

5
), we get by using the

Burkholder-Davis-Gundy inequality

E[ sup
𝑡∈[0,𝑇]

𝑥
𝜀

𝑡
− 𝑥

⋆

𝑡


2

]

≤ 𝐾∫

𝑇

0

E[ sup
𝜏∈[0,𝑠]

𝑥
𝜀

𝜏
− 𝑥

⋆

𝜏


2

]𝑑𝑠

+𝐾𝜀
2
(∫

𝑇

0

E[ sup
𝜏∈[0,𝑠]

V𝜏

2

]𝑑𝑠 + E
𝜉𝑇

2

) .

(25)



International Journal of Stochastic Analysis 5

From Definition 1 and Gronwall’s lemma, the result fol-
lows immediately by letting 𝜀 go to zero.

We define the process 𝑧
𝑡
= 𝑧

𝑢
⋆

,V,𝜉
𝑡

by

𝑑𝑧
𝑡
= {𝑏

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝑧

𝑡
+ 𝑏

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
} 𝑑𝑡

+

𝑑

∑

𝑗=1

{𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝑧

𝑡
+ 𝜎

𝑗

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

t ) V𝑡} 𝑑𝐵
𝑗

𝑡

+ ∫
𝐸

{𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) 𝑧

𝑡−
+ 𝛾

𝑢
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) V

𝑡
}

× �̃� (𝑑𝑡, 𝑑𝑒) + 𝐺
𝑡
𝑑𝜉

𝑡
,

𝑧
0
= 0.

(26)

From (H
2
) and Definition 1, one can find a unique

solution 𝑧which solves the variational equation (26), and the
following estimate holds.

Lemma 4. Under assumptions (H
1
)–(H

5
), it holds that

lim
𝜀→0

E



𝑥
𝜀

𝑡
− 𝑥

⋆

𝑡

𝜀
− 𝑧

𝑡



2

= 0. (27)

Proof. Let

Γ
𝜀

𝑡
=
𝑥
𝜀

𝑡
− 𝑥

⋆

𝑡

𝜀
− 𝑧

𝑡
. (28)

We denote 𝑥𝜇,𝜀
𝑡
= 𝑥

⋆

𝑡
+ 𝜇𝜀(Γ

𝜀

𝑡
+ 𝑧

𝑡
) and 𝑢𝜇,𝜀

𝑡
= 𝑢

⋆

𝑡
+ 𝜇𝜀V

𝑡
,

for notational convenience. Then we have immediately that
Γ
𝜀

0
= 0 and Γ𝜀

𝑡
satisfies the following SDE:

𝑑Γ
𝜀

𝑡
= {
1

𝜀
(𝑏 (𝑡, 𝑥

𝜇,𝜀

𝑡
, 𝑢

𝜇,𝜀

𝑡
) − 𝑏 (𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
))

− (𝑏
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝑧

𝑡
+ 𝑏

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
) } 𝑑𝑡

+ {
1

𝜀
(𝜎 (𝑡, 𝑥

𝜇,𝜀

𝑡
, 𝑢

𝜇,𝜀

𝑡
) − 𝜎 (𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
))

− (𝜎
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝑧

𝑡
+ 𝜎

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
) } 𝑑𝐵

𝑡

+ ∫
𝐸

{
1

𝜀
(𝛾 (𝑡, 𝑥

𝜇,𝜀

𝑡−
, 𝑢

𝜇,𝜀

𝑡
, 𝑒) − 𝛾 (𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒))

− (𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) 𝑧

𝑡−
+ 𝛾

𝑢
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) V

𝑡
) }

× �̃� (𝑑𝑡, 𝑑𝑒) .

(29)

Since the derivatives of the coefficients are bounded, and
from Definition 1, it is easy to verify by Gronwall’s inequality
that Γ𝜀 ∈ S2 and

E
Γ

𝜀

𝑡


2

≤ 𝐾E∫
𝑡

0



∫

1

0

𝑏
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) Γ

𝜀

𝑠
𝑑𝜇



2

𝑑𝑠

+ 𝐾E∫
𝑡

0



∫

1

0

𝜎
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) Γ

𝜀

𝑠
𝑑𝜇



2

𝑑𝑠

+ 𝐾E∫
𝑡

0

∫
𝐸



∫

1

0

𝛾
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
, 𝑒) Γ

𝜀

𝑠
𝑑𝜇



2

] (𝑑𝑒) 𝑑𝑠

+ 𝐾E
𝜌

𝜀

𝑡


2

,

(30)

where 𝜌𝜀
𝑡
is given by

𝜌
𝜀

𝑡
= − ∫

𝑡

0

𝑏
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) 𝑧

𝑠
𝑑𝑠 − ∫

𝑡

0

𝜎
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) 𝑧

𝑠
𝑑𝐵

𝑠

− ∫

𝑡

0

∫
𝐸

𝛾
𝑥
(𝑠, 𝑥

⋆

𝑠−
, 𝑢

⋆

𝑠
, 𝑒) 𝑧

𝑠−
�̃� (𝑑𝑠, 𝑑𝑒)

− ∫

𝑡

0

𝑏V (𝑠, 𝑥
⋆

𝑠
, 𝑢

⋆

𝑠
) V

𝑠
𝑑𝑠 − ∫

𝑡

0

𝜎V (𝑠, 𝑥
⋆

𝑠
, 𝑢

⋆

𝑠
) V

𝑠
𝑑𝐵

𝑠

− ∫

𝑡

0

∫
𝐸

𝛾V (𝑠, 𝑥
⋆

𝑠−
, 𝑢

⋆

𝑠
, 𝑒) V

𝑠
�̃� (𝑑𝑠, 𝑑𝑒)

+ ∫

𝑡

0

∫

1

0

𝑏
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) 𝑧

𝑠
𝑑𝜇 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝜎
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) 𝑧

𝑠
𝑑𝜇 𝑑𝐵

𝑠

+ ∫

𝑡

0

∫
𝐸

∫

1

0

𝛾
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠−
, 𝑢

𝜇,𝜀

𝑠
, 𝑒) 𝑧

𝑠−
𝑑𝜇�̃� (𝑑𝑠, 𝑑𝑒)

+ ∫

𝑡

0

∫

1

0

𝑏V (𝑠, 𝑥
𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) V

𝑠
𝑑𝜇 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝜎V (𝑠, 𝑥
𝜇,𝜀

s , 𝑢
𝜇,𝜀

𝑠
) V

𝑠
𝑑𝜇 𝑑𝐵

𝑠

+ ∫

𝑡

0

∫
𝐸

∫

1

0

𝛾V (𝑠, 𝑥
𝜇,𝜀

𝑠−
, 𝑢

𝜇,𝜀

𝑠
, 𝑒) V

𝑠
𝑑𝜇�̃� (𝑑𝑠, 𝑑𝑒) .

(31)

Since 𝑏
𝑥
, 𝜎

𝑥
, and 𝛾

𝑥
are bounded, then

E
Γ

𝜀

𝑡


2

≤ 𝑀E∫
𝑡

0

Γ
𝜀

𝑠


2

𝑑𝑠 +𝑀E
𝜌

𝜀

𝑡


2

, (32)

where𝑀 is a generic constant depending on the constants𝐾,
](𝐸), and 𝑇. We conclude from Lemma 3 and the dominated
convergence theorem, that lim

𝜀→0
𝜌
𝜀

𝑡
= 0. Hence (27)

follows from Gronwall’s lemma and by letting 𝜀 go to 0. This
completes the proof.

3.1.2. Variational Inequality. Let Φ be the solution of the
linear matrix equation, for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇

𝑑Φ
𝑠,𝑡
= 𝑏

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)Φ

𝑠,𝑡
𝑑𝑡 +

𝑑

∑

𝑗=1

𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)Φ

𝑠,𝑡
𝑑𝐵

𝑗

𝑡

+ ∫
𝐸

𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) Φ

𝑠,𝑡−
�̃� (𝑑𝑡, 𝑑𝑒) ,

Φ
𝑠,𝑠
= 𝐼

𝑑
,

(33)

where 𝐼
𝑑
is the 𝑛 × 𝑛 identity matrix. This equation is linear,

with bounded coefficients, then it admits a unique strong
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solution. Moreover, the condition (H
4
) ensures that the

tangent process Φ is invertible, with an inverse Ψ satisfying
suitable integrability conditions.

From Itô’s formula, we can easily check that 𝑑(Φ
𝑠,𝑡
Ψ
𝑠,𝑡
) =

0, and Φ
𝑠,𝑠
Ψ
𝑠,𝑠
= 𝐼

𝑑
, where Ψ is the solution of the following

equation

𝑑Ψ
𝑠,𝑡
= −Ψ

𝑠,𝑡

{

{

{

𝑏
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) −

𝑑

∑

𝑗=1

𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝜎

𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)

−∫
𝐸

𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) ] (𝑑𝑒)

}

}

}

𝑑𝑡

−

𝑑

∑

𝑗=1

Ψ
𝑠,𝑡
𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝑑𝐵

𝑗

𝑡

− Ψ
𝑠,𝑡−
∫
𝐸

(𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) + 𝐼

𝑑
)
−1

𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒)

× 𝑁 (𝑑𝑡, 𝑑𝑒) ,

Ψ
𝑠,𝑠
= 𝐼

𝑑
,

(34)

so Ψ = Φ−1. If 𝑠 = 0 we simply write Φ
0,𝑡
= Φ

𝑡
and Ψ

0,𝑡
= Ψ

𝑡
.

By the integration by parts formula ([8, Lemma 3.6]), we can
see that the solution of (26) is given by 𝑧

𝑡
= Φ

𝑡
𝜂
𝑡
, where 𝜂

𝑡
is

the solution of the stochastic differential equation

𝑑𝜂
𝑡
= Ψ

𝑡

{

{

{

𝑏
𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
−

𝑑

∑

𝑗=1

𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝜎

𝑗

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡

−∫
𝐸

𝛾
𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑧) V

𝑡
] (𝑑𝑒)

}

}

}

𝑑𝑡

+

𝑑

∑

𝑗=1

Ψ
𝑡
𝜎
𝑗

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
𝑑𝐵

𝑗

𝑡

+ Ψ
𝑡−
∫
𝐸

(𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) + 𝐼

𝑑
)
−1

× 𝛾
𝑢
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) V

𝑡
𝑁(𝑑𝑡, 𝑑𝑒)

+ Ψ
𝑡
𝐺

𝑡
𝑑𝜉

𝑡
− Ψ

𝑡
∫
𝐸

(𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) + 𝐼

𝑑
)
−1

× 𝛾
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒)𝑁 ({𝑡} , 𝑑𝑒) 𝐺

𝑡
Δ𝜉

𝑡
,

𝜂
0
= 0.

(35)
Let us introduce the following convex perturbation of the

optimal control (𝑢⋆, 𝜉⋆) defined by
(𝑢

⋆,𝜀
, 𝜉

⋆,𝜀
) = (𝑢

⋆
+ 𝜀V, 𝜉⋆ + 𝜀𝜉) , (36)

for some (V, 𝜉) ∈ U and 𝜀 ∈ (0, 1). Since (𝑢⋆, 𝜉⋆) is an optimal
control, then 𝜀−1(𝐽(𝑢𝜀, 𝜉𝜀) − 𝐽(𝑢⋆, 𝜉⋆)) ≤ 0. Thus a necessary
condition for optimality is that

lim
𝜀→0

𝜀
−1
(𝐽 (𝑢

𝜀
, 𝜉

𝜀
) − 𝐽 (𝑢

⋆
, 𝜉

⋆
)) ≤ 0. (37)

The rest of this subsection is devoted to the computation
of the above limit.Wewill see that the expression (37) leads to
a precise description of the optimal control (𝑢⋆, 𝜉⋆) in terms
of the adjoint process. First, it is easy to prove the following
lemma.

Lemma 5. Under assumptions (H
1
)–(H

5
), one has

𝐼 = lim
𝜀→0

𝜀
−1
(𝐽 (𝑢

𝜀
, 𝜉

𝜀
) − 𝐽 (𝑢

⋆
, 𝜉

⋆
))

= E [∫
𝑇

0

{𝑓
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) 𝑧

𝑠
+ 𝑓

𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) V

𝑠
} 𝑑𝑠

+ 𝑔
𝑥
(𝑥

⋆

𝑇
) 𝑧

𝑇
+∫

𝑇

0

𝑘
𝑡
𝑑𝜉

𝑡
] .

(38)

Proof. Weuse the same notations as in the proof of Lemma 4.
First, we have

𝜀
−1
(𝐽 (𝑢

𝜀
, 𝜉

𝜀
) − 𝐽 (𝑢

⋆
, 𝜉

⋆
))

= E [∫
𝑇

0

∫

1

0

{𝑓
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) 𝑧

𝑠
+ 𝑓

𝑢
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) V

𝑠
} 𝑑𝜇 𝑑𝑠

+ ∫

1

0

𝑔
𝑥
(𝑥

𝜇,𝜀

𝑇
) 𝑧

𝑇
𝑑𝜇 + ∫

𝑇

0

𝑘
𝑡
𝑑𝜉

𝑡
] + 𝛽

𝜀

𝑡
,

(39)

where

𝛽
𝜀

𝑡
= E [∫

𝑇

0

∫

1

0

𝑓
𝑥
(𝑠, 𝑥

𝜇,𝜀

𝑠
, 𝑢

𝜇,𝜀

𝑠
) Γ

𝜀

𝑠
𝑑𝜇 𝑑𝑠 + ∫

1

0

𝑔
𝑥
(𝑥

𝜇,𝜀

𝑇
) Γ

𝜀

𝑇
𝑑𝜇] .

(40)

By using Lemma 4, and since the derivatives 𝑓
𝑥
, 𝑓

𝑢
, and

𝑔
𝑥
are bounded, we have lim

𝜀→0
𝛽
𝜀

𝑡
= 0. Then, the result

follows by letting 𝜀 go to 0 in the above equality.

Substituting by 𝑧
𝑡
= Φ

𝑡
𝜂
𝑡
in (38) leads to

𝐼 = E [∫
𝑇

0

{𝑓
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)Φ

𝑠
𝜂
𝑠
+ 𝑓

𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) V

𝑠
} 𝑑𝑠

+𝑔
𝑥
(𝑥

⋆

𝑇
)Φ

𝑇
𝜂
𝑇
+ ∫

𝑇

0

𝑘
𝑡
𝑑𝜉

𝑡
] .

(41)

Consider the right continuous version of the square
integrable martingale

𝑀
𝑡
:= E [∫

𝑇

0

𝑓
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)Φ

𝑠
𝑑𝑠 + 𝑔

𝑥
(𝑥

⋆

𝑇
)Φ

𝑇
| F

𝑡
] . (42)

By the Itô representation theorem [30], there exist two
processes 𝑄 = (𝑄1

, . . . , 𝑄
𝑑
) where 𝑄𝑗

∈M2, for 𝑗 = 1, . . . , 𝑑,
and 𝑈(⋅) ∈L2

] , satisfying

𝑀
𝑡
= E [∫

𝑇

0

𝑓
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)Φ

𝑠
𝑑𝑠 + 𝑔

𝑥
(𝑥

⋆

𝑇
)Φ

𝑇
]

+

𝑑

∑

𝑗=1

∫

𝑡

0

𝑄
𝑗

𝑠
𝑑𝐵

𝑗

𝑠
+ ∫

𝑡

0

∫
𝐸

𝑈
𝑠
(𝑒) �̃� (𝑑𝑠, 𝑑𝑒) .

(43)
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Let us denote 𝑦⋆
𝑡
= 𝑀

𝑡
−∫

𝑡

0
𝑓
𝑥
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)Φ

𝑠
𝑑𝑠. The adjoint

variable is the process defined by

𝑝
𝑡
= 𝑦

⋆

𝑡
Ψ
𝑡
,

𝑞
𝑗

𝑡
= 𝑄

𝑗

𝑡
Ψ
𝑡
− 𝑝

𝑡
𝜎
𝑗

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) , for 𝑗 = 1, . . . , 𝑑,

𝑟
𝑡
(𝑒) = 𝑈

𝑡
(𝑒) Ψ

𝑡
(𝛾

𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) + 𝐼

𝑑
)
−1

+ 𝑝
𝑡
((𝛾

𝑥
(𝑠, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) + 𝐼

𝑑
)
−1

− 𝐼
𝑑
) .

(44)

Theorem 6. Under assumptions (H
1
)–(H

5
), one has

𝐼 = E[∫
𝑇

0

{𝑓
𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
) + 𝑝

𝑠
𝑏
𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)

+

𝑑

∑

𝑗=1

𝑞
𝑗

𝑠
𝜎
𝑗

𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
)

+ ∫
𝐸

𝑟
𝑠
(𝑧) 𝛾

𝑢
(𝑠, 𝑥

⋆

𝑠
, 𝑢

⋆

𝑠
, 𝑒) ] (𝑑𝑒)} V

𝑠
𝑑𝑠

+

𝑚

∑

𝑖=1

∫

𝑇

0

{𝑘
𝑖

𝑠
+ 𝐺

𝑖

𝑠
𝑝
𝑠
} 𝑑𝜉

𝑐𝑖

𝑠

+

𝑚

∑

𝑖=1

∑

0<𝑠≤𝑇

{𝑘
𝑖

𝑠
+ 𝐺

𝑖

𝑠
(𝑝

𝑠−
+ Δ

𝑁
𝑝
𝑠
)} Δ𝜉

𝑖

𝑠
] .

(45)

Proof. From the integration by parts formula ([8, Lemma
3.5]), and by using the definition of 𝑝

𝑡
, 𝑞

𝑗

𝑡
for 𝑗 = 1, . . . , 𝑑,

and 𝑟
𝑡
(⋅), we can easily check that

𝐸 [𝑦
𝑇
𝜂
𝑇
]

= E[

[

∫

𝑇

0

{

{

{

𝑝
𝑡
𝑏
𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) +

𝑑

∑

𝑗=1

𝑞
𝑗

𝑠
𝜎
𝑗

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)

+ ∫
𝐸

𝑟
𝑡
(𝑒) 𝛾

𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) ] (𝑑𝑒)

}

}

}

V
𝑡
𝑑𝑡

− ∫

𝑇

0

𝑓
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) 𝜂

𝑡
Φ

𝑡
𝑑𝑡

+

𝑚

∑

𝑖=1

(∫

𝑇

0

𝐺
𝑖

𝑡
𝑝
𝑡
𝑑𝜉

𝑐𝑖

𝑡
+ ∑

0<𝑡≤𝑇

𝐺
𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) Δ𝜉

𝑖

𝑡
)]

]

.

(46)

Also we have

𝐼 = E [𝑦
𝑇
𝜂
𝑇
+ ∫

𝑇

0

𝑓
𝑥
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)Φ

𝑡
𝜂
𝑡
𝑑𝑡

+∫

𝑇

0

𝑓
𝑢
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) V

𝑡
𝑑𝑡 + ∫

𝑇

0

𝑘
𝑡
𝑑𝜉

𝑡
] ,

(47)

substituting (46) in (47), the result follows.

3.1.3. Adjoint Equation and Maximum Principle. Since (37)
is true for all (V, 𝜉) ∈ U and 𝐼 ≤ 0, we can easily deduce the
following result.

Theorem 7. Let (𝑢⋆, 𝜉⋆) be the optimal control of the problem
(14) and denote by 𝑥⋆ the corresponding optimal trajectory,
then the following inequality holds:

E[∫
𝑇

0

𝐻V (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (V

𝑡
− 𝑢

⋆

𝑡
) 𝑑𝑡

+ ∫

𝑇

0

{𝑘
𝑡
+ 𝐺

𝑡
𝑝
𝑡
} 𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

{𝑘
𝑡
+ 𝐺

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} Δ(𝜉 − 𝜉

⋆
)
𝑡
] ≤ 0,

(48)

where the Hamiltonian 𝐻 is defined by (17), and the adjoint
variable (𝑝, 𝑞𝑗, 𝑟(⋅)) for 𝑗 = 1, . . . , 𝑑, is given by (44).

Now, we are ready to give the proof of Theorem 2.

Proof of Theorem 2. (i) Let us assume that (𝑢⋆, 𝜉⋆) is an
optimal control for the problem (14), so that inequality (48)
is valid for every (V, 𝜉). If we choose 𝜉 = 𝜉⋆ in inequality
(48), we see that for every measurable, F

𝑡
-adapted process

V : [0, 𝑇] × Ω → 𝐴
1

E [∫
𝑇

0

𝐻V (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (V

𝑡
− 𝑢

⋆

𝑡
) 𝑑𝑡] ≤ 0. (49)

For V ∈ U
1
define

𝐴
V
= { (𝑡, 𝜔) ∈ [0, 𝑇] × Ω

such that 𝐻V (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (V

𝑡
− 𝑢

⋆

𝑡
) > 0} .

(50)

Obviously 𝐴V
𝑡
∈ F

𝑡
, for each 𝑡 ∈ [0, 𝑇]. Let us define

Ṽ ∈ U
1
by

Ṽ
𝑡
(𝜔) = {

V, if (𝑡, 𝜔) ∈ 𝐴V
𝑡
,

𝑢
⋆

𝑡
, otherwise

. (51)

If 𝜆 ⊗P(𝐴V
) > 0, where 𝜆 denotes the Lebesgue measure,

then

E [∫
𝑇

0

𝐻V (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (Ṽ

𝑡
− 𝑢

⋆

𝑡
) 𝑑𝑡] > 0, (52)

which contradicts (49), unless 𝜆 ⊗ P(𝐴V
) = 0. Hence the

conclusion follows.
(ii) If instead we choose V = 𝑢⋆ in inequality (48), we

obtain that for every measurable, F
𝑡
-adapted process 𝜉 :

[0, 𝑇] × Ω → 𝐴
2
, the following inequality holds:

E[∫
𝑇

0

{𝑘
𝑡
+ 𝐺

𝑡
𝑝
𝑡
} 𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

{𝑘
𝑡
+ 𝐺

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} Δ(𝜉 − 𝜉

⋆
)
𝑡
] ≤ 0.

(53)
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In particular, for 𝑖 = 1, . . . , 𝑚, we put 𝜉𝑖
𝑡
= 𝜉

⋆𝑖

𝑡
+

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
>0}
𝜆(𝑡). Since the Lebesgue measure is regular then

the purely discontinuous part (𝜉𝑖
𝑡
− 𝜉

⋆𝑖

𝑡
)
𝑑

= 0. Obviously, the
relation (53) can be written as

𝑚

∑

𝑖=1

E [∫
𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
} 𝑑(𝜉

𝑖
− 𝜉

⋆𝑖
)
𝑐

𝑡

+∫

𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} 𝑑(𝜉

𝑖
− 𝜉

⋆𝑖
)
𝑑

𝑡
]

=

𝑚

∑

𝑖=1

E [∫
𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
} 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
>0}
𝑑𝜆 (𝑡)] > 0.

(54)

This contradicts (53) unless for every 𝑖 ∈ {1, . . . , 𝑚}, 𝜆 ⊗
P{𝑘𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
> 0} = 0. This proves (20).

Let us prove (21). Define 𝑑𝜉𝑖
𝑡
= 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡−
>0}
𝑑𝜉

⋆𝑖

𝑡
+

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡−
≤0}
𝑑𝜉

⋆𝑑𝑖

𝑡
, for 𝑖 = 1, . . . , 𝑚, then we have 𝑑(𝜉𝑖 − 𝜉⋆𝑖)𝑐

𝑡
=

−1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

⋆𝑐𝑖

𝑡
, and 𝑑𝜉𝑑𝑖

𝑡
= 𝑑𝜉

⋆𝑑𝑖

𝑡
. Hence, we can rewrite

(53) as follows:

−

𝑚

∑

𝑖=1

E [∫
𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
} 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

⋆𝑐𝑖

𝑡
] > 0. (55)

By comparing with (53) we get
𝑚

∑

𝑖=1

E [∫
𝑇

0

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

⋆𝑐𝑖

𝑡
] = 0, (56)

then we conclude that
𝑚

∑

𝑖=1

∫

𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
} 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

𝑐𝑖

𝑡
= 0. (57)

Expressions (22) and (23) are proved by using the same
techniques. First, for each 𝑖 ∈ {1, . . . , 𝑚} and 𝑡 ∈ [0, 𝑇]

fixed, we define 𝜉𝑖
𝑠
= 𝜉

𝑖

𝑠
+ 𝛿

𝑡
(𝑠)1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)>0}

, where 𝛿
𝑡

denotes theDirac unitmass at 𝑡. 𝛿
𝑡
is a discretemeasure, then

(𝜉
𝑖

𝑠
− 𝜉

𝑖

𝑠
)
𝑐

= 0 and (𝜉𝑖
𝑠
− 𝜉

𝑖

𝑠
)
𝑑

= 𝛿
𝑡
(𝑠)1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)>0}

. Hence

E[
𝑚

∑

𝑖=1

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)>0}
] > 0 (58)

which contradicts (53), unless for every 𝑖 ∈ {1, . . . , 𝑚} and
𝑡 ∈ [0, 𝑇], we have

P {𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) > 0} = 0. (59)

Next, let 𝜉 be defined by

𝑑𝜉
𝑖

𝑡
= 1

{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)≥0}
𝑑𝜉

⋆𝑖

𝑡

+ 1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)<0}
𝑑𝜉

⋆𝑐𝑖

𝑡
.

(60)

Then, the relation (53) can be written as
𝑚

∑

𝑖=1

E[∑−
0<𝑡≤𝑇

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)}

× 1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)<0}
Δ𝜉

⋆𝑖

𝑡
] > 0,

(61)

which implies that

E[
𝑚

∑

𝑖=1

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)}

× 1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)<0}
Δ𝜉

⋆𝑖

𝑡
] = 0.

(62)

By the fact that 𝑘𝑖
𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) < 0, and Δ𝜉𝑖

𝑡
≥ 0, we get

𝑚

∑

𝑖=1

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)<0}
Δ𝜉

⋆𝑖

𝑡
= 0. (63)

Thus (23) holds. The proof is complete.

Now, by applying Itô’s formula to 𝑦⋆
𝑡
Ψ
𝑡
, it is easy to check

that the processes defined by relation (44) satisfy BSDE (18)
called the adjoint equation.

3.2. Sufficient Conditions of Optimality. It is well known
that in the classical cases (without the singular part of the
control), the sufficient condition of optimality is of significant
importance in the stochastic maximum principle, in the
sense that it allows to compute optimal controls. This result
states that, under some concavity conditions, maximizing the
Hamiltonian leads to an optimal control.

In this section, we focus on proving the sufficient maxi-
mumprinciple formixed classical-singular stochastic control
problems, where the state of the system is governed by a
stochastic differential equation with jumps, allowing both
classical control and singular control.

Theorem 8 (sufficient condition of optimality in integral
form). Let (𝑢⋆, 𝜉⋆) be an admissible control and denote 𝑥⋆
the associated controlled state process. Let (𝑝, 𝑞, 𝑟(⋅)) be the
unique solution of 𝐵𝑆𝐷𝐸 (18). Let one assume that (𝑥, 𝑢) →
𝐻(𝑡, 𝑥, 𝑢, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) and 𝑥 → 𝑔(𝑥) are concave functions.

Moreover suppose that for all 𝑡 ∈ [0, 𝑇], V ∈ 𝐴
1
, and 𝜉 ∈ U

2

E[∫
𝑇

0

𝐻V (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) (V

𝑡
− 𝑢

⋆

𝑡
) 𝑑𝑡

+ ∫

𝑇

0

{𝑘
𝑡
+ 𝐺

𝑡
𝑝
𝑡
} 𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

{𝑘
𝑡
+ 𝐺

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} Δ(𝜉 − 𝜉

⋆
)
𝑡
] ≤ 0.

(64)

Then (𝑢⋆, 𝜉⋆) is an optimal control.

Proof. For convenience, we will use the following notations
throughout the proof:

Θ
⋆
(𝑡) = Θ (𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) ,

Θ (𝑡) = Θ (𝑡, 𝑥
𝑡
, 𝑢

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) ,

for Θ = 𝐻,𝐻
𝑥
, 𝐻

𝑢
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𝛿𝜙 (𝑡) = 𝜙 (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
) − 𝜙 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
) ,

for 𝜙 = 𝑏, 𝜎, 𝜎𝑗, 𝑗 = 1, . . . , 𝑛, 𝑓

𝛿𝛾 (𝑡, 𝑒) = 𝛾 (𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) − 𝛾 (𝑡, 𝑥

𝑡
, 𝑢

𝑡
, 𝑒) ,

𝛿𝛾
−
(𝑡, 𝑒) = 𝛾 (𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) − 𝛾 (𝑡, 𝑥

𝑡−
, 𝑢

𝑡
, 𝑒) .

(65)

Let (𝑢, 𝜉) be an arbitrary admissible pair, and consider the
difference

𝐽 (𝑢
⋆
, 𝜉

⋆
) − 𝐽 (𝑢, 𝜉)

= E [∫
𝑇

0

𝛿𝑓 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑘
𝑡
𝑑(𝜉

⋆
− 𝜉)

𝑡
]

+ E [𝑔 (𝑥
⋆

𝑇
) − 𝑔 (𝑥

𝑇
)] .

(66)

We first note that, by concavity of 𝑔, we conclude that

E [𝑔 (𝑥
⋆

𝑇
) − 𝑔 (𝑥

𝑇
)]

≥ E [(𝑥
⋆

𝑇
− 𝑥

𝑇
) 𝑔

𝑥
(𝑥

⋆

𝑇
)] = E [(𝑥

⋆

𝑇
− 𝑥

𝑇
) 𝑝

𝑇
]

= E [∫
𝑇

0

(𝑥
⋆

𝑡−
− 𝑥

𝑡−
) 𝑑𝑝

𝑡
+ ∫

𝑇

0

𝑝
𝑡−
𝑑 (𝑥

⋆

𝑡
− 𝑥

𝑡
)]

+ E[

[

∫

𝑇

0

𝑛

∑

𝑗=1

(𝛿𝜎
𝑗
(𝑡)) 𝑞

𝑗

𝑡
𝑑𝑡

+∫

𝑇

0

∫
𝐸

(𝛿𝛾
−
(𝑡, 𝑒)) 𝑟

𝑡
(𝑒)𝑁 (𝑑𝑡, 𝑑𝑒) ]

]

+ E[ ∑
0<𝑡≤𝑇

𝐺
𝑡
(Δ

𝑁
𝑝
𝑡
) Δ(𝜉 − 𝜉

⋆
)
𝑡
] ,

(67)

which implies that

𝐸 [𝑔 (𝑥
⋆

𝑇
) − 𝑔 (𝑥

𝑇
)]

≥ E [∫
𝑇

0

(𝑥
⋆

𝑡
− 𝑥

𝑡
) (−𝐻

⋆

𝑥
(𝑡)) 𝑑𝑡]

+ E[

[

∫

𝑇

0

{

{

{

𝑝
𝑡
(𝛿𝑏 (𝑡)) +

𝑛

∑

𝑗=1

(𝛿𝜎
𝑗
(𝑡)) 𝑞

𝑗

𝑡

}

}

}

𝑑𝑡]

]

+ E [∫
𝑇

0

∫
𝐸

(𝛿𝛾
−
(𝑡, 𝑒)) 𝑟

𝑡
(𝑒)𝑁 (𝑑𝑡, 𝑑𝑒)]

+ E [∫
𝑇

0

{(𝑥
⋆

𝑡
− 𝑥

𝑡
) 𝑞

𝑡
+ (𝛿𝜎 (𝑡)) 𝑝

𝑡
} 𝑑𝐵

𝑡
]

+ E [∫
𝑇

0

∫
𝐸

{(𝑥
⋆

𝑡−
− 𝑥

𝑡−
) 𝑟

𝑡
(𝑒) + 𝑝

𝑡−
(𝛿𝛾

−
(𝑡, 𝑒))}

× �̃� (𝑑𝑡, 𝑑𝑒) ]

+ E[∫
𝑇

0

𝐺
𝑡
𝑝
𝑡
𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

𝐺
𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) Δ(𝜉 − 𝜉

⋆
)
𝑡
] .

(68)

By the fact that (𝑝, 𝑞𝑗, 𝑟(⋅)) ∈ S2
× M2

× L2

] for 𝑗 =
1, . . . , 𝑛, we deduce that the stochastic integrals with respect
to the local martingales have zero expectation. Due to the
concavity of the Hamiltonian𝐻, the following holds

E [𝑔 (𝑥
⋆

𝑇
) − 𝑔 (𝑥

𝑇
)]

≥ E [∫
𝑇

0

{− (𝐻
⋆
(𝑡) − 𝐻 (𝑡)) + 𝐻

⋆

𝑢
(𝑡) (𝑢

⋆

𝑡
− 𝑢

𝑡
)} 𝑑𝑡]

+ E[

[

∫

𝑇

0

{

{

{

𝑝
𝑡
(𝛿𝑏 (𝑡)) +

𝑛

∑

𝑗=1

(𝛿𝜎
𝑗
(𝑡)) 𝑞

𝑗

𝑡

+∫
𝐸

(𝛿𝛾 (𝑡, 𝑒)) 𝑟
𝑡
(𝑒) ] (𝑑𝑒)

}

}

}

𝑑𝑡]

]

+ E[∫
𝑇

0

𝐺
𝑇

𝑡
𝑝
𝑡
𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

𝐺
T
𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) Δ(𝜉 − 𝜉

⋆
)
𝑡
] .

(69)

The definition of the Hamiltonian 𝐻 and (64) leads to
𝐽(𝑢

⋆
, 𝜉

⋆
)−𝐽(𝑢, 𝜉) ≥ 0, whichmeans that (𝑢⋆, 𝜉⋆) is an optimal

control for the problem (14).

The expression (64) is a sufficient condition of optimality
in integral form. We want to rewrite this inequality in a
suitable form for applications. This is the objective of the
following theoremwhich could be seen as a natural extension
of [2, Theorem 2.2] to the jump setting and [3, Theorem 2.1]
to mixed regular-singular control problems.

Theorem 9 (sufficient conditions of optimality). Let (𝑢⋆, 𝜉⋆)
be an admissible control and 𝑥⋆ the associated controlled state
process. Let (𝑝, 𝑞, 𝑟(⋅)) be the unique solution of 𝐵𝑆𝐷𝐸 (18). Let
one assume that (𝑥, 𝑢) → 𝐻(𝑡, 𝑥, 𝑢, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) and 𝑥 →

𝑔(𝑥) are concave functions. If in addition one assumes that

(i) for all 𝑡 ∈ [0, 𝑇], V ∈ 𝐴
1

𝐻(𝑡, 𝑥
⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) = sup

V∈𝐴
1

𝐻(𝑡, 𝑥
⋆

𝑡
, V, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) ,

𝑑𝑡—𝑎.𝑒., P—𝑎.𝑠;
(70)
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(ii) for all 𝑡 ∈ [0, 𝑇], with probability 1

𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
≤ 0, for 𝑖 = 1, . . . , 𝑚, (71)

𝑚

∑

𝑖=1

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
𝑝
𝑡
≤0}
𝑑𝜉

⋆𝑐𝑖

𝑡
= 0, (72)

𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
) ≤ 0, for 𝑖 = 1, . . . , 𝑚, (73)

𝑚

∑

𝑖=1

1
{𝑘
𝑖

𝑡
+𝐺
𝑖

𝑡
(𝑝
𝑡−
+Δ
𝑁
𝑝
𝑡
)≤0}
Δ𝜉

⋆𝑖

𝑡
= 0. (74)

Then (𝑢⋆, 𝜉⋆) is an optimal control.

Proof. Using (71) and (72) yields

E [∫
𝑇

0

{𝑘
𝑡
+ 𝐺

𝑡
𝑝
𝑡
} 𝑑𝜉

⋆𝑐

𝑡
] = E[

𝑚

∑

𝑖=1

∫

𝑇

0

{𝑘
𝑖

𝑡
+ 𝐺

𝑖

𝑡
𝑝
𝑡
} 𝑑𝜉

⋆𝑐𝑖

𝑡
] = 0.

(75)

The same computations applied to (73) and (74) imply

E[ ∑
0<𝑡≤𝑇

{𝑘
𝑡
+ 𝐺

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} Δ𝜉

⋆

𝑡
] = 0. (76)

Hence, from Definition 1, we have the following inequal-
ity:

E[∫
𝑇

0

{𝑘
𝑡
+ 𝐺

𝑡
𝑝
𝑡
} 𝑑(𝜉 − 𝜉

⋆
)
𝑐

𝑡

+ ∑

0<𝑡≤𝑇

{𝑘
𝑡
+ 𝐺

𝑡
(𝑝

𝑡−
+ Δ

𝑁
𝑝
𝑡
)} Δ(𝜉 − 𝜉

⋆
)
𝑡
] ≤ 0.

(77)

The desired result follows fromTheorem 8.

4. Relation to Dynamic Programming

In this section, we come back to the control problem studied
in the previous section. We recall a verification theorem,
which is useful to compute optimal controls. Then we show
that the adjoint process defined in Section 3, as the unique
solution to the BSDE (18), can be expressed as the gradient
of the value function, which solves the HJB variational
inequality.

4.1. A Verification Theorem. Let 𝑥𝑡,𝑥
𝑠

be the solution of the
controlled SDE (8), for 𝑠 ≥ 𝑡, with initial value 𝑥

𝑡
= 𝑥. To put

the problem in a Markovian framework, so that we can apply
dynamic programming, we define the performance criterion

𝐽
(𝑢,𝜉)

(𝑡, 𝑥)

= E [∫
𝑇

𝑡

𝑓 (𝑠, 𝑥
𝑠
, 𝑢

𝑠
) 𝑑𝑠 + ∫

𝑇

𝑡

𝑘
𝑠
𝑑𝜉

𝑠
+ 𝑔 (𝑥

𝑇
) | 𝑥

𝑡
= 𝑥] .

(78)

Since our objective is to maximize this functional, the
value function of the singular control problem becomes

𝑉 (𝑡, 𝑥) = sup
(𝑢,𝜉)∈U

𝐽
(𝑢,𝜉)

(𝑡, 𝑥) . (79)

If we do not apply any singular control, then the infinites-
imal generator A𝑢, associated with (8), acting on func-
tions 𝜑, coincides on 𝐶2

𝑏
(R𝑛
;R) with the parabolic integro-

differential operatorA𝑢 given by

A
𝑢
𝜑 (𝑡, 𝑥) =

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡, 𝑥, 𝑢)

𝜕𝜑

𝜕𝑥𝑖
(𝑡, 𝑥)

+
1

2

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑡, 𝑥, 𝑢)

𝜕
2
𝜑

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥)

+ ∫
𝐸

{𝜑 (𝑡, 𝑥 + 𝛾 (𝑡, 𝑥, 𝑢, 𝑒)) − 𝜑 (𝑡, 𝑥)

−

𝑛

∑

𝑖=1

𝛾
𝑖
(𝑡, 𝑥, 𝑢, 𝑒)

𝜕𝜑

𝜕𝑥𝑖
(𝑡, 𝑥)} ] (𝑑𝑒) ,

(80)

where 𝑎𝑖𝑗 = ∑
𝑑

ℎ=1
(𝜎

𝑖ℎ
𝜎
𝑗ℎ
) denotes the generic term of the

symmetric matrix 𝜎𝜎𝑇. The variational inequality associated
to the singular control problem is

max {sup
𝑢

𝐻
1
(𝑡, 𝑥, (𝑊, 𝜕

𝑡
𝑊,𝑊

𝑥
,𝑊

𝑥𝑥
) (𝑡, 𝑥) , 𝑢) ,

𝐻
𝑙

2
(𝑡, 𝑥,𝑊

𝑥
(𝑡, 𝑥)) , 𝑙 = 1, . . . , 𝑚} = 0,

(81)

for (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑂,

𝑊(𝑇, 𝑥) = 𝑔 (𝑥) , ∀𝑥 ∈ 𝑂. (82)

𝐻
1
and𝐻𝑙

2
, for 𝑙 = 1, . . . , 𝑚, are given by

𝐻
1
(𝑡, 𝑥, (𝑊, 𝜕

𝑡
𝑊,𝑊

𝑥
,𝑊

𝑥𝑥
) (𝑡, 𝑥) , 𝑢)

=
𝜕𝑊

𝜕𝑡
(𝑡, 𝑥) +A

𝑢
𝑊(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢) ,

𝐻
𝑙

2
(𝑡, 𝑥,𝑊

𝑥
(𝑡, 𝑥)) =

𝑛

∑

𝑖=1

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥) 𝐺

𝑖𝑙

𝑡
+ 𝑘

𝑙

𝑡
.

(83)

We start with the definition of classical solutions of the
variational inequality (81).

Definition 10. Let one consider a function𝑊 ∈ 𝐶
1,2
([0, 𝑇] ×

𝑂), and define the nonintervention region by

𝐶 (𝑊) = { (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑂,

max
1≤𝑙≤𝑚

𝑛

∑

𝑖=1

{
𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥) 𝐺

𝑖𝑙

𝑡
+ 𝑘

𝑙

𝑡
} < 0} .

(84)
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We say that𝑊 is a classical solution of (81) if

𝜕𝑊

𝜕𝑡
(𝑡, 𝑥) + sup

𝑢

{A
𝑢
𝑊(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢)} = 0,

∀ (𝑡, 𝑥) ∈ 𝐶 (𝑊) ,

(85)

𝑛

∑

𝑖=1

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥) 𝐺

𝑖𝑙

𝑡
+ 𝑘

𝑙

𝑡
≤ 0,

∀ (𝑡, 𝑥) ∈ [0, 𝑇] × 𝑂, for 𝑙 = 1, . . . , 𝑚,

(86)

𝜕𝑊

𝜕𝑡
(𝑡, 𝑥) +A

𝑢
𝑊(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢) ≤ 0,

for every (𝑡, 𝑥, 𝑢) ∈ [0, 𝑇] × 𝑂 × 𝐴
1
.

(87)

The following verification theorem is very useful to
compute explicitly the value function and the optimal control,
at least in the case where the value function is sufficiently
smooth.

Theorem 11. Let 𝑊 be a classical solution of (81) with the
terminal condition (82), such that for some constants 𝑐

1
≥

1, 𝑐
2
∈ (0,∞), |𝑊(𝑡, 𝑥)| ≤ 𝑐

2
(1 + |𝑥|

𝑐
1). Then, for all (𝑡, 𝑥) ∈

[0, 𝑇] × 𝑂, and (𝑢, 𝜉) ∈ U

𝑊(𝑡, 𝑥) ≥ 𝐽
(𝑢,𝜉)

(𝑡, 𝑥) . (88)

Furthermore, if there exists (𝑢⋆, 𝜉⋆) ∈ U such that with
probability 1

(𝑡, 𝑥
⋆

𝑡
) ∈ 𝐶 (𝑊) , 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑡 ≤ 𝑇, (89)

𝑢
⋆

𝑡
∈ arg max

𝑢

{A
𝑢
𝑊(𝑡, 𝑥

⋆

𝑡
) + 𝑓 (𝑡, 𝑥

⋆

𝑡
, 𝑢)} , (90)

𝑚

∑

𝑙=1

{

𝑛

∑

𝑖−1

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
) 𝐺

𝑖𝑙

𝑡
= 𝑘

𝑙

𝑡
}𝑑𝜉

⋆𝑐𝑙

𝑡
= 0, (91)

Δ
𝜉
𝑊(𝑡, 𝑥

⋆

𝑡
) +

𝑚

∑

𝑙=1

𝑘
𝑙

𝑡
Δ𝜉

⋆𝑙

𝑡
= 0, (92)

for all jumping times 𝑡 of 𝜉⋆
𝑡
, then it follows that 𝑊(𝑡, 𝑥) =

𝐽
(𝑢
⋆

,𝜉
⋆

)
(𝑡, 𝑥).

Proof. See [8, Theorem 5.2].

In the following, we present an example on optimal
harvesting from a geometric Brownian motion with jumps
see, for example, [5, 8].

Example 12. Consider a population having a size 𝑋 = {𝑋
𝑡
:

𝑡 ≥ 0}which evolves according to the geometric Lévy process;
that is

𝑑𝑋
𝑡
= 𝜇𝑋

𝑡
𝑑𝑡 + 𝜎𝑋

𝑡
𝑑𝐵

𝑡

+ 𝜃𝑋
𝑡−
∫
R
+

𝑒�̃� (𝑑𝑡, 𝑑𝑒) − 𝑑𝜉
𝑡
, for 𝑡 ∈ [0, 𝑇] ,

𝑋
0−
= 𝑥 > 0.

(93)

Here 𝜉
𝑡
is the total number of individuals harvested up

to time 𝑡. If we define the price per unit harvested at time
𝑡 by 𝑘(𝑡) = 𝑒−𝜘𝑡 and the utility rate obtained when the size
of the population at 𝑡 is 𝑋

𝑡
by 𝑒−𝜘𝑡𝑋𝛾

𝑡
. Then the objective is

to maximize the expected total time-discounted value of the
harvested individuals startingwith a population of size𝑥; that
is,

𝐽 (𝜉) = E [∫
𝑇

0

𝑒
−𝜘𝑡
𝑋

𝛾

𝑡
𝑑𝑡 + ∫

[0,𝑇)

𝑒
−𝜘𝑡
𝑑𝜉

𝑡
] , (94)

where 𝑇 := inf{𝑡 ≥ 0 : 𝑋
𝑡
= 0} is the time of complete

depletion, 𝛾 ∈ (0, 1) and 𝜇, 𝜎, 𝜘, 𝜃 are positive constants with
𝜎
2
/2 + 𝜃 ∫

R
+

𝑒](𝑑𝑒) ≤ 𝜇 < 𝜘. The harvesting admissible
strategy 𝜉

𝑡
is assumed to be nonnegative, nondecreasing

continuous on the right, satisfying 𝐸|𝜉
𝑇
|
2
< ∞ with 𝜉

0−
= 0,

and such that 𝑋
𝑡
> 0. We denote by Π(𝑥) the class of such

strategies. For any 𝜉 define

𝜙 (𝑡, 𝑥) = sup
𝜉∈Π(𝑡,𝑥)

𝐽
𝜉
(𝑡, 𝑥) . (95)

Note that the definition of Π(𝑡, 𝑥) is similar to Π(𝑥), except
that the starting time is 𝑡, and the state at 𝑡 is 𝑥.

If we guess the nonintervention region𝐶has the form𝐶 =
{(𝑡, 𝑥) : 0 < 𝑥 < 𝑏} for some barrier point 𝑏 > 0, then (84)
gets the form,

0 =
𝜕Φ

𝜕𝑡
(𝑡, 𝑥) + 𝜇𝑥

𝜕Φ

𝜕𝑥
(𝑡, 𝑥) +

1

2
𝜎
2
𝑥
2 𝜕

2
Φ

𝜕𝑥2
(𝑡, 𝑥)

+ ∫
R
+

{Φ (𝑡, 𝑥 (1 + 𝜃𝑒)) − Φ (𝑡, 𝑥) − 𝜃𝑥𝑒
𝜕Φ

𝜕𝑥
(𝑡, 𝑥)} ] (𝑑𝑒)

+ 𝑥
𝛾 exp (−𝜘𝑡) ,

(96)

for 0 < 𝑥 < 𝑏. We try a solutionΦ of the form

Φ (𝑡, 𝑥) = Ψ (𝑥) exp (−𝜘𝑡) ; (97)

hence

AΦ (𝑡, 𝑥) = exp (−𝜘𝑡)A0
Ψ (𝑥) , (98)

whereΨ is the fundamental solution of the ordinary integro-
differential equation

− 𝜘Ψ (𝑥) + 𝜇𝑥Ψ

(𝑥) +

1

2
𝜎
2
𝑥
2
Ψ


(𝑥)

+ ∫
R
+

{Ψ (𝑥 (1 + 𝜃𝑒)) − Ψ (𝑥) − 𝜃𝑥𝑒Ψ

(𝑥)} ] (𝑑𝑒)

+ 𝑥
𝛾
= 0.

(99)

Wenotice thatΨ(𝑥) = 𝐴𝑥𝜌+𝐾𝑥𝛾, for some arbitrary constant
𝐴; we get

AΦ (𝑡, 𝑥) = 𝑥
𝛾
(𝐴ℎ

1
(𝜌) + ℎ

2
(𝛾)) exp (−𝜘𝑡) , (100)
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where

ℎ
1
(𝜌) =

1

2
𝜎
2
𝜌
2
+ (𝜇 −

1

2
𝜎
2
) 𝜌

+ ∫
R
+

{(1 + 𝜃𝑒)
𝜌
− 1 − 𝜃𝑒𝜌} ] (𝑑𝑒) − 𝜘,

ℎ
2
(𝛾) = 𝐾(

1

2
𝜎
2
𝛾
2
+ (𝜇 −

1

2
𝜎
2
) 𝛾

+∫
R
+

{(1 + 𝜃𝑒)
𝛾
− 1 − 𝜃𝑒𝛾} ] (𝑑𝑒) − 𝜘) +1.

(101)

Note that ℎ
1
(1) = 𝜇−𝜘 < 0 and lim

𝑟→∞
ℎ
1
(𝜌) = ∞; then

there exists 𝜌 > 1 such that ℎ
1
(𝜌) = 0.The constant𝐾 is given

by

𝐾 = − (
1

2
𝜎
2
𝛾
2
+ (𝜇 −

1

2
𝜎
2
) 𝛾

+∫
R
+

{(1 + 𝜃𝑒)
𝛾
− 1 − 𝜃𝑒𝛾} ] (𝑑𝑒) − 𝜘)

−1

.

(102)

Outside 𝐶 we require that Ψ(𝑥) = 𝑥 + 𝐵, where 𝐵 is a
constant to be determined. This suggests that the value must
be of the form

Φ (𝑡, 𝑥) = {
(𝐴𝑥

𝜌
+ 𝐾𝑥

𝛾
) exp (−𝜘𝑡) for 0 < 𝑥 < 𝑏,

(𝑥 + 𝐵) exp (−𝜘𝑡) for 𝑥 ≥ 𝑏.
(103)

Assuming smooth fit principle at point 𝑏, then the reflec-
tion threshold is

𝑏 = (
𝐾𝛾 (1 − 𝛾)

𝐴𝜌 (𝜌 − 1)
)

1/(𝜌−𝛾)

, (104)

where

𝐴 =
1 − 𝐾𝛾𝑏

𝛾−1

𝜌𝑏𝜌−1
,

𝐵 = 𝐴𝑏
𝜌
+ 𝐾𝑏

𝛾
− 𝑏.

(105)

Since 𝛾 < 1 and 𝜌 > 1, we deduce that 𝑏 > 0.
To construct the optimal control 𝜉⋆, we consider the

stochastic differential equation

𝑑𝑋
⋆

𝑡
= 𝜇𝑋

⋆

𝑡
𝑑𝑡 + 𝜎𝑋

⋆

𝑡
𝑑𝐵

𝑡
+ ∫

R
+

𝜃𝑋
⋆

𝑡
𝑒�̃� (𝑑𝑡, 𝑑𝑒) − 𝑑𝜉

⋆

𝑡
,

(106)

𝑋
⋆

𝑡
≤ 𝑏, 𝑡 ≥ 0, (107)

1
{𝑋
⋆

𝑡
<𝑏}
𝑑𝜉

⋆𝑐

𝑡
= 0, (108)

1
{𝑋
⋆

𝑡−
+Δ
𝑁
𝑋
⋆

𝑡
≤𝑏}
Δ𝜉

⋆

𝑡
= 0, (109)

and if this is the case, then

Δ𝜉
⋆

𝑡
= min {𝑙 > 0 : 𝑋⋆

𝑡−
+ Δ

𝑁
𝑋

⋆

𝑡
− 𝑙 = 𝑏} . (110)

Arguing as in [7], we can adapt Theorem 15 in [16] to obtain
an identification of the optimal harvesting strategy as a local
time of a reflected jump diffusion process. Then, the system
(106)–(109) defines the so-called Skorokhod problem, whose
solution is a pair (𝑋⋆

𝑡
, 𝜉

⋆

𝑡
), where 𝑋⋆

𝑡
is a jump diffusion

process reflected at 𝑏.
The conditions (89)–(92) ensure the existence of an

increasing process 𝜉⋆
𝑡
such that 𝑋⋆

𝑡
stays in 𝐶 for all times

𝑡. If the initial size 𝑥 ≤ 𝑏, then 𝜉⋆
𝑡
is nondecreasing and his

continuous part 𝜉⋆𝑐
𝑡

increases only when 𝑋⋆

𝑡
= 𝑏 so as to

ensure that𝑋⋆

𝑡
≤ 𝑏.

On the other hand, we only have Δ𝜉⋆
𝑡
> 0 if the initial

size 𝑥 > 𝑏 then 𝜉⋆
0−
= 𝑥 − 𝑏, or if 𝑋⋆

𝑡
jumps out of the

nonintervention region by the random measure 𝑁; that is,
𝑋

⋆

𝑡−
+ Δ

𝑁
𝑋

⋆

𝑡
> 𝑏. In these cases we get Δ𝜉⋆

𝑡
> 0 immediately

to bring𝑋⋆

𝑡
to 𝑏.

It is easy to verify that, if (𝑋⋆
, 𝜉

⋆
) is a solution of the

Skorokhod problem (106)–(109), then (𝑋⋆
, 𝜉

⋆
) is an optimal

solution of the problem (93) and (94).
By the construction of 𝜉⋆ andΦ, all the conditions of the

verificationTheorem 11 are satisfied.More precisely, the value
function along the optimal state reads as

Φ(𝑡, 𝑋
⋆

𝑡
) = (𝐴𝑋

⋆𝜌

𝑡
+ 𝐾𝑋

⋆𝛾

𝑡
) exp (−𝜘𝑡) ,

for all 𝑡 ∈ [0, 𝑇] .
(111)

4.2. Link between the SMP and DPP. Compared with the
stochastic maximum principle, one would expect that the
solution (𝑝, 𝑞, 𝑟(⋅)) of BSDE (18) to correspond to the deriva-
tives of the classical solution of the variational inequalities
(81)-(82). This is given by the following theorem, which
extends [3, Theorem 3.1] to control problems with a singular
component and [2, Theorem 3.3] to diffusions with jumps.

Theorem 13. Let 𝑊 be a classical solution of (81), with the
terminal condition (82). Assume that 𝑊 ∈ 𝐶

1,3
([0, 𝑇] × 𝑂),

with 𝑂 = R𝑛, and there exists (𝑢⋆, 𝜉⋆) ∈ U such that the
conditions (89)–(92) are satisfied. Then the solution of the
BSDE (18) is given by

𝑝
𝑡
= 𝑊

𝑥
(𝑡, 𝑥

⋆

𝑡
) ,

𝑞
𝑡
= 𝑊

𝑥𝑥
(𝑡, 𝑥

⋆

𝑡
) 𝜎 (𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) ,

𝑟
𝑡
(⋅) = 𝑊

𝑥
(𝑡, 𝑥

⋆

𝑡
+ 𝛾 (𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒)) − 𝑊

𝑥
(𝑡, 𝑥

⋆

𝑡
) .

(112)

Proof. Throughout the proof, we will use the following
abbreviations: for 𝑖, 𝑗 = 1, . . . , 𝑛, and ℎ = 1, . . . , 𝑑,

𝜙
1
(𝑡) = 𝜙

1
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
) ,

for 𝜙
1
= 𝑏

𝑖
, 𝜎

𝑖
, 𝜎

𝑖ℎ
, 𝜎, 𝑎

𝑖𝑗
,
𝜕𝑏

𝑖

𝜕𝑥𝑘
,
𝜕𝑏

𝜕𝑥𝑘
,
𝜕𝑎

𝑖𝑗

𝜕𝑥𝑘
,
𝜕𝜎

𝑖ℎ

𝜕𝑥𝑘
,
𝜕𝑓

𝜕𝑥𝑘
,

𝜙
2
(𝑡, 𝑒) = 𝜙

2
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑒) , for 𝜙

2
= 𝛾, 𝛾

𝑖
,
𝜕𝛾

𝑖

𝜕𝑥𝑘
,
𝜕𝛾

𝜕𝑥𝑘
,

𝛾
−
(𝑡, 𝑒) = 𝛾 (𝑡, 𝑥

⋆

𝑡−
, u⋆

𝑡
, 𝑒) , 𝛾

𝑖

−
(𝑡, 𝑒) = 𝛾

𝑖
(𝑡, 𝑥

⋆

𝑡−
, 𝑢

⋆

𝑡
, 𝑒) .

(113)
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From Itô’s rule applied to the semimartingale (𝜕𝑊/
𝜕𝑥

𝑘
)(𝑡, 𝑥

⋆

𝑡
), one has

𝜕𝑊

𝜕𝑥𝑘
(𝜏

⋆

𝑅
, 𝑥

⋆

𝜏
⋆

𝑅

)

=
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
) + ∫

𝜏
⋆

𝑅

𝑡

𝜕
2
𝑊

𝜕𝑠𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
) 𝑑𝑠

+ ∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠−
) 𝑑𝑥

⋆𝑖

𝑠

+
1

2
∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑠)

𝜕
3
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗
(𝑠, 𝑥

⋆

𝑠
) 𝑑𝑠

+ ∫

𝜏
⋆

𝑅

𝑡

∫
𝐸

{
𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠−
+ 𝛾

−
(𝑠, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑠−
)

−

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠−
) 𝛾

𝑖

−
(𝑠, 𝑒)}𝑁 (𝑑𝑠, 𝑑𝑒)

+ ∑

𝑡<𝑠≤𝜏
⋆

𝑅

{Δ
𝜉

𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
)

−

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠−
) Δ

𝜉
𝑥
⋆𝑖

𝑠
} ,

(114)

where 𝜏⋆ is defined as in Theorem 11, and the sum is taken
over all jumping times 𝑠 of 𝜉⋆. Note that

Δ
𝜉
𝑥
⋆𝑖

𝑠
= 𝑥

⋆𝑖

𝑠
− (𝑥

⋆𝑖

𝑠−
+ Δ

𝑁
𝑥
⋆𝑖

𝑠
) =

𝑚

∑

𝑙=1

𝐺
𝑖𝑙

𝑠
Δ𝜉

⋆𝑙

𝑠
,

for 𝑖 = 1, . . . , 𝑛,

(115)

where Δ𝜉⋆𝑙
𝑠
= 𝜉

⋆𝑙

𝑠
− 𝜉

⋆𝑙

𝑠−
is a pure jump process. Then, we can

rewrite (114) as follows:

𝜕𝑊

𝜕𝑥𝑘
(𝜏

⋆

𝑅
, 𝑥

⋆

𝜏
⋆

𝑅

)

=
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
)

+ ∫

𝜏
⋆

𝑅

𝑡

{
𝜕
2
𝑊

𝜕𝑠𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑠)

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
)

+
1

2

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑠)

𝜕
3
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗
(𝑠, 𝑥

⋆

𝑠
)

+ ∫
𝐸

(
𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
+ 𝛾 (𝑠, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠−
)

−

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝛾

𝑖
(𝑠, 𝑒)) ] (𝑑𝑒)} 𝑑𝑠

+ ∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝜎

𝑖
(𝑠) 𝑑𝐵

𝑠

+ ∫

𝜏
⋆

𝑅

𝑡

∫
𝐸

{
𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠−
+ 𝛾

−
(𝑠, 𝑒))

−
𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠−
)} �̃� (𝑑𝑠, 𝑑𝑒)

+ ∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
)

𝑚

∑

𝑙=1

𝐺
𝑖𝑙

𝑠
𝑑𝜉

⋆𝑐𝑙

𝑠

+ ∑

𝑡<𝑠≤𝜏
⋆

𝑅

Δ
𝜉

𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
) .

(116)

Let 𝜉⋆𝑐
𝑠

denotes the continuous part of 𝜉⋆
𝑠
; that is, 𝜉⋆𝑐

𝑠
= 𝜉

⋆

𝑠
−

∑
𝑡<𝑠≤𝜏

⋆

𝑅

Δ𝜉
⋆𝑙

𝑠
. Then, we can easily show that

∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝐺

𝑖𝑙

𝑠
𝑑𝜉

⋆𝑐𝑙

𝑠

= ∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝐺

𝑖𝑙

𝑠
1
{(𝑠,𝑥
⋆

𝑠
)∈𝐷
𝑙
}
𝑑𝜉

⋆𝑐𝑙

𝑠

+ ∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝐺

𝑖𝑙

𝑠
1
{(𝑠,𝑥
⋆

𝑠
)∈𝐶
𝑙
}
𝑑𝜉

⋆𝑐𝑙

𝑠
.

(117)

For every (𝑡, 𝑥) ∈ 𝐷
𝑙
, using (88) we have

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑡, 𝑥) 𝐺

𝑖𝑙

𝑡
=
𝜕

𝜕𝑥𝑘
{

𝑛

∑

𝑖=1

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥) 𝐺

𝑖𝑙

𝑡
+ 𝑘

𝑙

𝑠
} = 0,

for 𝑙 = 1, . . . , 𝑚.
(118)

This proves

∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝑚

∑

𝑙=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝐺

𝑖𝑙

𝑠
1
{(𝑠,𝑥
⋆

𝑠
)∈𝐷
𝑙
}
𝑑𝜉

⋆𝑐𝑙

𝑠
= 0. (119)

Furthermore, for every (𝑡, 𝑥) ∈ 𝐶
𝑙
and 𝑙 = 1, . . . , 𝑚, we have

∑
𝑛

𝑖=1
(𝜕𝑊/𝜕𝑥

𝑘
𝜕𝑥

𝑖
)(𝑡, 𝑥)𝐺

𝑖𝑙

𝑡
< 0.

But (91) implies that ∑𝑚

𝑙=1
1
{(𝑠,𝑥
⋆

𝑠
)∈𝐶
𝑙
}
𝑑𝜉

⋆𝑐𝑙

𝑠
= 0; thus

∫

𝜏
⋆

𝑅

𝑡

𝑛

∑

𝑖=1

𝑚

∑

𝑙=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑥

⋆

𝑠
) 𝐺

𝑖𝑙

𝑠
1
{(𝑠,𝑥
⋆

𝑠
)∈𝐶
𝑙
}
𝑑𝜉

⋆𝑐𝑙

𝑠
= 0. (120)

The mean value theorem yields

Δ
𝜉

𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
) = (

𝜕𝑊

𝜕𝑥𝑘
)

𝑥

(𝑠, 𝑦 (𝑠)) Δ
𝜉
𝑥
⋆

𝑠
, (121)

where 𝑦(𝑠) is some point on the straight line between 𝑥⋆
𝑠−
+

Δ
𝑁
𝑥
⋆

𝑠
and 𝑥⋆

𝑠
, and (𝜕𝑊/𝜕𝑥𝑘)

𝑥
represents the gradient matrix

of 𝜕𝑊/𝜕𝑥𝑘. To prove that the right-hand side of the above
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equality vanishes, it is enough to check that if Δ𝜉⋆𝑙
𝑠
> 0 then

∑
𝑛

𝑖=1
(𝜕

2
𝑊/𝜕𝑥

𝑘
𝜕𝑥

𝑖
)(𝑠, 𝑦(𝑠))𝐺

𝑖𝑙

𝑠
= 0, for 𝑙 = 1, . . . , 𝑚. It is clear

by (92) that

0 = Δ
𝜉
𝑊(𝑠, 𝑥

⋆

𝑠
) +

𝑚

∑

𝑙=1

𝑘
𝑙

𝑠
Δ𝜉

⋆𝑙

𝑠

=

𝑚

∑

𝑙=1

{

𝑛

∑

𝑖=1

𝜕𝑊

𝜕𝑥𝑖
(𝑠, 𝑦 (𝑠)) 𝐺

𝑖𝑙

𝑠
+ 𝑘

𝑙

𝑠
}Δ𝜉

⋆𝑙

𝑠
.

(122)

Since Δ𝜉⋆𝑙
𝑠
> 0, then (𝑠, 𝑦(𝑠)) ∈ 𝐷

𝑙
, for 𝑙 = 1, . . . , 𝑚.

According to (88), we obtain

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑠, 𝑦 (𝑠)) 𝐺

𝑖𝑙

𝑠

=
𝜕

𝜕𝑥𝑘
{

𝑛

∑

𝑖=1

𝜕𝑊

𝜕𝑥𝑖
(𝑠, 𝑦 (𝑠)) 𝐺

𝑖𝑙

𝑠
+ 𝑘

𝑙

𝑠
} = 0.

(123)

This shows that

∑

𝑡<𝑠≤𝜏
⋆

𝑅

Δ
𝜉

𝜕𝑊

𝜕𝑥𝑘
(𝑠, 𝑥

⋆

𝑠
) = 0. (124)

On the other hand, define

𝐴 (𝑡, 𝑥, 𝑢) =
𝜕𝑊

𝜕𝑡
(𝑡, 𝑥) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡, 𝑥, 𝑢)

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥)

+
1

2

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑡, 𝑥, 𝑢)

𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢)

+ ∫
𝐸

{𝑊(𝑡, 𝑥 + 𝛾 (𝑡, 𝑥, 𝑢, 𝑒)) − 𝑊 (𝑡, 𝑥)

−

𝑛

∑

𝑖=1

𝛾
𝑖
(𝑡, 𝑥, 𝑢, 𝑒)

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥)} ] (𝑑𝑒) .

(125)

If we differentiate 𝐴(𝑡, 𝑥, 𝑢) with respect to 𝑥𝑘 and
evaluate the result at (𝑥, 𝑢) = (𝑥⋆

𝑡
, 𝑢

⋆

𝑡
), we deduce easily from

(84), (89), and (90) that

𝜕
2
𝑊

𝜕𝑡𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
) +

𝑛

∑

𝑖=1

𝑏
𝑖
(𝑡)

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
)

+
1

2

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑡)

𝜕
3
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

𝑡
)

+ ∫
𝐸

{
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
+ 𝛾 (𝑡, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
)

−

𝑛

∑

𝑖=1

𝛾
𝑖
(𝑠, 𝑒)

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
)} ] (𝑑𝑒)

= −

𝑛

∑

𝑖=1

𝜕𝑏
𝑖

𝜕𝑥𝑘
(𝑡)
𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
)

−
1

2

𝑛

∑

𝑖,𝑗=1

𝜕𝑎
𝑖𝑗

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
)
𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

𝑡
) −

𝜕𝑓

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
)

− ∫
𝐸

𝑛

∑

𝑖=1

𝜕𝛾
𝑖

𝜕𝑥𝑘
(𝑡, 𝑒)

× {
𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
+ 𝛾 (𝑡, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
)} ] (𝑑𝑒) .

(126)

Finally, substituting (119), (120), (124), and (126) into (116)
yields

𝑑(
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
))

= −{

𝑛

∑

𝑖=1

𝜕𝑏
𝑖

𝜕𝑥𝑘
(𝑡)
𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
)

+
1

2

𝑛

∑

𝑖,𝑗=1

𝜕𝑎
𝑖𝑗

𝜕𝑥𝑘
(𝑡)

𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

𝑡
) +

𝜕𝑓

𝜕𝑥𝑘
(𝑡)

+ ∫
𝐸

𝑛

∑

𝑖=1

𝜕𝛾
𝑖

𝜕𝑥𝑘
(𝑡, 𝑒)

×(
𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
+ 𝛾 (𝑡, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
))] (𝑑𝑒)}𝑑𝑡

+

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
) 𝜎

𝑖
(𝑡) 𝑑𝐵

𝑡

+ ∫
𝐸

{
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡−
+ 𝛾

−
(𝑡, 𝑒))−

𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡−
)} �̃� (𝑑𝑡, 𝑑𝑒).

(127)

The continuity of 𝜕𝑊/𝜕𝑥𝑘 leads to

lim
𝑅→∞

𝜕𝑊

𝜕𝑥𝑘
(𝜏

⋆

𝑅
, 𝑥

⋆

𝜏
⋆

𝑅

) =
𝜕𝑊

𝜕𝑥𝑘
(𝑇, 𝑥

⋆

𝑇
)

=
𝜕𝑔

𝜕𝑥𝑘
(𝑥

⋆

𝑇
) , for each 𝑘 = 1, . . . , 𝑛.

(128)

Clearly,

1

2

𝑛

∑

𝑖,𝑗=1

𝜕𝑎
𝑖𝑗

𝜕𝑥𝑘
(𝑡)

𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

𝑡
)

=
1

2

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥𝑘
(

𝑑

∑

ℎ=1

𝜎
𝑖ℎ
(𝑡) 𝜎

𝑗ℎ
(𝑡))

𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

𝑡
)

=

𝑛

∑

𝑗=1

𝑑

∑

ℎ=1

(

𝑛

∑

𝑖=1

𝜎
𝑖ℎ
(𝑡)

𝜕
2
𝑊

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑡, 𝑥

⋆

t ))
𝜕𝜎

𝑖ℎ

𝜕𝑥𝑘
(𝑡) .

(129)
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Now, from (17) we have

𝜕𝐻

𝜕𝑥𝑘
(𝑡, 𝑥, 𝑢, 𝑝, 𝑞, 𝑟 (⋅))

=

𝑛

∑

𝑖=1

𝜕𝑏
𝑖

𝜕𝑥𝑘
(𝑡, 𝑥, 𝑢) 𝑝

𝑖

+

𝑑

∑

ℎ=1

𝑛

∑

𝑖=1

𝜕𝜎
𝑖ℎ

𝜕𝑥𝑘
(𝑡, 𝑥, 𝑢) 𝑞

𝑖ℎ
+
𝜕𝑓

𝜕𝑥𝑘
(𝑡, 𝑥, 𝑢)

+ ∫
𝐸

𝑛

∑

𝑖=1

𝜕𝛾
𝑖

𝜕𝑥𝑘
(𝑡, 𝑥, 𝑢, 𝑒) 𝑟

𝑖
(𝑒) ] (𝑑𝑒) .

(130)

The 𝑘th coordinate 𝑝𝑘
𝑡
of the adjoint process 𝑝

𝑡
satisfies

𝑑𝑝
𝑘

𝑡
= −

𝜕𝐻

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
, 𝑢

⋆

𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) 𝑑𝑡

+ 𝑞
𝑘

𝑡
𝑑𝐵

𝑡
+ ∫

𝐸

𝑟
𝑘

𝑡−
(𝑒) �̃� (𝑑𝑡, 𝑑𝑒) , for 𝑡 ∈ [0, 𝑇] ,

𝑝
𝑘

𝑇
=
𝜕𝑔

𝜕𝑥𝑘
(𝑥

⋆

𝑇
) ,

(131)

with 𝑞𝑘
𝑡
𝑑𝐵

𝑡
= ∑

𝑑

ℎ=1
𝑞
𝑘ℎ

𝑡
𝑑𝐵

ℎ

𝑡
. Hence, the uniqueness of the

solution of (131) and relation (128) allows us to get

𝑝
𝑘

𝑡
=
𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡
) ,

𝑞
𝑘ℎ

𝑡
=

𝑛

∑

𝑖=1

𝜕
2
𝑊

𝜕𝑥𝑘𝜕𝑥𝑖
(𝑡, 𝑥

⋆

𝑡
) 𝜎

𝑖ℎ
(𝑡) ,

𝑟
𝑘

𝑡−
(⋅) =

𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡−
+ 𝛾 (𝑡, 𝑒)) −

𝜕𝑊

𝜕𝑥𝑘
(𝑡, 𝑥

⋆

𝑡−
) ,

(132)

where 𝑞𝑘ℎ
𝑡
is the generic element of the matrix 𝑞

𝑡
and 𝑥⋆

𝑡
is the

optimal solution of the controlled SDE (8).

Example 14. We return to the same example in the previous
section.

Now, we illustrate a verification result for the maximum
principle. We suppose that 𝑇 is a fixed time. In this case the
Hamiltonian gets the form

𝐻(𝑡, 𝑋
𝑡
, 𝑝

𝑡
, 𝑞

𝑡
, 𝑟

𝑡
(⋅)) = 𝜇𝑋

𝑡
𝑝
𝑡
+ 𝜎𝑋

𝑡
𝑞
𝑡
+ 𝑋

𝛾

𝑡
(−𝜘𝑡)

+ 𝜃𝑋
𝑡−
∫
R
+

𝑒𝑟
𝑡
(𝑒) ] (𝑑𝑒) .

(133)

Let 𝜉⋆ be a candidate for an optimal control, and let𝑋⋆ be
the corresponding state process with corresponding solution

(𝑝
⋆
, 𝑞

⋆
, 𝑟

⋆
(⋅)) of the following adjoint equation, for all 𝑡 ∈

[0, 𝑇)

𝑑𝑝
⋆

𝑡
= − (𝜇𝑝

⋆

𝑡
+ 𝜎𝑞

⋆

𝑡
+ 𝜃∫

R
+

𝑒𝑟
⋆

𝑡
(𝑒) ] (𝑑𝑒)

+𝛾𝑋
⋆𝛾−1

𝑡
exp (−𝜘𝑠) ) 𝑑𝑡

+ 𝑞
⋆

𝑡
𝑑𝐵

𝑡
+ ∫

R
+

𝑟
⋆

𝑡−
(𝑒) �̃� (𝑑𝑡, 𝑑𝑒) ,

(134)

−𝑝
⋆

𝑡
+ exp (−𝜘𝑡) ≤ 0, ∀𝑡, (135)

1
{−𝑝
⋆

𝑡
+exp(−𝜘𝑡)<0}𝑑𝜉

⋆𝑐

𝑡
= 0, (136)

− (𝑝
⋆

𝑡−
+ Δ

𝑁
𝑝
⋆

𝑡
) + exp (−𝜘𝑡) ≤ 0, (137)

1
{−(𝑝
⋆

𝑡−
+Δ
𝑁
𝑝
⋆

𝑡
)+exp(−𝜘𝑡)<0}Δ𝜉

⋆

𝑡
= 0. (138)

Since 𝑔 = 0, we assume the transversality condition

E [𝑝
⋆

𝑇
(𝑋

⋆

𝑇
− 𝑋

𝑇
)] ≤ 0. (139)

We remark that Δ
𝜉
𝑝
⋆

𝑡
= 0; then 𝑝⋆

𝑡−
+ Δ

𝑁
𝑝
⋆

𝑡
= 𝑝

⋆

𝑡
, and

the condition (138) reduces to

1
{−𝑝
⋆

𝑡
+exp(−𝜘𝑡)<0}Δ𝜉

⋆

𝑡
= 0. (140)

We use the relation between the value function and the
solution (𝑝⋆, 𝑞⋆, 𝑟⋆(𝑒)) of the adjoint equation along the
optimal state. We prove that the solution of the adjoint
equation is represented as

𝑝
⋆

𝑡
= (𝐴𝜌𝑋

⋆𝜌−1

𝑡
+ 𝐾𝛾𝑋

⋆𝛾−1

𝑡
) exp (−𝜘𝑡) ,

𝑞
⋆

𝑡
= 𝜎 (𝐴𝜌 (𝜌 − 1)𝑋

⋆𝜌−1

𝑡
+ 𝐾𝛾 (𝛾 − 1)𝑋

⋆𝛾−1

𝑡
) exp (−𝜘𝑡) ,

𝑟
⋆

𝑡
(𝑒) = (𝐴𝜌 ((1 + 𝜃𝑒)

𝜌−1
− 1)𝑋

⋆𝜌−1

𝑡

+𝐾𝛾 ((1 + 𝜃𝑒)
𝛾−1
− 1)𝑋

⋆𝛾−1

𝑡
) exp (−𝜘𝑡)

(141)

for all 𝑡 ∈ [0, 𝑇).
To see this, we differentiate the process (𝐴𝜌𝑋⋆𝜌−1

𝑡
+

𝐾𝛾𝑋
⋆𝛾−1

𝑡
) exp(−𝜘𝑡) using Itô’s rule for semimartingales and

by using the same procedure as in the proof of Theorem 13.
Then, the conclusion follows readily from the verification of
(135), (136), and (139). First, an explicit formula for𝑋

𝑡
is given

in [4] by

𝑋
𝑡
= 𝑒

𝜇𝑡
𝑀

𝑡
{𝑥 − (∫

[0,𝑡)

𝑀
−1

𝑠
exp (−𝜇𝑠) 𝑑𝜉

𝑠

+ ∑

0<𝑠≤𝑡

𝑀
−1

𝑠
𝛽
𝑠
exp (−𝜇𝑠) Δ𝜉

𝑠
)} ,

for 𝑡 ∈ [0, 𝑇] ,

(142)
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where 𝛽
𝑡
= (∫

R
+

𝜃𝑒𝑁({𝑡}, 𝑑𝑒))(1 + ∫
R
+

𝜃𝑒𝑁({𝑡}, 𝑑𝑒))
−1, and

𝑀
𝑡
is a geometric Lévy process defined by

𝑀
𝑡
= exp {(−1

2
𝜎
2
+ ∫

R
+

{ln (1 + 𝜃𝑒) − 𝜃𝑒} ] (𝑑𝑒)) 𝑡

+ 𝜎𝐵
𝑡
+ ∫

𝑡

0

∫
R
+

ln (1 + 𝜃𝑒) �̃� (𝑑𝑡, 𝑑𝑒) } .
(143)

From the representation (142) and by the fact that𝑋⋆

𝑇∧𝑡
≤

𝑥𝑀
𝑇∧𝑡

exp(𝜇(𝑇 ∧ 𝑡)), we get

1 −
𝑋

𝑇∧𝑡

𝑋⋆

𝑇∧𝑡

≤
1

𝑥
(∫

[0,𝑇∧𝑡)

𝑀
−1

𝑠
exp (−𝜇𝑠) 𝑑𝜉

𝑠

+ ∑

0<𝑠≤𝑡

𝑀
−1

𝑠
𝛽
𝑠
exp (−𝜇𝑠) Δ𝜉

𝑠
) < ∞,

(144)

hence
E [𝑝

⋆

𝑇∧𝑡
(𝑋

⋆

𝑇∧𝑡
− 𝑋

𝑇∧𝑡
)]

≤ E[((𝐴𝜌𝑋
⋆𝜌

𝑇∧𝑡
+ 𝐾𝛾𝑋

⋆𝛾

𝑇∧𝑡
) exp (−𝜘 (𝑇 ∧ 𝑡)))2]

1/2

× E[

[

(
1

𝑥
∫
[0,𝑇∧𝑡)

𝑀
−1

𝑠
exp (−𝜇𝑠) 𝑑𝜉

𝑠

+ ∑

0<𝑠≤𝑇∧𝑡

𝑀
−1

𝑠
𝛽
𝑠
exp (−𝜇𝑠) Δ𝜉

𝑠
)

2

]

]

1/2

.

(145)
By the dominated convergence theorem, we obtain (139)

by sending 𝑡 to infinity in (145).
A simple computation shows that the conditions (135)–

(138) are consequences of (107)–(109). This shows in partic-
ular that the pair (𝑋⋆

𝑡
, 𝜉

⋆

𝑡
) satisfies the optimality sufficient

conditions and then it is optimal. This completes the proof
of the following result.

Theorem 15. One supposes that 𝜎2/2 + 𝜃 ∫
R
+

𝑒](𝑑𝑒) ≤ 𝜇 < 𝜘,
and 𝑒 ≥ 0 𝑑] − 𝑎.𝑒. If the strategy 𝜉⋆ is chosen such that the
corresponding solution of the adjoint process is given by (141),
then this choice is optimal.

Remark 16. In this example, it is shown in particular that the
relationship between the stochastic maximum principle and
dynamic programming could be very useful to solve explicitly
constrained backward stochastic differential equations with
transversality condition.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the referees and the associate
editor for valuable suggestions that led to a substancial

improvement of the paper. This work has been partially
supported by the Direction Générale de la Recherche Sci-
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