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We investigate coupled stochastic differential equations governing N nonnegative continuous random variables that satisfy a
conservation principle. In various fields a conservation law requires a set of fluctuating variables to be nonnegative and (if
appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce
events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic
models to ensure that both the nonnegativity and the unit-sum conservation law constraints are satisfied as the variables evolve
in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of
stochastic differential equations, and the evolution equations of the first fourmoments of the probability density function.We show
that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion
terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of
fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate
Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.

1. Introduction and Problem Statement

We investigate the consequences of the unit-sum requirement
on 𝑁 > 1 nonnegative continuous random variables gov-
erned by a diffusion process. Such mathematical description
is useful to represent fluctuating variables, 𝑌

1
, . . . , 𝑌

𝑁
, subject

to the constraint ∑ 𝑌
𝛼

= 1. We are interested in stochastic
diffusionmodels and statisticalmoment equations describing
the temporal evolutions 𝑌

𝛼
= 𝑌
𝛼

(𝑡) and their statistics. In
particular, we study the consequences of the bounded sample
space, required by the nonnegativity of 𝑌

𝛼
and the unit-sum

conservation principle, ∑ 𝑌
𝛼

= 1. A simple physical example
is the mixture of different chemical species, represented by
mass fractions 0 ≤ 𝑌

𝛼
≤ 1 undergoing reaction in a

fluid whose overall mass is conserved. Such mathematical
problems also appear in evolutionary theory [1], Bayesian
statistics [2], geology [3–5], forensics [6], econometrics [7],
turbulent mixing and combustion [8], and population biol-
ogy [9]. Mathematical properties of such random fractions
are given in [10–13].

Mathematically, we are interested in the following ques-
tion. What functions are allowed to represent the drift, 𝐴

𝛼
,

and diffusion, 𝑏
𝛼𝛽
, terms of the system, governing the vector

Y = (𝑌
1
, . . . , 𝑌

𝑁
):

d𝑌
𝛼

(𝑡) = 𝐴
𝛼

(Y, 𝑡) d𝑡 +

𝑁

∑

𝛽=1

𝑏
𝛼𝛽

(Y, 𝑡) d𝑊
𝛽

(𝑡) ,

𝛼 = 1, . . . , 𝑁,

(1)

if

𝑌
𝛼

≥ 0, 𝛼 = 1, . . . , 𝑁,

𝑁

∑

𝛼=1

𝑌
𝛼

= 1 (2)

must hold for all 𝑡. In (1) d𝑊
𝛼

(𝑡) is a vector-valued Wiener
process with mean ⟨d𝑊

𝛼
⟩ = 0 and covariance ⟨d𝑊

𝛼
d𝑊
𝛽

⟩ =

𝛿
𝛼𝛽
d𝑡; see [14], and 𝛿

𝛼𝛽
is Kronecker’s delta. If the components

of Y satisfy the constraints in (2), we call the event Y
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realizable. A consequence of the constraints in (2) imposed
on the stochastic system (1) is that for all 𝑡 the following holds:

𝑁

∑

𝛼=1

d𝑌
𝛼

(𝑡) = 0 =

𝑁

∑

𝛼=1

𝐴
𝛼

(Y, 𝑡) d𝑡

+

𝑁

∑

𝛼=1

𝑁

∑

𝛽=1

𝑏
𝛼𝛽

(Y, 𝑡) d𝑊
𝛽

(𝑡) .

(3)

In other words, we are interested in expressions for 𝐴
𝛼
and

𝑏
𝛼𝛽
, what constraints they must satisfy in addition to (3), and

how to implement them so that (1) produces realizable events;
that is, Y satisfies (2) for all 𝑡.

We study diffusion processes as (1) they are mathemat-
ically simple vehicles for representing temporal evolutions
of fluctuating fractions (of a unit) and their statistics, (2)
they lend themselves to simple Monte-Carlo numerical
methods [15], and (3) they serve as a starting point for
representations of statistical moment equations if individ-
ual samples and joint probabilities are not required. The
Markovian assumption [14] is made at the outset and jump
contributions are ignored. We derive constraints for the drift
and diffusion terms that assure that the modeled processes
are realizable (i.e., produce nonnegative variables that satisfy
the unit-sum constraint) for any realization at all times. We
address the problem of the functional forms of the drift
and diffusion terms from three perspectives: (1) the Fokker-
Planck equation for the probability density function, (2) the
stochastic differential equations for the individual realiza-
tions, and (3) the evolution equations for the jointly coupled
statistics.

The plan of the paper is as follows. Section 2 introduces
the geometry of the multidimensional sample space within
which realizations of fractions of a unit are allowed and dis-
cusses constraints that ensure realizable statistical moments.
Section 3 develops the implications of realizability on dif-
fusion processes governing fractions. Section 4 follows by
developing realizability constraints on the time evolutions of
statistics. Section 5 surveys some existing realizable diffusion
processes. A summary is given in Section 6.

2. Realizability due to Conservation

The notion of realizability due to a conservation law con-
straint was introduced and defined by (2). We now discuss
the consequences of realizability pertaining to the individual
samples of the state space, Section 2.1, and of their statistics,
Section 2.2.

2.1. The Universal Geometry of Allowed Realizations. The
geometrical definition of the sample space is given in which
the vector Y = (𝑌

1
, . . . , 𝑌

𝑁
) is allowed if (2) is to be satisfied.

This is used to derive constraints for stochastic diffusions and
their moment equations in the subsequent sections.

A realization of the vector,Y, with coordinates𝑌
𝛼

≥ 0,𝛼 =

1, . . . , 𝑁, specifies a point in the multidimensional sample
space. The union of all such points, that satisfy

𝑁

∑

𝛼=1

𝑌
𝛼

= 1, (4)

is the space of allowed realizations; see (2). For example,
in representing mass fraction constituents of a substance,
(4) restricts the possible components of Y to those that are
realizable; those vectors that point outside of the allowed
space are not conserved; if (4) is violated, spurious mass is
created or destroyed.

Mathematically, the geometry of allowed realizations
is a simplex, the generalization of a triangle to multiple
dimensions. For𝑁 variables the (𝑁−1)-simplex is a bounded
convex polytope,P, on the (𝑁 − 1)-dimensional hyperplane;
P is the convex hull of its 𝑁 vertices. P’s boundary, 𝜕P, is
defined as the closed surface of nonoverlapping hyperplanes
of 𝑁 − 2 dimensions:

𝜕P ≡ (𝑌
𝛼

= 0 : 𝛼 = 1, . . . , 𝑁 − 1;

𝑁−1

∑

𝛼=1

𝑌
𝛼

= 1) , (5)

plotted in Figure 1 for 𝑁 = 3.
The domain (or support) of the joint probability, 𝐹(Y),

with 𝑌
𝛼
, 𝛼 = 1, . . . , 𝑁, is the (𝑁 − 1)-simplex. Of all 𝑌

𝛼
only

𝑁−1 are independent due to (4) andwithout loss of generality
we take

𝑌
𝑁

= 1 −

𝑁−1

∑

𝛼=1

𝑌
𝛼

. (6)

The same geometry of allowed realizations is discussed by
Pope in the 𝑁-dimensional state space in [16] in the context
of ideal gas mixing in turbulent combustion.

We confine our attention here to𝑁−1 dimensions, as one
of the variables is determined by the unit-sum requirement;
see (6). As a consequence, the (𝑁 − 1)-dimensional geometry
of realizable events is remarkably simple and universal: it is
the bounded convex polytope whose boundary is defined by
(5). Consequently, the realizability constraint, (2), uniquely
and universally determines the realizable region of the state
space: it is the same in all points in space and time for all
materials undergoing any physical process that conserves
mass; see (4). The ensemble is realizable if and only if all
samples reside inside the polytope given by (5). For 𝑁 = 3

this means that the support of 𝐹 is the triangle depicted in
Figure 1.

2.2. Realizable Statistical Moments. If the fractions are non-
negative and sum to one, required by (2), they are also
bounded:

0 ≤ 𝑌
𝛼

≤ 1, 𝛼 = 1, . . . , 𝑁,

𝑁

∑

𝛼=1

𝑌
𝛼

= 1, (7)

whose consequences on some of their statistical moments are
now discussed.
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Figure 1: The geometry of allowed realizations for 𝑁 = 3 variables,
Y = (𝑌

1
, 𝑌
2
, 𝑌
3

= 1 − 𝑌
1

− 𝑌
2
), that satisfy nonnegativity and the

unit-sum constraint; see (2).The boundary of the allowed region on
the plane spanned by 𝑌

1
and 𝑌

2
is the closed loop of straight lines:

(𝑌
1

= 0, 𝑌
2

= 0, 𝑌
1

+ 𝑌
2

= 1), defined by (5). If the vector Y points
inside the triangle, it is a realizable event.

Takingmathematical expectations of (7), see for example,
[17] yields

0 ≤ ⟨𝑌
𝛼

⟩ ≤ 1, 𝛼 = 1, . . . , 𝑁,

𝑁

∑

𝛼=1

⟨𝑌
𝛼

⟩ = 1. (8)

Similar to the instantaneous fractions, the first statistical
moments are also nonnegative, are bounded, and sum to
unity.

Since both the instantaneous variables and their means
are bounded, fluctuations about the means are also bounded:

−1 ≤ 𝑦
𝛼

= 𝑌
𝛼

− ⟨𝑌
𝛼

⟩ ≤ 1. (9)

As a consequence, the variances and the covariances are also
bounded:

0 ≤ ⟨𝑦
2

𝛼
⟩ = ⟨(𝑌

𝛼
− ⟨𝑌
𝛼

⟩)
2

⟩ ≤ 1, (10)

−1 ≤ ⟨𝑦
𝛼

𝑦
𝛽

⟩ = ⟨(𝑌
𝛼

− ⟨𝑌
𝛼

⟩) (𝑌
𝛽

− ⟨𝑌
𝛽

⟩)⟩ ≤ 1, 𝛼 ̸= 𝛽.

(11)

Multiplying (4) by 𝑦
𝛽
, 𝛽 = 1, . . . , 𝑁 and taking the

expectation yield

⟨𝑦
2

1
⟩ + ⟨𝑦

2
𝑦
1
⟩ + ⋅ ⋅ ⋅ + ⟨𝑦

𝑁
𝑦
1
⟩ = 0

⟨𝑦
1
𝑦
2
⟩ + ⟨𝑦

2

2
⟩ + ⋅ ⋅ ⋅ + ⟨𝑦

𝑁
𝑦
2
⟩ = 0

...

⟨𝑦
1
𝑦
𝑁

⟩ + ⟨𝑦
2
𝑦
𝑁

⟩ + ⋅ ⋅ ⋅ + ⟨𝑦
2

𝑁
⟩ = 0,

(12)

that is, the row sums and, due to symmetry, the column
sums of the covariance matrix are zero. Expressing ⟨𝑦

𝑁
𝑦
1
⟩,

⟨𝑦
𝑁

𝑦
2
⟩, and so forth, from the first 𝑁 − 1 equations of (12),

and substituting them into the 𝑁th one yield the weaker
constraint:

𝑁−1

∑

𝛼=1

𝑁−1

∑

𝛽=1

⟨𝑦
𝛼

𝑦
𝛽

⟩ − ⟨𝑦
2

𝑁
⟩ = 0. (13)

Due to bounded fluctuations, see (9), the third central
moments are also bounded:

−1 ≤ ⟨𝑦
3

𝛼
⟩ = ⟨(𝑌

𝛼
− ⟨𝑌
𝛼

⟩)
3

⟩ ≤ 1, (14)

and in general, for 𝑛 ≥ 2 we have

0 ≤ ⟨𝑦
𝑛

𝛼
⟩ ≤ 1, for even 𝑛, (15)

−1 ≤ ⟨𝑦
𝑛

𝛼
⟩ ≤ 1, for odd 𝑛. (16)

Ensuring nonnegativity and unit sum puts constraints
on possible time evolutions of Y = Y(𝑡), represented by
diffusion processes and that of their statistics. Some of these
constraints are developed in the following sections.

3. Diffusion Processes for Random Fractions

Implications of the geometry of the realizable state space,
discussed in Section 2, on diffusion processes are developed.
First, the relevant mathematical properties of Fokker-Planck
equations are reviewed in Section 3.1, followed by the con-
straints on their functional forms, Section 3.2.

3.1. Review of Some Boundary Conditions of Fokker-Planck
Equations. The discussion is restricted to Markov processes
which by definition obey a Chapman-Kolmogorov equation
[14]. Assuming that 𝑌

𝛼
are continuous in space and time,

jump processes are excluded. The temporal evolution of
random fractions, Y(𝑡), constrained by (2) can then be
represented most generally by diffusion processes whose
transitional probability, 𝐹(Y, 𝑡), is governed by the Fokker-
Planck equation:

𝜕

𝜕𝑡
𝐹 (Y, 𝑡) = −

𝑁−1

∑

𝛼=1

𝜕

𝜕𝑌
𝛼

[𝐴
𝛼

(Y, 𝑡) 𝐹 (Y, 𝑡)]

+
1

2

𝑁−1

∑

𝛼=1

𝑁−1

∑

𝛽=1

𝜕
2

𝜕𝑌
𝛼

𝜕𝑌
𝛽

[𝐵
𝛼𝛽

(Y, 𝑡) 𝐹 (Y, 𝑡)] ,

(17)

where 𝐴
𝛼
and 𝐵

𝛼𝛽
denote drift and diffusion in state space,

respectively, and 𝐵
𝛼𝛽

is symmetric nonnegative semidefinite
[17]. Equation (17) is a partial differential equation that
governs the joint probability, 𝐹(Y, 𝑡), of the fractions, 𝑌

𝛼
,

𝛼 = 1, . . . , 𝑁 − 1. 𝑌
𝑁
is excluded from (17) and is determined

by (6). Augmented by initial and boundary conditions, (17)
describes the transport of probability in sample space R
whose boundary is 𝜕R with normal vector 𝑛

𝛼
; see [14].

Equation (17) can be written in conservation form as

𝜕

𝜕𝑡
𝐹 (Y, 𝑡) +

𝑁−1

∑

𝛼=1

𝜕

𝜕𝑌
𝛼

𝐼
𝛼

(Y, 𝑡) = 0, (18)
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in terms of the probability flux; see [14, Section 5.1]:

𝐼
𝛼

(Y, 𝑡) = 𝐴
𝛼

(Y, 𝑡) 𝐹 (Y, 𝑡)

−
1

2

𝑁−1

∑

𝛽=1

𝜕

𝜕𝑌
𝛽

[𝐵
𝛼𝛽

(Y, 𝑡) 𝐹 (Y, 𝑡)] ,

𝛼 = 1, . . . , 𝑁 − 1.

(19)

Using (18) and (19) the following boundary conditions are
considered; see [14, Section 6.2].

(1) Reflecting barrier. If ∑ 𝑛
𝛼

𝐼
𝛼

(Y, 𝑡) = 0 everywhere on
the boundary, 𝜕R is a reflecting barrier: a particle
inside R cannot cross the boundary and must be
reflected there.

(2) Absorbing barrier. If 𝐹(Y, 𝑡) = 0 everywhere on the
boundary, 𝜕R is an absorbing barrier: if a particle
reaches the boundary, it is removed from the system.

(3) Other types of boundary conditions. Some part of the
boundary may be reflecting while some other may
be absorbing: a combination is certainly possible.
We only consider reflecting and absorbing barriers—
other types of boundaries are discussed in [18].

To support the forthcoming discussion, some well-estab-
lished mathematical properties of multivariable Fokker-
Planck equations have been reviewed.

3.2. Realizable Diffusion Processes. The implications of the
realizability constraint, (2), on the functional forms of the
drift and diffusion terms of the Fokker-Planck equation (17)
are now investigated.

As discussed in Section 2, the region of the sample space
allowed by the realizability requirement is the polytope P
defined by its boundary, 𝜕P, (5), in which all samples of Y =

Y(𝑡) must reside at all times. Consequently, the sample space,
R, of the Fokker-Planck equation (17) must coincide withP,
which constrains the possible functional forms of 𝐴

𝛼
(Y, 𝑡)

and 𝐵
𝛼𝛽

(Y, 𝑡). In the following, these constraints are devel-
oped for binary (single-variable) processes first, followed by
ternary processes, and then generalized to multiple variables.

3.2.1. Realizable Binary Processes: 𝑁 = 2. The Itô diffusion
process [14], governing the variable 𝑌,

d𝑌 (𝑡) = 𝐴 (𝑌, 𝑡) d𝑡 + √𝐵 (𝑌, 𝑡)d𝑊 (𝑡) , (20)

with 𝐵(𝑌, 𝑡) ≥ 0 is equivalent to and derived from (17) with
𝑁 = 2; see for example, [14]:

𝜕

𝜕𝑡
𝐹 (𝑌, 𝑡) = −

𝜕

𝜕𝑌
[𝐴 (𝑌, 𝑡) 𝐹 (𝑌, 𝑡)] +

1

2

𝜕
2

𝜕𝑌2
[𝐵 (𝑌, 𝑡) 𝐹 (𝑌, 𝑡)] .

(21)

For 𝑁 = 2 the allowed space of realizations is a line with
endpoints given by (5):

(𝑌 = 0; 𝑌 = 1) . (22)

This can be ensured if the drift and diffusion terms in (20)
and (21) satisfy

𝐴 (𝑌 = 0, 𝑡) ≥ 0, 𝐵 (𝑌 = 0, 𝑡) = 0,

𝐴 (𝑌 = 1, 𝑡) ≤ 0, 𝐵 (𝑌 = 1, 𝑡) = 0.

(23)

In other words, the realizability constraint in (2) on (20)
mathematically corresponds to (23). A diffusion process,
governed by (20), that satisfies (23), ensures that the fractions
𝑌 and 1 − 𝑌 satisfy 0 ≤ 𝑌 ≤ 1, provided each event of the
ensemble at 𝑡 = 0 satisfies 0 ≤ 𝑌 ≤ 1. The equal signs in the
constraints on the drift in (23) allow for absorbing barriers
at 𝑌 = 0 and 𝑌 = 1, respectively. The constraints on the
diffusion term imply that 𝐵(𝑌, 𝑡) must either be nonlinear in
𝑌 or 𝐵(𝑌, 𝑡) ≡ 0 for all 𝑌. In other words, since the diffusion
term must be nonnegative, required by (20), it can only be
nonzero inside the allowed sample space if it is also nonlinear.

3.2.2. Realizable Ternary Processes: 𝑁 = 3. For 𝑁 = 3

variables, the unit-sum-constrained sample space and its
boundary are sketched in Figure 1. In this case individual
samples of the joint probability,𝐹(𝑌

1
, 𝑌
2
), are governed by the

system:

d𝑌
1

(𝑡) = 𝐴
1

(𝑌
1
, 𝑌
2
, 𝑡) d𝑡 + 𝑏

11
(𝑌
1
, 𝑌
2
, 𝑡) d𝑊

1
(𝑡)

+ 𝑏
12

(𝑌
1
, 𝑌
2
, 𝑡) d𝑊

2
(𝑡) ,

d𝑌
2

(𝑡) = 𝐴
2

(𝑌
1
, 𝑌
2
, 𝑡) d𝑡 + 𝑏

21
(𝑌
1
, 𝑌
2
, 𝑡) d𝑊

1
(𝑡)

+ 𝑏
22

(𝑌
1
, 𝑌
2
, 𝑡) d𝑊

2
(𝑡) .

(24)

The allowed samples space is two dimensional (a triangle)
whose boundary, defined by (5), consists of the loop of lines:

(𝑌
1

= 0, 𝑌
2

= 0, 𝑌
1

+ 𝑌
2

= 1) . (25)

For 𝑁 = 3, the state vector, governed by (24) augmented by
𝑌
3

= 1 − 𝑌
1

− 𝑌
2
, stays inside the allowed region if

𝐴
1

(𝑌
1

= 0, 𝑌
2
, 𝑡) ≥ 0,

𝐵
11

(𝑌
1

= 0, 𝑌
2
, 𝑡) = 𝐵

12
(𝑌
1

= 0, 𝑌
2
, 𝑡) = 0,

𝐴
2

(𝑌
1
, 𝑌
2

= 0, 𝑡) ≥ 0,

𝐵
21

(𝑌
1
, 𝑌
2

= 0, 𝑡) = 𝐵
22

(𝑌
1
, 𝑌
2

= 0, 𝑡) = 0,

𝐴
1

(𝑌
1

+ 𝑌
2

= 1, 𝑡) ≤ 0,

𝐵
11

(𝑌
1

+ 𝑌
2

= 1, 𝑡) = 𝐵
12

(𝑌
1

+ 𝑌
2

= 1, 𝑡) = 0,

𝐴
2

(𝑌
1

+ 𝑌
2

= 1, 𝑡) ≤ 0,

𝐵
21

(𝑌
1

+ 𝑌
2

= 1, 𝑡) = 𝐵
22

(𝑌
1

+ 𝑌
2

= 1, 𝑡) = 0.

(26)

The realizability constraint, (2), on the system of (24) mathe-
matically corresponds to (26).The three fractions, 𝑌

1
, 𝑌
2
, and

𝑌
3

= 1−𝑌
1

−𝑌
2
, governed by (6) and (24), remain fractions of

unity if their drift and diffusion terms satisfy (26). Naturally,
an initial ensemble that satisfies 0 ≤ 𝑌

1
, 0 ≤ 𝑌

2
, and𝑌

1
+𝑌
2

≤ 1
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is required. The constraints on the diffusion terms in (26)
show that both 𝐵

1
and 𝐵

2
must either be nonlinear in 𝑌

1
and

𝑌
2
, respectively, or 𝐵

1
(𝑌
1
, 𝑡) ≡ 0 and 𝐵

2
(𝑌
2
, 𝑡) ≡ 0, for all 𝑌

1

and 𝑌
2
, respectively. Furthermore, if one were to construct a

process with 𝐴
1

= 𝐴
1
(𝑌
1
), 𝐵
11

= 𝐵
11

(𝑌
1
), and 𝐵

12
= 𝐵
12

(𝑌
1
),

then either 𝐴
2
or 𝐵
22
must be a function of both 𝑌

1
and 𝑌

2
if

1−𝑌
1

−𝑌
2

≥ 0 is to bemaintained, required by𝑌
1

+𝑌
2

+𝑌
3

= 1

with 𝑌
1

≥ 0, 𝑌
2

≥ 0, 𝑌
3

≥ 0. In other words, the unit-sum
constraint couples at least 2 of the 3 fractions, governed by
the system given by (6) and (24).

3.2.3. Realizable Multi-Variable Processes: 𝑁 > 2. The multi-
variate Itô diffusion process, equivalent to the Fokker-Planck
equation (17), is [14]

d𝑌
𝛼

(𝑡) = 𝐴
𝛼

(Y, 𝑡) d𝑡 +

𝑁−1

∑

𝛽=1

𝑏
𝛼𝛽

(Y, 𝑡) d𝑊
𝛽

(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

(27)

with 𝐵
𝛼𝛽

= ∑
𝑁−1

𝛾=1
𝑏
𝛼𝛾

𝑏
𝛾𝛽

and the vector-valued Wiener
process, d𝑊

𝛽
(𝑡), with mean ⟨d𝑊

𝛽
⟩ = 0 and covariance

⟨d𝑊
𝛼
d𝑊
𝛽

⟩ = 𝛿
𝛼𝛽
d𝑡.The sample space of allowed realizations

is now bounded by the nonoverlapping hyperplanes, defined
by (5).The conditions, analogous to (23) and (26) that ensure
realizability for multiple variables, are

𝐴
𝛼

(𝑌
𝛼

= 0, 𝑌
𝛽 ̸= 𝛼

, 𝑡) ≥ 0,

𝐵
𝛼𝛽

(𝑌
𝛼

= 0, 𝑌
𝛽 ̸= 𝛼

, 𝑡) = 0,

𝐴
𝛼

(

𝑁−1

∑

𝛼=1

𝑌
𝛼

= 1, 𝑡) ≤ 0,

𝐵
𝛼𝛽

(

𝑁−1

∑

𝛼=1

𝑌
𝛼

= 1, 𝑡) = 0,

𝛼, 𝛽 = 1, . . . , 𝑁 − 1.

(28)

The realizability constraint in (2) on the system of (27)
mathematically corresponds to (28). A diffusion process,
governed by (27), that satisfies (28) ensures that the fractions
𝑌
𝛼
satisfy 0 ≤ 𝑌

𝛼
≤ 1, 𝛼 = 1, . . . , 𝑁, with 𝑌

𝑁
= 1 −

∑
𝑁−1

𝛽=1
𝑌
𝛽
, provided each event of the initial ensemble at 𝑡 = 0

satisfies 0 ≤ 𝑌
𝛼

≤ 1. As before, the equal signs in the
constraints on the drifts in (28) allow for absorbing barriers at
the boundaries. The constraints on the diffusion term imply
that for any 𝛼, 𝐵

𝛼𝛽
(𝑌
𝛼

, 𝑌
𝛽 ̸= 𝛼

, 𝑡) must either be nonlinear in 𝑌
𝛼

or 𝐵
𝛼𝛽

(𝑌
𝛼

, 𝑌
𝛽 ̸= 𝛼

, 𝑡) ≡ 0 for all 𝑌
𝛼
. In other words, since the

diffusion term must be nonnegative semidefinite, required
by (27), it can only be nonzero inside the allowed sample
space if it is also nonlinear. Equations (28) also show, that
while it is conceivable, that 𝐴

𝛼
̸= 𝐴
𝛼

(𝑌
𝛽

) and 𝐵
𝛼𝛽

̸= 𝐵
𝛼𝛽

(𝑌
𝛽

)

for a single 𝛼 and all 𝛽 ̸= 𝛼, if ∑ 𝑌
𝛼

= 1 is to be satisfied,
either 𝐴

𝛼
= 𝐴
𝛼

(𝑌
𝛽

) or 𝐵
𝛼𝛽

= 𝐵
𝛼𝛽

(𝑌
𝛽

) must hold for all
𝛽 ̸= 𝛼. In other words, the unit-sum constraint couples at least
𝑁 − 1 equations of the system of (6) and (27) governing 𝑌

𝛼
,

𝛼 = 1, . . . , 𝑁.

Constraints on the functional forms of the drift and
diffusion terms of the multivariate Fokker-Planck equation
(17), as a temporal representation of random fractions, 𝑌

𝛼
=

𝑌
𝛼

(𝑡), have been developed. Equations (28) are our central
result which ensure that sample space events, generated by
(17) or its equivalent system of diffusion processes, (27),
satisfy the realizability constraint at all times, provided the
initial ensemble is realizable. Since (17) and (27) govern 𝑁 − 1

variables and 𝑌
𝑁

= 1 − ∑
𝑁−1

𝛽=1
𝑌
𝛽
, the unit-sum requirement,

(4), is satisfied at all times.An implication of (28), exemplified
in Section 5, is that random fractions represented by diffusion
processes must be coupled and nonlinear.

4. Realizable Evolution of Statistics

Some implications of (28) for the first few statisticalmoments
of the joint probability, governed by (17), are now derived.
This is useful for statistical moment equation representation
of fractions if individual samples and joint probabilities are
not required.

4.1. Realizable Evolution of the Means: ⟨𝑌
𝛼

⟩. Multiplying (17)
by 𝑌
𝛾
and integrating over all sample space, see for example

[19], yield the system of equations governing themeans of the
fractions:

𝜕 ⟨𝑌
𝛼

⟩

𝜕𝑡
= ⟨𝐴
𝛼

⟩ = M
𝛼

, 𝛼 = 1, . . . , 𝑁 − 1, (29)

where 𝐴
𝛼

= 𝐴
𝛼

(Y, 𝑡). The evolution of the means can be
made consistent with the realizability constraint in (2) if the
means are bounded and sum to one at all times. Equation
(29) shows that to keep the means bounded, required by (8),
the rate of change of the means, M

𝛼
, must be governed by

functions that satisfy

lim
⟨𝑌𝛼⟩→0

M
𝛼

= lim
⟨𝑌𝛼⟩→0

⟨𝑌
𝛼

⟩,
𝑡

≥ 0,

lim
⟨𝑌
𝛼
⟩→1

M
𝛼

= lim
⟨𝑌𝛼⟩→1

⟨𝑌
𝛼

⟩,
𝑡

≤ 0,

(30)

as the boundary of the state space is approached. In (30)
(⋅),
𝑡

= 𝜕/𝜕𝑡. Equation (30) implies that inside the state space
(i.e., away from the boundaries)M

𝛼
must either be a function

of ⟨𝑌
𝛼

⟩ or M
𝛼

≡ 0 for all 𝑡. The means may also sum to
one, required by (8), if at least 𝑁 − 2 of (29) are coupled to
each other. Consequently,M

𝛼
must be a function of ⟨𝑌

𝛽
⟩ for

all 𝛽 ̸= 𝛼. Equation (29) shows how the means are governed
if a Fokker-Planck equation (17) or a diffusion process (27)
governs the underlying joint probability; for example, only
the mean of the drift, 𝐴

𝛼
, affects the evolution of the means.

4.2. Realizable Evolution of the Second Central Moments:
⟨𝑦
𝛼

𝑦
𝛽

⟩. Multiplying the Fokker-Planck equation (17) by
𝑦
𝛾
𝑦
𝛿

= (𝑌
𝛾

− ⟨𝑌
𝛾
⟩)(𝑌
𝛿

− ⟨𝑌
𝛿
⟩) and then integrating over
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all sample space yield the equations governing the covariance
matrix of the fractions:

𝜕 ⟨𝑦
𝛼

𝑦
𝛽

⟩

𝜕𝑡
= ⟨𝑦
𝛼

𝐴
𝛽

⟩ + ⟨𝑦
𝛽

𝐴
𝛼

⟩ + ⟨𝐵
𝛼𝛽

⟩ = C
𝛼𝛽

,

𝛼, 𝛽 = 1, . . . , 𝑁 − 1,

(31)

with 𝐴
𝛼

= 𝐴
𝛼

(Y, 𝑡) and 𝐵
𝛼𝛽

= 𝐵
𝛼𝛽

(Y, 𝑡). The right hand
side of (31) is denoted by C

𝛼𝛽
, the evolution rate of the

covariance matrix. Equation (31) shows how the covariances
are governed if a Fokker-Planck equation (17) or a diffusion
process (27) governs the underlying joint probability; for
example, ⟨𝑦

𝛼
𝑦
𝛽

⟩ is symmetric at all times. Following the
development in Section 2.2, four conditions must be satisfied
by the system of second moment equations (31) to ensure
an evolution of the covariances that is consistent with the
realizability constraint in (2).

(1) Symmetric covariance evolution.The symmetry of the
covariance matrix can be ensured if ⟨𝑦

𝛼
𝑦
𝛽

⟩(𝑡 = 0) is
symmetric, as well as its evolution rates:

C
𝛼𝛽

= C
𝛽𝛼

. (32)

(2) Boundedness of the variances, (10).This condition can
be ensured with

lim
⟨𝑦
2

𝛼
⟩→0

C
𝛼𝛼

= lim
⟨𝑦
2

𝛼
⟩→0

⟨𝑦
2

𝛼
⟩,
𝑡

≥ 0,

lim
⟨𝑦
2

𝛼
⟩→1

C
𝛼𝛼

= lim
⟨𝑦
2

𝛼
⟩→1

⟨𝑦
2

𝛼
⟩,
𝑡

≤ 0,

(33)

as the boundary of the state space is approached,
indicating that in general the equation governing ⟨𝑦

2

𝛼
⟩

must either be a function of ⟨𝑦
2

𝛼
⟩ orC

𝛼𝛼
≡ 0 for all 𝑡.

(3) Boundedness of the covariances, (11). This condition
can be ensured if, for 𝛼 ̸= 𝛽,

lim
⟨𝑦
𝛼
𝑦
𝛽
⟩→−1

C
𝛼𝛽

= lim
⟨𝑦
𝛼
𝑦
𝛽
⟩→−1

⟨𝑦
𝛼

𝑦
𝛽

⟩,
𝑡

≥ 0,

lim
⟨𝑦
𝛼
𝑦
𝛽
⟩→1

C
𝛼𝛽

= lim
⟨𝑦
𝛼
𝑦
𝛽
⟩→1

⟨𝑦
𝛼

𝑦
𝛽

⟩,
𝑡

≤ 0,

(34)

as the boundary of the state space is approached,
indicating that in general the equation governing
⟨𝑦
𝛼

𝑦
𝛽

⟩must either be a function of ⟨𝑦
𝛼
𝑦
𝛽

⟩ orC
𝛼𝛽

≡ 0

for all 𝑡.
(4) Zero row sums, (12). Differentiating (12) in time and

using (31) yield the system

C
11

+ C
21

+ ⋅ ⋅ ⋅ + ⟨𝑦
𝑁

𝑦
1
⟩,
𝑡

= 0

C
12

+ C
22

+ ⋅ ⋅ ⋅ + ⟨𝑦
𝑁

𝑦
2
⟩,
𝑡

= 0

...

C
1(𝑁−1)

+ C
2(𝑁−1)

+ ⋅ ⋅ ⋅ + ⟨𝑦
𝑁

𝑦
𝑁−1

⟩,
𝑡

= 0

⟨𝑦
1
𝑦
𝑁

⟩ ,
𝑡

+ ⟨𝑦
2
𝑦
𝑁

⟩ ,
𝑡

+ ⋅ ⋅ ⋅ + ⟨𝑦
2

𝑁
⟩,
𝑡

= 0.

(35)

Performing the same substitutions on (35) that
resulted in (13) we obtain the weaker constraint:

𝑁−1

∑

𝛼=1

𝑁−1

∑

𝛽=1

C
𝛼𝛽

− ⟨𝑦
2

𝑁
⟩ ,
𝑡

= 0. (36)

We see that the trivial specification, C
𝛼𝛽

≡ 0, satisfies all the
above conditions but also fixes the covariance matrix at its
initial state for all 𝑡 ≥ 𝑡

0
, which is of limited applicability.

4.3. Bounded Evolution of the Third Central Moments, ⟨𝑦
3

𝛼
⟩.

Multiplying the Fokker-Planck equation (17) by 𝑦
3

𝛾
=

(𝑌
𝛾

− ⟨𝑌
𝛾
⟩)
3 and then integrating yield the system governing

the third central moments, ⟨𝑦
3

𝛼
⟩, as

𝜕 ⟨𝑦
3

𝛼
⟩

𝜕𝑡
= 3 ⟨𝑦

2

𝛼
𝐴
𝛼

⟩ + 3

𝑁−1

∑

𝛽=1

⟨𝑦
𝛼

𝐵
𝛽𝛽

⟩ = S
𝛼

,

𝛼 = 1, . . . , 𝑁 − 1,

(37)

with 𝐴
𝛼

= 𝐴
𝛼

(Y, 𝑡) and 𝐵
𝛼𝛽

= 𝐵
𝛼𝛽

(Y, 𝑡).The right hand sides
of (37) are the evolution rates of the third moments, denoted
by S
𝛼
. The boundedness of the third moments, required by

(14), can be ensured if

lim
⟨𝑦
3

𝛼⟩→−1
S
𝛼

= lim
⟨𝑦
3

𝛼⟩→−1
⟨𝑦
3

𝛼
⟩,
𝑡

≥ 0,

lim
⟨𝑦
3

𝛼⟩→1
S
𝛼

= lim
⟨𝑦
3

𝛼⟩→1
⟨𝑦
3

𝛼
⟩,
𝑡

≤ 0,

(38)

as the boundary of the state space is approached, indicating
that in general the equation governing ⟨𝑦

3

𝛼
⟩ must either be a

function of ⟨𝑦
3

𝛼
⟩ or S

𝛼
≡ 0 for all 𝑡. The conditions in (38)

only ensure boundedness; consequently, they are necessary
but not sufficient conditions for realizability of the third
moments as required by (2). Note that the requirement on
bounded sample space has no implications on the bounded-
ness of the skewness:

−∞ <
⟨𝑦
3

𝛼
⟩

⟨𝑦2
𝛼

⟩
3/2

< ∞, (39)

since ⟨𝑦
2

𝛼
⟩ ≥ 0, see (10).

4.4. Bounded Evolution of the Fourth Central Moments,
⟨𝑦
4

𝛼
⟩. Multiplying the Fokker-Planck equation (17) by 𝑦

4

𝛾
=

(𝑌
𝛾

− ⟨𝑌
𝛾
⟩)
4 and then integrating yield the system governing

the fourth central moments, ⟨𝑦
4

𝛼
⟩, as

𝜕 ⟨𝑦
4

𝛼
⟩

𝜕𝑡
= 4 ⟨𝑦

3

𝛼
𝐴
𝛼

⟩ + 6

𝑁−1

∑

𝛽=1

⟨𝑦
2

𝛼
𝐵
𝛽𝛽

⟩ = K
𝛼

,

𝛼 = 1, . . . , 𝑁 − 1,

(40)
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with 𝐴
𝛼

= 𝐴
𝛼

(Y, 𝑡) and 𝐵
𝛼𝛽

= 𝐵
𝛼𝛽

(Y, 𝑡).The right hand sides
of (40) are the evolution rates of the fourthmoments, denoted
byK
𝛼
.The boundedness of the fourth moments, required by

(15), can be ensured if

lim
⟨𝑦
4

𝛼⟩→0
K
𝛼

= lim
⟨𝑦
4

𝛼⟩→0
⟨𝑦
4

𝛼
⟩,
𝑡

≥ 0,

lim
⟨𝑦
4

𝛼⟩→1
K
𝛼

= lim
⟨𝑦
4

𝛼⟩→1
⟨𝑦
4

𝛼
⟩,
𝑡

≤ 0,

(41)

as the boundary of the state space is approached, indicating
that in general the equation governing ⟨𝑦

4

𝛼
⟩ must either be a

function of ⟨𝑦
4

𝛼
⟩ or K

𝛼
≡ 0 for all 𝑡. The conditions in (41)

only ensure boundedness; consequently, they are necessary
but not sufficient conditions for realizability of the fourth
moments as required by (2).Note that, similar to the skewness
in (39), the requirement on bounded sample space has no
implications on the upper bound of the kurtosis:

0 ≤
⟨𝑦
4

𝛼
⟩

⟨𝑦2
𝛼

⟩
2

< ∞, (42)

since ⟨𝑦
2

𝛼
⟩ ≥ 0, (10).

4.5. Summary on Realizable Statistics of Fractions. The unit-
sum constraint, (4), applied to a set of nonnegative random
variables, bounds and constrains their statistical moments,
as shown in Section 2.2, as well as their time evolutions. We
examined the evolution of the moments, ⟨𝑌

𝛼
⟩, ⟨𝑦
𝛼

𝑦
𝛽

⟩, ⟨𝑦
3

𝛼
⟩,

and ⟨𝑦
4

𝛼
⟩, and showed how they are governed if an underlying

diffusion process is known.
Realizability of the means, as defined by (2), can be

ensured if (8) and (30) are satisfied. Realizability of the
covariances can be ensured if (10)–(12) and (32)–(35) are
satisfied. Boundedness of the third moments is ensured by
(14) and (38), while boundedness of the fourth moments is
ensured by (15) and (41). The procedure outlined above can
be continued to derive additional constraints for consistency
of the third, fourth, mixed, and higher moments with the
unit-sum constraint. The constraints reflect the coupled and
nonlinear nature of random fractions, both as instantaneous
variables and their statistics.

5. A Survey of Realizable Diffusion Processes

A survey of existing diffusion processes that satisfy the
realizability constraints on drift and diffusion on the state-
space boundary, (28), is now given.

5.1. Realizable Binary Process: 𝑁 = 2, Beta. An example for
𝑁 = 2, satisfying the realizability constraints on the drift
and diffusion terms on the sample-space boundary in (23),
is given in [20], specifying the drift and diffusion as

𝐴 (𝑌) =
𝑏

2
(𝑆 − 𝑌) ,

𝐵 (𝑌) = 𝜅𝑌 (1 − 𝑌) ,

(43)

yielding the stochastic differential equation:

d𝑌 (𝑡) =
𝑏

2
(𝑆 − 𝑌) d𝑡 + √𝜅𝑌 (1 − 𝑌)d𝑊 (𝑡) , (44)

with 𝑏 > 0, 𝜅 > 0, and 0 < 𝑆 < 1 excluding, while with 0 ≤

𝑆 ≤ 1 allowing for absorbing barriers. In (44) the drift is linear
and the diffusion is quadratic in 𝑌. The invariant distribution
of (44) is beta, which belongs to the family of Pearson
distributions, discussed in detail by Forman & Sørensen [21].
Of the special cases of the Pearson diffusions, discussed in
[21], only Case 6, equivalent to (44), produces realizable
events. A symmetric variant of (44) was constructed in [22],
which does not allow a nonzero skewness in the statistically
stationary state; see [20].

5.2. Realizable Multivariate Process: 𝑁 > 2, Wright-Fisher. A
system of stochastic differential equations that satisfies the
realizability conditions for 𝑁 > 2 variables in (28) is the
multivariate Wright-Fisher process [9], which specifies the
drift and diffusion terms as

𝐴
𝛼

(Y) =
1

2
(𝜔
𝛼

− 𝜔𝑌
𝛼

) ,

𝐵
𝛼𝛽

(Y) = 𝑌
𝛼

(𝛿
𝛼𝛽

− 𝑌
𝛽

) ,

(45)

yielding the stochastic process,

d𝑌
𝛼

(𝑡) =
1

2
(𝜔
𝛼

− 𝜔𝑌
𝛼

) d𝑡 +

𝑁−1

∑

𝛽=1

√𝑌
𝛼

(𝛿
𝛼𝛽

− 𝑌
𝛽

)d𝑊
𝛼𝛽

(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

(46)

where𝜔 = ∑
𝑁

𝛽=1
𝜔
𝛽
and𝜔

𝛽
> 0 are parameters. Equation (46)

is a generalization of (44) for 𝑁 > 2 variables. The invariant
distribution of (46) is Dirichlet [23, 24].

5.3. Realizable Multivariate Process: 𝑁 > 2, Dirichlet.
Another process that satisfies (28), developed in [24],
specifies the drift and diffusion terms as

𝐴
𝛼

(Y) =
𝑏
𝛼

2
[𝑆
𝛼

𝑌
𝑁

− (1 − 𝑆
𝛼

) 𝑌
𝛼

] ,

𝐵
𝛼𝛽

(Y) = {
𝜅
𝛼

𝑌
𝛼

𝑌
𝑁

for 𝛼 = 𝛽,

0 for 𝛼 ̸= 𝛽,

(47)

resulting in the system of stochastic differential equations,

d𝑌
𝛼

(𝑡) =
𝑏
𝛼

2
[𝑆
𝛼

𝑌
𝑁

− (1 − 𝑆
𝛼

) 𝑌
𝛼

] d𝑡 + √𝜅
𝛼

𝑌
𝛼

𝑌
𝑁
d𝑊
𝛼

(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

(48)

with parameter vectors 𝑏
𝛼

> 0, 𝜅
𝛼

> 0, and 0 < 𝑆
𝛼

< 1, and
𝑌
𝑁
given by (6). Equation (48) is also a generalization of (44)
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for 𝑁 > 2 variables. The invariant distribution of (48) is also
Dirichlet, provided the parameters of the drift and diffusion
terms satisfy

(1 − 𝑆
1
)

𝑏
1

𝜅
1

= ⋅ ⋅ ⋅ = (1 − 𝑆
𝑁−1

)
𝑏
𝑁−1

𝜅
𝑁−1

. (49)

Note that while there is no coupling among the parameters,
𝜔
𝛼
, of the drift and diffusion terms in the Wright-Fisher

equation (46), the parameters, 𝑏
𝛼
,𝑆
𝛼
, and 𝜅

𝛼
, of (48) must

be constrained by (49) to keep its invariant distribution
Dirichlet.

5.4. Realizable Multivariate Process: 𝑁 > 2, Lochner’s General-
ized Dirichlet. A generalization of (48) is developed in [25],
where the drift and diffusion terms are given by

𝐴
𝛼

(Y) =
U
𝛼

2

{

{

{

𝑏
𝛼

[𝑆
𝛼
Y
𝐾

− (1 − 𝑆
𝛼

) 𝑌
𝛼

] +𝑌
𝛼
Y
𝐾

𝐾−1

∑

𝛽=𝛼

𝑐
𝛼𝛽

Y
𝛽

}

}

}

,

𝐵
𝛼𝛽

(Y) = {
𝜅
𝛼

𝑌
𝛼
Y
𝐾
U
𝛼

for 𝛼 = 𝛽,

0 for 𝛼 ̸= 𝛽,

(50)

with Y
𝛼

= 1 − ∑
𝛼

𝛽=1
𝑌
𝛽
and U

𝛼
= ∏
𝐾−𝛼

𝛽=1
Y−1
𝐾−𝛽

, yielding the
stochastic process,

d𝑌
𝛼

(𝑡) =
U
𝛼

2

{

{

{

𝑏
𝛼

[𝑆
𝛼
Y
𝐾

− (1 − 𝑆
𝛼

) 𝑌
𝛼

]

+ 𝑌
𝛼
Y
𝐾

𝐾−1

∑

𝛽=𝛼

𝑐
𝛼𝛽

Y
𝛽

}

}

}

d𝑡

+ √𝜅
𝛼

𝑌
𝛼
Y
𝐾
U
𝛼
d𝑊
𝛼

(𝑡) ,

𝛼 = 1, . . . , 𝐾 = 𝑁 − 1.

(51)

The invariant distribution of (51) is Lochner’s generalized
Dirichlet distribution [26], if the coefficients, 𝑏

𝛼
> 0, 𝜅

𝛼
> 0,

0 < 𝑆
𝛼

< 1, and 𝑐
𝛼𝛽
, with 𝑐

𝛼𝛽
= 0 for𝛼 > 𝛽, 𝛼, 𝛽 = 1, . . . , 𝐾−1,

satisfy the conditions developed in [25]. Similar to (48), the
parameters of the drift and diffusion terms, 𝑏

𝛼
, 𝑆
𝛼
, 𝜅
𝛼
, and 𝑐

𝛼𝛽
,

of (51) must be constrained to keep the invariant distribution
generalized Dirichlet. Setting

𝑐
1𝑖

𝜅
𝑖

= ⋅ ⋅ ⋅ =
𝑐
𝑖𝑖

𝜅
𝑖

= 1 for 𝑖 = 1, . . . , 𝐾 − 1, (52)

in (51) reduces to the standard Dirichlet process, (48).
All of (46), (48), and (51) have coupled and nonlinear

diffusions terms. As discussed earlier, this is required to
simultaneously satisfy the realizability conditions in (28),
required to represent 𝑁 > 2 random fractions by diffusion
processes.

6. Summary

We have demonstrated that the problem of 𝑁 fluctuating
variables constrained by the unit-sum requirement can be

discussed in a reduced sample space of 𝑁 − 1 dimensions.
This allows working with the unique, universal, and math-
ematically well-defined realizable sample space which pro-
duces samples and statistics consistent with the underlying
conservation principle.

We have studied multivariate diffusion processes gov-
erning a set of fluctuating variables required to satisfy
two constraints: (1) nonnegativity and (2) a conservation
principle that requires the variables to sum to one, defined
as realizability. Our findings can be summarized as follows.

(i) The diffusion coefficients in stochastic diffusion pro-
cesses, governing fractions, must be coupled and
nonlinear.

(ii) If the set of constraints,

𝐴
𝛼

(𝑌
𝛼

= 0, 𝑌
𝛽 ̸= 𝛼

, 𝑡) ≥ 0,

𝐵
𝛼𝛽

(𝑌
𝛼

= 0, 𝑌
𝛽 ̸= 𝛼

, 𝑡) = 0,

𝐴
𝛼

(

𝑁−1

∑

𝛼=1

𝑌
𝛼

= 1, 𝑡) ≤ 0,

𝐵
𝛼𝛽

(

𝑁−1

∑

𝛼=1

𝑌
𝛼

= 1, 𝑡) = 0,

𝛼, 𝛽 = 1, . . . , 𝑁 − 1,

(53)

is satisfied as the state-space boundary is approached,
the stochastic system,

d𝑌
𝛼

(𝑡) = 𝐴
𝛼

(Y, 𝑡) d𝑡 +

𝑁−1

∑

𝛽=1

𝑏
𝛼𝛽

(Y, 𝑡) d𝑊
𝛽

(𝑡) ,

𝛼 = 1, . . . , 𝑁 − 1,

𝑌
𝑁

= 1 −

𝑁−1

∑

𝛼=1

𝑌
𝛼

,

(54)

with 𝐵
𝛼𝛽

= ∑
𝑁−1

𝛾=1
𝑏
𝛼𝛾

𝑏
𝛾𝛽
, ensures that the components

of the vector of fractions, Y = (𝑌
1
, . . . , 𝑌

𝑁
), remain

nonnegative and sum to one at all times.
(iii) Boundedness of the sample space requires bounded-

ness of the moments.
The constraints provide a method that can be used to develop
drift anddiffusion functions for stochastic diffusion processes
for variables satisfying a conservation law and thus are
inherently realizable.
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