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This paper is dedicated to the study of a nonlinear SPDE on a bounded domain in 𝑅𝑑, with zero initial conditions and Dirichlet
boundary, driven by an 𝛼-stable Lévy noise 𝑍 with 𝛼 ∈ (0, 2), 𝛼 ̸= 1, and possibly nonsymmetric tails. To give a meaning to the
concept of solution, we develop a theory of stochastic integration with respect to this noise. The idea is to first solve the equation
with “truncated” noise (obtained by removing from 𝑍 the jumps which exceed a fixed value 𝐾), yielding a solution 𝑢𝐾, and then
show that the solutions 𝑢𝐿, 𝐿 > 𝐾 coincide on the event 𝑡 ≤ 𝜏𝐾, for some stopping times 𝜏𝐾 converging to infinity. A similar idea
was used in the setting of Hilbert-space valued processes. A major step is to show that the stochastic integral with respect to 𝑍

𝐾

satisfies a 𝑝th moment inequality. This inequality plays the same role as the Burkholder-Davis-Gundy inequality in the theory of
integration with respect to continuous martingales.

1. Introduction

Modeling phenomena which evolve in time or space-time
and are subject to random perturbations are a fundamental
problem in stochastic analysis. When these perturbations are
known to exhibit an extreme behavior, as seen frequently
in finance or environmental studies, a model relying on
the Gaussian distribution is not appropriate. A suitable
alternative could be a model based on a heavy-tailed distri-
bution, like the stable distribution. In such a model, these
perturbations are allowed to have extreme values with a
probability which is significantly higher than in a Gaussian-
based model.

In the present paper, we introduce precisely such amodel,
given rigorously by a stochastic partial differential equation
(SPDE) driven by a noise termwhich has a stable distribution
over any space-time region and has independent values over
disjoint space-time regions (i.e., it is a Lévy noise). More
precisely, we consider the SPDE:

𝐿𝑢 (𝑡, 𝑥) = 𝜎 (𝑢 (𝑡, 𝑥)) 𝑍̇ (𝑡, 𝑥) , 𝑡 > 0, 𝑥 ∈ O (1)

with zero initial conditions and Dirichlet boundary condi-
tions, where 𝜎 is a Lipschitz function, 𝐿 is a second-order
pseudo-differential operator on a bounded domain O ⊂ R𝑑,

and 𝑍̇(𝑡, 𝑥) = 𝜕
𝑑+1

𝑍/𝜕𝑡𝜕𝑥1, . . . , 𝜕𝑥𝑑 is the formal derivative
of an 𝛼-stable Lévy noise with 𝛼 ∈ (0, 2), 𝛼 ̸= 1. The goal
is to find sufficient conditions on the fundamental solution
𝐺(𝑡, 𝑥, 𝑦) of the equation 𝐿𝑢 = 0 on R+ × O, which will
ensure the existence of a mild solution of (1). We say that
a predictable process 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O} is a mild
solution of (1) if for any 𝑡 > 0, 𝑥 ∈ O,

𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝑍 (𝑑𝑠, 𝑑𝑦) a.s.

(2)

We assume that 𝐺(𝑡, 𝑥, 𝑦) is a function in 𝑡, which excludes
from our analysis the case of the wave equation with 𝑑 ≥ 3.

To explain the connections with other works, we describe
briefly the construction of the noise (the details are given in
Section 2). This construction is similar to that of a classical
𝛼-stable Lévy process and is based on a Poisson random
measure (PRM) 𝑁 on R+ × R𝑑

× (R \ {0}) of intensity
𝑑𝑡𝑑𝑥]𝛼(𝑑𝑧), where

]𝛼 (𝑑𝑧) = [𝑝𝛼𝑧
−𝛼−1

1(0,∞) (𝑧) + 𝑞𝛼(−𝑧)
−𝛼−1

1(−∞,0) (𝑧)] 𝑑𝑧

(3)
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for some 𝑝, 𝑞 ≥ 0 with 𝑝 + 𝑞 = 1. More precisely, for any set
𝐵 ∈ B𝑏(R+ ×R𝑑

),

𝑍 (𝐵) = ∫
𝐵×{|𝑧|≤1}

𝑧𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧)

+ ∫
𝐵×{|𝑧|>1}

𝑧𝑁 (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) − 𝜇 |𝐵| ,

(4)

where 𝑁̂(𝐵×⋅) = 𝑁(𝐵×⋅)−|𝐵|]𝛼(⋅) is the compensated process
and 𝜇 is a constant (specified by Lemma 3). Here, B𝑏(R+ ×

R𝑑
) is the class of bounded Borel sets in R+ × R𝑑 and |𝐵| is

the Lebesgue measure of 𝐵.
As the term on the right-hand side of (2) is a stochastic

integral with respect to 𝑍, such an integral should be
constructed first. Our construction of the integral is an
extension to random fields of the construction provided by
Giné andMarcus in [1] in the case of an 𝛼-stable Lévy process
{𝑍(𝑡)}𝑡∈[0,1]. Unlike these authors, we do not assume that the
measure ]𝛼 is symmetric.

Since any Lévy noise is related to a PRM, in a broad
sense, one could say that this problem originates in Itô’s
papers [2, 3] regarding the stochastic integral with respect
to a Poisson noise. SPDEs driven by a compensated PRM
were considered for the first time in [4], using the approach
based on Hilbert-space-valued solutions. This study was
motivated by an application to neurophysiology leading to
the cable equation. In the case of the heat equation, a similar
problemwas considered in [5–7] using the approach based on
random-field solutions. One of the results of [6] shows that
the heat equation:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) =

1

2
Δ𝑢 (𝑡, 𝑥)

+ ∫
𝑈

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥) ; 𝑧) 𝑁̂ (𝑡, 𝑥, 𝑑𝑧)

+ 𝑔 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

(5)

has a unique solution in the space of predictable processes 𝑢
satisfying sup

(𝑡,𝑥)∈[0,𝑇]×R𝑑𝐸|𝑢(𝑡, 𝑥)|
𝑝
< ∞, for any 𝑝 ∈ (1 +

2/𝑑, 2]. In this equation, 𝑁̂ is the compensated process corre-
sponding to a PRM𝑁 onR+×R

𝑑
×𝑈 of intensity 𝑑𝑡𝑑𝑥](𝑑𝑧),

for an arbitrary 𝜎-finite measure space (𝑈,B(𝑈), ]) with
measure ] satisfying ∫

𝑈
|𝑧|

𝑝](𝑑𝑧) < ∞. Because of this later
condition, this result cannot be used in our case with 𝑈 =

R \ {0} and ] = ]𝛼. For similar reasons, the results of [7] also
do not cover the case of an 𝛼-stable noise. However, in the
case 𝛼 > 1, we will be able to exploit successfully some ideas
of [6] for treating the equation with “truncated” noise 𝑍𝐾,
obtained by removing from 𝑍 the jumps exceeding a value
𝐾 (see Section 5.2).

The heat equation with the same type of noise as in the
present paper was examined in [8, 9] in the cases 𝛼 < 1 and
𝛼 > 1, respectively, assuming that the noise has only positive
jumps (i.e., 𝑞 = 0). The methods used by these authors are
different from those presented here, since they investigate the
more difficult case of a non-Lipschitz function 𝜎(𝑢) = 𝑢

𝛿

with 𝛿 > 0. In [8], Mueller removes the atoms of 𝑍 of mass

smaller than 2−𝑛 and solves the equation driven by the noise
obtained in this way; here we remove the atoms of 𝑍 of mass
larger than𝐾 and solve the resulting equation. In [9], Mytnik
uses a martingale problem approach and gives the existence
of a pair (𝑢, 𝑍) which satisfies the equation (the so-called
“weak solution”), whereas in the present paper we obtain the
existence of a solution 𝑢 for a given noise 𝑍 (the so-called
“strong solution”). In particular, when 𝛼 > 1 and 𝛿 = 1/𝛼,
the existence of a “weak solution” of the heat equation with
𝛼-stable Lévy noise is obtained in [9] under the condition

𝛼 < 1 +
2

𝑑
(6)

which we encounter here as well. It is interesting to note that
(6) is the necessary and sufficient condition for the existence
of the density of the super-Brownian motion with “𝛼 − 1”-
stable branching (see [10]). Reference [11] examines the heat
equation with multiplicative noise (i.e., 𝜎(𝑢) = 𝑢), driven by
an 𝛼-stable Lévy noise 𝑍 which does not depend on time.

To conclude the literature review,we should point out that
there are many references related to stochastic differential
equations with 𝛼-stable Lévy noise, using the approach based
on Hilbert-space valued solutions. We refer the reader to
Section 12.5 of themonograph [12] and to [13–16] for a sample
of relevant references. See also the survey article [17] for an
approach based on the white noise theory for Lévy processes.

This paper is organized as follows.

(i) In Section 2, we review the construction of the 𝛼-
stable Lévy noise 𝑍, and we show that this can
be viewed as an independently scattered random
measure with jointly 𝛼-stable distributions.

(ii) In Section 3, we consider the linear equation (1) (with
𝜎(𝑢) = 1) and we identify the necessary and sufficient
condition for the existence of the solution. This
condition is verified in the case of some examples.

(iii) Section 4 contains the construction of the stochastic
integral with respect to the 𝛼-stable noise 𝑍, for
𝛼 ∈ (0, 2). The main effort is dedicated to proving a
maximal inequality for the tail of the integral process,
when the integrand is a simple process. This extends
the construction of [1] to the case random fields and
nonsymmetric measure ]𝛼.

(iv) In Section 5, we introduce the process𝑍𝐾 obtained by
removing from𝑍 the jumps exceeding a fixed value𝐾,
and we develop a theory of integration with respect to
this process. For this, we need to treat separately the
cases 𝛼 < 1 and 𝛼 > 1. In both cases, we obtain a
𝑝thmoment inequality for the integral process for𝑝 ∈
(𝛼, 1) if 𝛼 < 1 and 𝑝 ∈ (𝛼, 2) if 𝛼 > 1. This inequality
plays the same role as the Burkholder-Davis-Gundy
inequality in the theory of integration with respect to
continuous martingales.

(v) In Section 6 we prove the main result about the
existence of the mild solution of (1). For this, we first
solve the equation with “truncated” noise 𝑍𝐾 using
a Picard iteration scheme, yielding a solution 𝑢𝐾.
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We then introduce a sequence (𝜏𝐾)𝐾≥1 of stopping
times with 𝜏𝐾 ↑ ∞ a.s. and we show that the solutions
𝑢𝐿, 𝐿 > 𝐾 coincide on the event 𝑡 ≤ 𝜏𝐾. For the
definition of the stopping times 𝜏𝐾, we need again to
consider separately the cases 𝛼 < 1 and 𝛼 > 1.

(vi) Appendix A contains some results about the tail of a
nonsymmetric stable random variable and the tail of
an infinite sumof randomvariables. Appendix B gives
an estimate for theGreen function associatedwith the
fractional power of the Laplacian. Appendix C gives a
local property of the stochastic integral with respect
to 𝑍 (or 𝑍𝐾).

2. Definition of the Noise

In this sectionwe review the construction of the𝛼-stable Lévy
noise on R+ ×R𝑑 and investigate some of its properties.

Let 𝑁 = ∑
𝑖≥1
𝛿(𝑇𝑖 ,𝑋𝑖 ,𝑍𝑖)

be a Poisson random measure on
R+ ×R

𝑑
× (R \ {0}), defined on a probability space (Ω,F, 𝑃),

with intensity measure 𝑑𝑡𝑑𝑥]𝛼(𝑑𝑧), where ]𝛼 is given by (3).
Let (𝜀𝑗)𝑗≥0 be a sequence of positive real numbers such that
𝜀𝑗 → 0 as 𝑗 → ∞ and 1 = 𝜀0 > 𝜀1 > 𝜀2 > ⋅ ⋅ ⋅ . Let

Γ𝑗 = {𝑧 ∈ R; 𝜀𝑗 < |𝑧| ≤ 𝜀𝑗−1} , 𝑗 ≥ 1,

Γ0 = {𝑧 ∈ R; |𝑧| > 1} .
(7)

For any set 𝐵 ∈ B𝑏(R+ ×R𝑑
), we define

𝐿𝑗 (𝐵) = ∫
𝐵×Γ𝑗

𝑧𝑁 (𝑑𝑡, 𝑑𝑥, 𝑑𝑧)

= ∑

(𝑇𝑖 ,𝑋𝑖)∈𝐵

𝑍𝑖1{𝑍𝑖∈Γ𝑗}
, 𝑗 ≥ 0.

(8)

Remark 1. The variable 𝐿0(𝐵) is finite since the sum above
contains finitely many terms. To see this, we note that
𝐸[𝑁(𝐵 × Γ0)] = |𝐵|]𝛼(Γ0) < ∞, and hence 𝑁(𝐵 × Γ0) =

card{𝑖 ≥ 1; (𝑇𝑖, 𝑋𝑖, 𝑍𝑖) ∈ 𝐵 × Γ0} < ∞.

For any 𝑗 ≥ 0, the variable 𝐿𝑗(𝐵) has a compound Poisson
distribution with jump intensity measure |𝐵| ⋅ ]𝛼|Γ𝑗 ; that is,

𝐸 [𝑒
𝑖𝑢𝐿𝑗(𝐵)

] = exp{|𝐵| ∫
Γ𝑗

(𝑒
𝑖𝑢𝑧

− 1) ]𝛼 (𝑑𝑧)} , 𝑢 ∈ R.

(9)

It follows that 𝐸(𝐿𝑗(𝐵)) = |𝐵| ∫
Γ𝑗
𝑧]𝛼(𝑑𝑧) and Var(𝐿𝑗(𝐵)) =

|𝐵| ∫
Γ𝑗
𝑧
2]𝛼(𝑑𝑧) for any 𝑗 ≥ 0. Hence, Var(𝐿𝑗(𝐵)) < ∞ for any

𝑗 ≥ 1 and Var(𝐿0(𝐵)) = ∞. If 𝛼 > 1, then 𝐸(𝐿0(𝐵)) is finite.
Define

𝑌 (𝐵) = ∑

𝑗≥1

[𝐿𝑗 (𝐵) − 𝐸 (𝐿𝑗 (𝐵))] + 𝐿0 (𝐵) . (10)

This sum converges a.s. by Kolmogorov’s criterion since
{𝐿𝑗(𝐵) − 𝐸(𝐿𝑗(𝐵))}𝑗≥1 are independent zero-mean random
variables with ∑

𝑗≥1
Var(𝐿𝑗(𝐵)) < ∞.

From (9) and (10), it follows that 𝑌(𝐵) is an infinitely
divisible random variable with characteristic function:

𝐸 (𝑒
𝑖𝑢𝑌(𝐵)

)

= exp {|𝐵| ∫
R

(𝑒
𝑖𝑢𝑧

− 1 − 𝑖𝑢𝑧1{|𝑧|≤1}) ]𝛼 (𝑑𝑧)} ,

𝑢 ∈ R.

(11)

Hence, 𝐸(𝑌(𝐵)) = |𝐵| ∫
R
𝑧1{|𝑧|>1}]𝛼(𝑑𝑧) and Var(𝑌(𝐵)) =

|𝐵| ∫
R
𝑧
2]𝛼(𝑑𝑧).

Lemma 2. The family {𝑌(𝐵); 𝐵 ∈ B𝑏(R+ × R𝑑
)} defined by

(10) is an independently scattered random measure; that is,

(a) for any disjoint sets 𝐵1, . . . , 𝐵𝑛 in B𝑏(R+ × R𝑑
),

𝑌(𝐵1), . . . , 𝑌(𝐵𝑛) are independent;
(b) for any sequence (𝐵𝑛)𝑛≥1 of disjoint sets in B𝑏(R+ ×

R𝑑
) such that ⋃

𝑛≥1
𝐵𝑛 is bounded, 𝑌(⋃

𝑛≥1
𝐵𝑛) =

∑
𝑛≥1

𝑌(𝐵𝑛) a.s.

Proof. (a) Note that for any function 𝜑 ∈ 𝐿
2
(R+ × R𝑑

)

with compact support 𝐾, we can define the random variable
𝑌(𝜑) = ∑

𝑗≥1
[𝐿𝑗(𝜑) − 𝐸(𝐿𝑗(𝜑))] + 𝐿0(𝜑) where 𝐿𝑗(𝜑) =

∫
𝐾×Γ𝑗

𝜑(𝑡, 𝑥)𝑧𝑁(𝑑𝑡, 𝑑𝑥, 𝑑𝑧). For any 𝑢 ∈ R, we have

𝐸 (𝑒
𝑖𝑢𝑌(𝜑)

)

= exp{∫
R+×R

𝑑×R

(𝑒
𝑖𝑢𝑧𝜑(𝑡,𝑥)

− 1

−𝑖𝑢𝑧𝜑 (𝑡, 𝑥) 1{|𝑧|≤1}) 𝑑𝑡 𝑑𝑥 ]𝛼 (𝑑𝑧) } .

(12)

For any disjoint sets𝐵1, . . . , 𝐵𝑛 and for any 𝑢1, . . . , 𝑢𝑛 ∈ R,
we have

𝐸[exp(𝑖
𝑛

∑

𝑘=1

𝑢𝑘𝑌 (𝐵𝑘))]

= 𝐸[exp(𝑖𝑌(
𝑛

∑

𝑘=1

𝑢𝑘1𝐵𝑘
))]

= exp{∫
R+×R

𝑑×R

(𝑒
𝑖𝑧∑
𝑛

𝑘=1
𝑢𝑘1𝐵𝑘

(𝑡,𝑥)

− 1 − 𝑖𝑧1{|𝑧|≤1}

×

𝑛

∑

𝑘=1

𝑢𝑘1𝐵𝑘
(𝑡, 𝑥)) 𝑑𝑡 𝑑𝑥 ]𝛼 (𝑑𝑧)}

= exp{
𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨 ∫
R

(𝑒
𝑖𝑢𝑘𝑧 − 1

−𝑖𝑢𝑘𝑧1{|𝑧|≤1}) ]𝛼 (𝑑𝑧)}

=

𝑛

∏

𝑘=1

𝐸 [exp (𝑖𝑢𝑘𝑌 (𝐵𝑘))] ,

(13)
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using (12) with 𝜑 = ∑
𝑛

𝑘=1
𝑢𝑘1𝐵𝑘

for the second equality and
(9) for the last equality. This proves that 𝑌(𝐵1), . . . , 𝑌(𝐵𝑛) are
independent.

(b) Let 𝑆𝑛 = ∑
𝑛

𝑘=1
𝑌(𝐵𝑘) and 𝑆 = 𝑌(𝐵), where 𝐵 =

⋃
𝑛≥1

𝐵𝑛. By Lévy’s equivalence theorem, (𝑆𝑛)𝑛≥1 converges
a.s. if and only if it converges in distribution. By (13), with
𝑢𝑖 = 𝑢 for all 𝑖 = 1, . . . , 𝑘, we have

𝐸 (𝑒
𝑖𝑢𝑆𝑛) = exp{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋃

𝑘=1

𝐵𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
R

(𝑒
𝑖𝑢𝑧

− 1 − 𝑖𝑢𝑧1{|𝑧|≤1}) ]𝛼 (𝑑𝑧)} .

(14)

This clearly converges to 𝐸(𝑒
𝑖𝑢𝑆
) = exp{|𝐵| ∫

R
(𝑒

𝑖𝑢𝑧
− 1 −

𝑖𝑢𝑧1{|𝑧|≤1})]𝛼(𝑑𝑧)}, and hence (𝑆𝑛)𝑛≥1 converges in distribu-
tion to 𝑆.

Recall that a random variable 𝑋 has an 𝛼-stable distribu-
tion with parameters 𝛼 ∈ (0, 2), 𝜎 ∈ [0,∞), 𝛽 ∈ [−1, 1], and
𝜇 ∈ R if, for any 𝑢 ∈ R,

𝐸 (𝑒
𝑖𝑢𝑋
) = exp {−|𝑢|𝛼𝜎𝛼

(1 − 𝑖 sgn (𝑢) 𝛽 tan 𝜋𝛼
2
) + 𝑖𝑢𝜇} ,

if 𝛼 ̸= 1,

(15)
or

𝐸 (𝑒
𝑖𝑢𝑋
) = exp {− |𝑢| 𝜎 (1 + 𝑖 sgn (𝑢) 𝛽 2

𝜋
ln |𝑢|) + 𝑖𝑢𝜇} ,

if 𝛼 = 1
(16)

(see Definition 1.1.6 of [18]). We denote this distribution by
𝑆𝛼(𝜎, 𝛽, 𝜇).

Lemma 3. 𝑌(𝐵) has a 𝑆𝛼(𝜎|𝐵|1/𝛼, 𝛽, 𝜇|𝐵|) distribution with
𝛽 = 𝑝 − 𝑞,

𝜎
𝛼
= ∫

∞

0

sin𝑥
𝑥𝛼

𝑑𝑥 =

{{{

{{{

{

Γ (2 − 𝛼)

1 − 𝛼
cos 𝜋𝛼

2
, 𝑖𝑓 𝛼 ̸= 1,

𝜋

2
, 𝑖𝑓 𝛼 = 1,

𝜇 =
{

{

{

𝛽
𝛼

𝛼 − 1
, 𝑖𝑓 𝛼 ̸= 1,

𝛽𝑐0, 𝑖𝑓 𝛼 = 1,

(17)

and 𝑐0 = ∫
∞

0
(sin 𝑧 − 𝑧1{𝑧≤1})𝑧

−2
𝑑𝑧. If 𝛼 > 1, then 𝐸(𝑌(𝐵)) =

𝜇|𝐵|.

Proof. Wefirst express the characteristic function (11) of𝑌(𝐵)
in Feller’s canonical form (see Section XVII.2 of [19]):

𝐸 (𝑒
𝑖𝑢𝑌(𝐵)

)

= exp{𝑖𝑢𝑏 |𝐵| + |𝐵| ∫
R

𝑒
𝑖𝑢𝑧

− 1 − 𝑖𝑢 sin 𝑧
𝑧2

𝑀𝛼 (𝑑𝑧)}

(18)

with𝑀𝛼(𝑑𝑧) = 𝑧
2]𝛼(𝑑𝑧) and 𝑏 = ∫R(sin 𝑧 − 𝑧1{|𝑧|≤1})]𝛼(𝑑𝑧).

Then the result follows from the calculations done in Example
XVII.3.(g) of [19].

From Lemmas 2 and 3, it follows that

𝑍 = {𝑍 (𝐵) = 𝑌 (𝐵) − 𝜇 |𝐵| ; 𝐵 ∈ B𝑏 (R+ ×R
𝑑
)} (19)

is an 𝛼-stable random measure, in the sense of Definition
3.3.1 of [18], with control measure 𝑚(𝐵) = 𝜎

𝛼
|𝐵| and

constant skewness intensity 𝛽. In particular, 𝑍(𝐵) has a
𝑆𝛼(𝜎|𝐵|

1/𝛼
, 𝛽, 0) distribution.

We say that 𝑍 is an 𝛼-stable Lévy noise. Coming back to
the original construction (10) of 𝑌(𝐵) and noticing that

𝜇 |𝐵| = − |𝐵| ∫
R

𝑧1{|𝑧|≤1}]𝛼 (𝑑𝑧) = −∑
𝑗≥1

𝐸 (𝐿𝑗 (𝐵)) ,

if 𝛼 < 1,

𝜇 |𝐵| = |𝐵| ∫
R

𝑧1{|𝑧|>1}]𝛼 (𝑑𝑧) = 𝐸 (𝐿0 (𝐵)) ,

if 𝛼 > 1,

(20)

it follows that 𝑍(𝐵) can be represented as

𝑍 (𝐵) = ∑

𝑗≥0

𝐿𝑗 (𝐵) =: ∫
𝐵×(R\{0})

𝑧𝑁 (𝑑𝑡, 𝑑𝑥, 𝑑𝑧) , if 𝛼 < 1,

(21)

𝑍 (𝐵) = ∑

𝑗≥0

[𝐿𝑗 (𝐵) − 𝐸 (𝐿𝑗 (𝐵))]

=: ∫
𝐵×(R\{0})

𝑧𝑁̂ (𝑑𝑡, 𝑑𝑥, 𝑑𝑧) , if 𝛼 > 1.
(22)

Here 𝑁̂ is the compensated Poisson measure associated with
𝑁; that is, 𝑁̂(𝐴) = 𝑁(𝐴)−𝐸(𝑁(𝐴)) for any relatively compact
set 𝐴 in R+ ×R𝑑

× (R \ {0}).
In the case 𝛼 = 1, we will assume that 𝑝 = 𝑞 so that ]𝛼

is symmetric around 0, 𝐸(𝐿𝑗(𝐵)) = 0 for all 𝑗 ≥ 1, and 𝑍(𝐵)
admits the same representation as in the case 𝛼 < 1.

3. The Linear Equation

As a preliminary investigation, we consider first equation (1)
with 𝜎 = 1:

𝐿𝑢 (𝑡, 𝑥) = 𝑍̇ (𝑡, 𝑥) , 𝑡 > 0, 𝑥 ∈ O (23)

with zero initial conditions and Dirichlet boundary condi-
tions. In this sectionO is a bounded domain inR𝑑 orO = R𝑑.

By definition, the process {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O} given by

𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)𝑍 (𝑑𝑠, 𝑑𝑦) (24)

is amild solution of (23), provided that the stochastic integral
on the right-hand side of (24) is well defined.

We define now the stochastic integral of a deterministic
function 𝜑:

𝑍 (𝜑) = ∫

∞

0

∫
R𝑑
𝜑 (𝑡, 𝑥) 𝑍 (𝑑𝑡, 𝑑𝑥) . (25)
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If 𝜑 ∈ 𝐿𝛼
(R+ ×R

𝑑
), this can be defined by approximation

with simple functions, as explained in Section 3.4 of [18].
The process {𝑍(𝜑); 𝜑 ∈ 𝐿

𝛼
(R+ × R𝑑

)} has jointly 𝛼-stable
finite dimensional distributions. In particular, each 𝑍(𝜑) has
a 𝑆𝛼(𝜎𝜑, 𝛽, 0)-distribution with scale parameter:

𝜎𝜑 = 𝜎(∫

∞

0

∫
R𝑑

󵄨󵄨󵄨󵄨𝜑 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

𝛼
𝑑𝑥 𝑑𝑡)

1/𝛼

. (26)

More generally, a measurable function 𝜑 : R+ × R𝑑
→

R is integrable with respect to 𝑍 if there exists a sequence
(𝜑𝑛)𝑛≥1 of simple functions such that 𝜑𝑛 → 𝜑 a.e., and, for
any 𝐵 ∈ B𝑏(R+ ×R

𝑑
), the sequence {𝑍(𝜑𝑛1𝐵)}𝑛 converges in

probability (see [20]).
The next results show that condition 𝜑 ∈ 𝐿

𝛼
(R+ × R𝑑

)

is also necessary for the integrability of 𝜑 with respect to 𝑍.
Due to Lemma 2, this follows immediately from the general
theory of stochastic integrationwith respect to independently
scattered random measures developed in [20].

Lemma4. Adeterministic function𝜑 is integrable with respect
to 𝑍 if and only if 𝜑 ∈ 𝐿𝛼

(R+ ×R𝑑
).

Proof. We write the characteristic function of 𝑍(𝐵) in the
form used in [20]:

𝐸 (𝑒
𝑖𝑢𝑍(𝐵)

)

= exp {∫
𝐵

[𝑖𝑢𝑎

+ ∫
R

(𝑒
𝑖𝑢𝑧

− 1 − 𝑖𝑢𝜏 (𝑧)) ]𝛼 (𝑑𝑧)] 𝑑𝑡𝑑𝑥}

(27)

with 𝑎 = 𝛽−𝜇, 𝜏(𝑧) = 𝑧 if |𝑧| ≤ 1 and 𝜏(𝑧) = sgn(𝑧) if |𝑧| > 1.
By Theorem 2.7 of [20], 𝜑 is integrable with respect to 𝑍 if
and only if

∫
R+×R

𝑑

󵄨󵄨󵄨󵄨𝑈 (𝜑 (𝑡, 𝑥))
󵄨󵄨󵄨󵄨 𝑑𝑡 𝑑𝑥 < ∞,

∫
R+×R

𝑑

𝑉 (𝜑 (𝑡, 𝑥)) 𝑑𝑡 𝑑𝑥 < ∞,

(28)

where 𝑈(𝑦) = 𝑎𝑦 + ∫
R
(𝜏(𝑦𝑧) − 𝑦𝜏(𝑧))]𝛼(𝑑𝑧) and 𝑉(𝑦) =

∫
R
(1∧|𝑦𝑧|

2
)]𝛼(𝑑𝑧). Direct calculations show that, in our case,

𝑈(𝑦) = −(𝛽/(𝛼−1))𝑦
𝛼 if 𝛼 ̸= 1,𝑈(𝑦) = 0 if 𝛼 = 1, and𝑉(𝑦) =

(2/(2 − 𝛼))𝑦
𝛼.

The following result follows immediately from (24) and
Lemma 4.

Proposition 5. Equation (23) has a mild solution if and only
if for any 𝑡 > 0, 𝑥 ∈ O

𝐼𝛼 (𝑡) = ∫

𝑡

0

∫
O

𝐺(𝑠, 𝑥, 𝑦)
𝛼
𝑑𝑦𝑑𝑠 < ∞. (29)

In this case, {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O} has jointly 𝛼-stable
finite-dimensional distributions. In particular, 𝑢(𝑡, 𝑥) has a
𝑆𝛼(𝜎𝐼𝛼(𝑡)

1/𝛼
, 𝛽, 0) distribution.

Condition (29) can be easily verified in the case of several
examples.

Example 6 (heat equation). Let 𝐿 = 𝜕/𝜕𝑡 − (1/2)Δ. Assume
first that O = R𝑑. Then 𝐺(𝑡, 𝑥, 𝑦) = 𝐺(𝑡, 𝑥 − 𝑦), where

𝐺 (𝑡, 𝑥) =
1

(2𝜋𝑡)
𝑑/2

exp(−|𝑥|
2

2𝑡
) , (30)

and condition (29) is equivalent to (6). In this case, 𝐼𝛼(𝑡) =
𝑐𝛼,𝑑𝑡

𝑑(1−𝛼)/2+1. If O is a bounded domain in R𝑑, then
𝐺(𝑡, 𝑥, 𝑦) ≤ 𝐺(𝑡, 𝑥 − 𝑦) (see page 74 of [11]) and condition
(29) is implied by (6).

Example 7 (parabolic equation). Let 𝐿 = 𝜕/𝜕𝑡 −L where

L𝑓 (𝑥) =

𝑑

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥)
𝜕
2
𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

(𝑥) +

𝑑

∑

𝑖=1

𝑏𝑖 (𝑥)
𝜕𝑓

𝜕𝑥𝑖

(𝑥) (31)

is the generator of a Markov process with values in R𝑑,
without jumps (a diffusion). Assume that O is a bounded
domain in R𝑑 or O = R𝑑. By Aronson estimate (see,
e.g., Theorem 2.6 of [12]), under some assumptions on the
coefficients 𝑎𝑖𝑗, 𝑏𝑖, there exist some constants 𝑐1, 𝑐2 > 0 such
that

𝐺 (𝑡, 𝑥, 𝑦) ≤ 𝑐1𝑡
−𝑑/2 exp(−

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

𝑐2𝑡
) (32)

for all 𝑡 > 0 and 𝑥, 𝑦 ∈ O. In this case, condition (29) is
implied by (6).

Example 8 (heat equation with fractional power of the
Laplacian). Let 𝐿 = 𝜕/𝜕𝑡 + (−Δ)

𝛾 for some 𝛾 > 0. Assume
that O is a bounded domain inR𝑑 or O = R𝑑. Then (see, e.g.,
Appendix B.5 of [12])

𝐺 (𝑡, 𝑥, 𝑦) = ∫

∞

0

G (𝑠, 𝑥, 𝑦) 𝑔𝑡,𝛾 (𝑠) 𝑑𝑠

= ∫

∞

0

G (𝑡
1/𝛾
𝑠, 𝑥, 𝑦) 𝑔1,𝛾 (𝑠) 𝑑𝑠,

(33)

whereG(𝑡, 𝑥, 𝑦) is the fundamental solution of 𝜕𝑢/𝜕𝑡 − Δ𝑢 =
0 on O and 𝑔𝑡,𝛾 is the density of the measure 𝜇𝑡,𝛾, (𝜇𝑡,𝛾)𝑡≥0

being a convolution semigroup of measures on [0,∞) whose
Laplace transform is given by

∫

∞

0

𝑒
−𝑢𝑠
𝑔𝑡,𝛾 (𝑠) 𝑑𝑠 = exp (−𝑡𝑢𝛾

) , ∀𝑢 > 0. (34)

Note that if 𝛾 < 1, 𝑔𝑡,𝛾 is the density of 𝑆𝑡, where (𝑆𝑡)𝑡≥0 is
a 𝛾-stable subordinator with Lévymeasure 𝜌𝛾(𝑑𝑥) = (𝛾/Γ(1−
𝛾))𝑥

−𝛾−1
1(0,∞)(𝑥)𝑑𝑥.

Assume first that O = R𝑑. Then 𝐺(𝑡, 𝑥, 𝑦) = 𝐺(𝑡, 𝑥 − 𝑦),
where

𝐺 (𝑡, 𝑥) = ∫
R𝑑
𝑒
𝑖𝜉⋅𝑥
𝑒
−𝑡|𝜉|
2𝛾

𝑑𝜉. (35)
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If 𝛾 < 1, then 𝐺(𝑡, ⋅) is the density of 𝑋𝑡, with (𝑋𝑡)𝑡≥0

being a symmetric (2𝛾)-stable Lévy process with values inR𝑑

defined by 𝑋𝑡 = 𝑊𝑆𝑡
, with (𝑊𝑡)𝑡≥0 a Brownian motion in R𝑑

with variance 2. By Lemma B.1 (Appendix B), if 𝛼 > 1, then
(29) holds if and only if

𝛼 < 1 +
2𝛾

𝑑
. (36)

IfO is a bounded domain inR𝑑, then𝐺(𝑡, 𝑥, 𝑦) ≤ 𝐺(𝑡, 𝑥−
𝑦) (by Lemma 2.1 of [8]). In this case, if 𝛼 > 1, then (29) is
implied by (36).

Example 9 (cable equation inR). Let𝐿𝑢 = 𝜕𝑢/𝜕𝑡−𝜕2
𝑢/𝜕𝑥

2
+𝑢

and O = R. Then 𝐺(𝑡, 𝑥, 𝑦) = 𝐺(𝑡, 𝑥 − 𝑦), where

𝐺 (𝑡, 𝑥) =
1

√4𝜋𝑡
exp(−|𝑥|

2

4𝑡
− 𝑡) , (37)

and condition (29) holds for any 𝛼 ∈ (0, 2).

Example 10 (wave equation in R𝑑 with 𝑑 = 1, 2). Let 𝐿 =

𝜕
2
/𝜕𝑡

2
−Δ andO = R𝑑 with 𝑑 = 1 or 𝑑 = 2. Then 𝐺(𝑡, 𝑥, 𝑦) =

𝐺(𝑡, 𝑥 − 𝑦), where

𝐺 (𝑡, 𝑥) =
1

2
1{|𝑥|<𝑡}, if 𝑑 = 1,

𝐺 (𝑡, 𝑥) =
1

2𝜋
⋅

1

√𝑡2 − |𝑥|
2

1{|𝑥|<𝑡}, if 𝑑 = 2.
(38)

Condition (29) holds for any 𝛼 ∈ (0, 2). In this case, 𝐼𝛼(𝑡) =
2
−𝛼
𝑡
2 if 𝑑 = 1 and 𝐼𝛼(𝑡) = ((2𝜋)

1−𝛼
/(2−𝛼)(3−𝛼))𝑡

3−𝛼 if 𝑑 = 2.

4. Stochastic Integration

In this section we construct a stochastic integral with respect
to 𝑍 by generalizing the ideas of [1] to the case of random
fields. Unlike these authors, we do not assume that 𝑍(𝐵) has
a symmetric distribution, unless 𝛼 = 1.

Let F𝑡 = F𝑁

𝑡
∨ N where N is the 𝜎-field of negligible

sets in (Ω,F, 𝑃) andF𝑁

𝑡
is the 𝜎-field generated by𝑁([0, 𝑠]×

𝐴 × Γ) for all 𝑠 ∈ [0, 𝑡], 𝐴 ∈ B𝑏(R
𝑑
) and for all Borel sets Γ ⊂

R\ {0} bounded away from 0. Note thatF𝑍

𝑡
⊂ F𝑁

𝑡
whereF𝑍

𝑡

is the 𝜎-field generated by 𝑍([0, 𝑠] × 𝐴), 𝑠 ∈ [0, 𝑡], and 𝐴 ∈

B𝑏(R
𝑑
).

A process𝑋 = {𝑋(𝑡, 𝑥)}𝑡≥0,𝑥∈R𝑑 is called elementary if it is
of the form

𝑋(𝑡, 𝑥) = 1(𝑎,𝑏] (𝑡) 1𝐴 (𝑥) 𝑌, (39)

where 0 ≤ 𝑎 < 𝑏, 𝐴 ∈ B𝑏(R
𝑑
), and 𝑌 is F𝑎-measurable

and bounded. A simple process is a linear combination of
elementary processes. Note that any simple process𝑋 can be
written as

𝑋 (𝑡, 𝑥) = 1{0} (𝑡) 𝑌0 (𝑥) +

𝑁−1

∑

𝑖=0

1(𝑡𝑖 ,𝑡𝑖+1]
(𝑡) 𝑌𝑖 (𝑥) (40)

with 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁 < ∞ and 𝑌𝑖(𝑥) = ∑
𝑚𝑖

𝑗=1
1𝐴𝑖𝑗

(𝑥)𝑌𝑖𝑗,
where (𝑌𝑖𝑗)𝑗=1,...,𝑚𝑖

are F𝑡𝑖
-measurable and (𝐴 𝑖𝑗)𝑗=1,...,𝑚𝑗

are
disjoint sets inB𝑏(R

𝑑
).Without loss of generality, we assume

that 𝑌0 = 0.
We denote by P the predictable 𝜎-field on Ω × R+ × R𝑑,

that is, the 𝜎-field generated by all simple processes. We say
that a process 𝑋 = {𝑋(𝑡, 𝑥)}𝑡≥0,𝑥∈R𝑑 is predictable if the map
(𝜔, 𝑡, 𝑥) 󳨃→ 𝑋(𝜔, 𝑡, 𝑥) isP-measurable.

Remark 11. One can show that the predictable 𝜎-field P is
the 𝜎-field generated by the class C of processes 𝑋 such that
𝑡 󳨃→ 𝑋(𝜔, 𝑡, 𝑥) is left continuous for any 𝜔 ∈ Ω, 𝑥 ∈ R𝑑 and
(𝜔, 𝑥) 󳨃→ 𝑋(𝜔, 𝑡, 𝑥) isF𝑡 ×B(R𝑑

)-measurable for any 𝑡 > 0.

Let L𝛼 be the class of all predictable processes 𝑋 such
that

‖𝑋‖
𝛼

𝛼,𝑇,𝐵
:= 𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑡, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑡 < ∞, (41)

for all 𝑇 > 0 and 𝐵 ∈ B𝑏(R
𝑑
). Note thatL𝛼 is a linear space.

Let (𝐸𝑘)𝑘≥1 be an increasing sequence of sets in B𝑏(R
𝑑
)

such that⋃
𝑘
𝐸𝑘 = R𝑑. We define

‖𝑋‖𝛼 = ∑

𝑘≥1

1 ∧ ‖𝑋‖𝛼,𝑘,𝐸𝑘

2𝑘
, if 𝛼 > 1,

‖𝑋‖
𝛼

𝛼
= ∑

𝑘≥1

1 ∧ ‖𝑋‖
𝛼

𝛼,𝑘,𝐸𝑘

2𝑘
, if 𝛼 ≤ 1.

(42)

We identify two processes𝑋 and 𝑌 for which ‖𝑋 − 𝑌‖𝛼 =

0; that is, 𝑋 = 𝑌] a.e., where ] = 𝑃𝑑𝑡𝑑𝑥. In particular, we
identify two processes 𝑋 and 𝑌 if 𝑋 is a modification of 𝑌;
that is,𝑋(𝑡, 𝑥) = 𝑌(𝑡, 𝑥) a.s. for all (𝑡, 𝑥) ∈ R+ ×R𝑑.

The spaceL𝛼 becomes a metric space endowed with the
metric 𝑑𝛼:

𝑑𝛼 (𝑋, 𝑌) = ‖𝑋 − 𝑌‖𝛼, if 𝛼 > 1,

𝑑𝛼 (𝑋, 𝑌) = ‖𝑋 − 𝑌‖
𝛼

𝛼
, if 𝛼 ≤ 1.

(43)

This follows using Minkowski’s inequality if 𝛼 > 1 and the
inequality |𝑎 + 𝑏|𝛼 ≤ |𝑎|𝛼 + |𝑏|𝛼 if 𝛼 ≤ 1.

The following result can be proved similarly to Proposi-
tion 2.3 of [21].

Proposition 12. For any 𝑋 ∈ L𝛼 there exists a sequence
(𝑋𝑛)𝑛≥1 of bounded simple processes such that ‖𝑋𝑛 − 𝑋‖𝛼 → 0

as 𝑛 → ∞.

By Proposition 5.7 of [22], the 𝛼-stable Lévy process
{𝑍(𝑡, 𝐵) = 𝑍([0, 𝑡] × 𝐵); 𝑡 ≥ 0} has a càdlàg modification,
for any 𝐵 ∈ B𝑏(R

𝑑
). We work with these modifications. If 𝑋

is a simple process given by (40), we define

𝐼 (𝑋) (𝑡, 𝐵) =

𝑁−1

∑

𝑖=0

𝑚𝑖

∑

𝑗=1

𝑌𝑖𝑗𝑍((𝑡𝑖 ∧ 𝑡, 𝑡𝑖+1 ∧ 𝑡] × (𝐴 𝑖𝑗 ∩ 𝐵)) .

(44)
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Note that, for any 𝐵 ∈ B𝑏(R
𝑑
), 𝐼(𝑋) (𝑡, 𝐵) isF𝑡-measurable

for any 𝑡 ≥ 0, and {𝐼(𝑋)(𝑡, 𝐵)}𝑡≥0 is càdlàg. We write

𝐼 (𝑋) (𝑡, 𝐵) = ∫

𝑡

0

∫
𝐵

𝑋(𝑠, 𝑥) 𝑍 (𝑑𝑠, 𝑑𝑥) . (45)

The following result will be used for the construction of
the integral. This result generalizes Lemma 3.3 of [1] to the
case of random fields and nonsymmetric measures ]𝛼.

Theorem 13. If𝑋 is a bounded simple process then

sup
𝜆>0

𝜆
𝛼
𝑃( sup

𝑡∈[0,𝑇]

|𝐼 (𝑋) (𝑡, 𝐵)| > 𝜆)

≤ 𝑐𝛼𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑡, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑡,

(46)

for any 𝑇 > 0 and 𝐵 ∈ B𝑏(R
𝑑
), where 𝑐𝛼 is a constant

depending only on 𝛼.

Proof. Suppose that 𝑋 is of the form (40). Since {𝐼(𝑋)

(𝑡, 𝐵)}𝑡∈[0,𝑇] is càdlàg, it is separable. Without loss of gener-
ality, we assume that its separating set 𝐷 can be written as
𝐷 = ∪𝑛𝐹𝑛 where (𝐹𝑛)𝑛 is an increasing sequence of finite sets
containing the points (𝑡𝑘)𝑘=0,...,𝑁. Hence,

𝑃( sup
𝑡∈[0,𝑇]

|𝐼 (𝑋) (𝑡, 𝐵)| > 𝜆)

= lim
𝑛→∞

𝑃(max
𝑡∈𝐹𝑛

|𝐼 (𝑋) (𝑡, 𝐵)| > 𝜆) .

(47)

Fix 𝑛 ≥ 1. Denote by 0 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑚 = 𝑇 the points
of the set 𝐹𝑛. Say 𝑡𝑘 = 𝑠𝑖𝑘 for some 0 = 𝑖0 < 𝑖1 < ⋅ ⋅ ⋅ < 𝑖𝑁. Then
each interval (𝑡𝑘, 𝑡𝑘+1] can be written as the union of some
intervals of the form (𝑠𝑖, 𝑠𝑖+1]:

(𝑡𝑘, 𝑡𝑘+1] = ⋃

𝑖∈𝐼𝑘

(𝑠𝑖, 𝑠𝑖+1] , (48)

where 𝐼𝑘 = {𝑖; 𝑖𝑘 ≤ 𝑖 < 𝑖𝑘+1}. By (44), for any 𝑘 = 0, . . . , 𝑁 − 1

and 𝑖 ∈ 𝐼𝑘,

𝐼 (𝑋) (𝑠𝑖+1, 𝐵) − 𝐼 (𝑋) (𝑠𝑖, 𝐵)

=

𝑚𝑘

∑

𝑗=1

𝑌𝑘𝑗𝑍((𝑠𝑖, 𝑠𝑖+1] × (𝐴𝑘𝑗 ∩ 𝐵)) .

(49)

For any 𝑖 ∈ 𝐼𝑘, let 𝑁𝑖 = 𝑚𝑘, and, for any 𝑗 = 1, . . . , 𝑁𝑖,
define 𝛽𝑖𝑗 = 𝑌𝑘𝑗,𝐻𝑖𝑗 = 𝐴𝑘𝑗, and 𝑍𝑖𝑗 = 𝑍((𝑠𝑖, 𝑠𝑖+1] × (𝐻𝑖𝑗 ∩ 𝐵)).
With this notation, we have

𝐼 (𝑋) (𝑠𝑖+1, 𝐵) − 𝐼 (𝑋) (𝑠𝑖, 𝐵) =

𝑁𝑖

∑

𝑗=1

𝛽𝑖𝑗𝑍𝑖𝑗, ∀𝑖 = 0, . . . , 𝑚.

(50)

Consequently, for any 𝑙 = 1, . . . , 𝑚

𝐼 (𝑋) (𝑠𝑙, 𝐵) =

𝑙−1

∑

𝑖=0

(𝐼 (𝑋) (𝑠𝑖+1, 𝐵) − 𝐼 (𝑋) (𝑠𝑖, 𝐵))

=

𝑙−1

∑

𝑖=0

𝑁𝑖

∑

𝑗=1

𝛽𝑖𝑗𝑍𝑖𝑗.

(51)

Using (47) and (51), it is enough to prove that for any 𝜆 >
0,

𝑃( max
𝑙=0,...,𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙

∑

𝑖=0

𝑁𝑖

∑

𝑗=1

𝛽𝑖𝑗𝑍𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆)

≤ 𝑐𝛼𝜆
−𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋(𝑠, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑠.

(52)

First, note that

𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑠

=

𝑚−1

∑

𝑖=0

(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝛽𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(53)

This follows from the definition (40) of 𝑋 and (48), since
𝑋(𝑡, 𝑥) = ∑

𝑁−1

𝑖=0
∑

𝑖∈𝐼𝑘
1(𝑠𝑖 ,𝑠𝑖+1]

(𝑡) ∑
𝑁𝑖

𝑗=1
𝛽𝑖𝑗1𝐻𝑖𝑗

(𝑥).
We now prove (52). Let 𝑊𝑖 = ∑

𝑁𝑖

𝑗=1
𝛽𝑖𝑗𝑍𝑖𝑗. For the event

on the left-hand side, we consider its intersection with the
event {max0≤𝑖≤𝑚−1|𝑊𝑖| > 𝜆} and its complement. Hence, the
probability of this event can be bounded by

𝑚−1

∑

𝑖=0

𝑃 (
󵄨󵄨󵄨󵄨𝑊𝑖

󵄨󵄨󵄨󵄨 > 𝜆)

+ 𝑃( max
0≤𝑙≤𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙

∑

𝑖=0

𝑊𝑖1{|𝑊𝑖|≤𝜆}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆) =: 𝐼 + 𝐼𝐼.

(54)

We treat separately the two terms.
For the first term, we note that 𝛽

𝑖
= (𝛽𝑖𝑗)1≤𝑗≤𝑁𝑖

is F𝑠𝑖
-

measurable and 𝑍𝑖 = (𝑍𝑖𝑗)1≤𝑗≤𝑁𝑖
is independent of F𝑠𝑖

. By
Fubini’s theorem

𝐼 =

𝑚−1

∑

𝑖=0

∫
R𝑁𝑖

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑖

∑

𝑗=1

𝑥𝑗𝑍𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆)𝑃
𝛽
𝑖

(𝑑𝑥) , (55)

where 𝑥 = (𝑥𝑗)1≤𝑗≤𝑁𝑖
and 𝑃

𝛽
𝑖

is the law of 𝛽
𝑖
.

We examine the tail of 𝑈𝑖 = ∑
𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗 for a fixed

𝑥 ∈ R𝑁𝑖 . By Lemma 3, 𝑍𝑖𝑗 has a 𝑆𝛼(𝜎(𝑠𝑖+1 − 𝑠𝑖)
1/𝛼
|𝐻𝑖𝑗 ∩

𝐵|
1/𝛼
, 𝛽, 0) distribution. Since the sets (𝐻𝑖𝑗)1≤𝑗≤𝑁𝑖

are disjoint,
the variables (𝑍𝑖𝑗)1≤𝑗≤𝑁𝑖

are independent. Using elementary
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properties of the stable distribution (Properties 1.2.1 and 1.2.3
of [18]), it follows that 𝑈𝑖 has a 𝑆𝛼(𝜎𝑖, 𝛽

∗

𝑖
, 0) distribution with

parameters:

𝜎
𝛼

𝑖
= 𝜎

𝛼
(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
,

𝛽
∗

𝑖
=

𝛽

∑
𝑁𝑖

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨

𝑁𝑖

∑

𝑗=1

sgn (𝑥𝑗)
󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(56)

By Lemma A.1 (Appendix A), there exists a constant 𝑐∗
𝛼
> 0

such that

𝑃 (
󵄨󵄨󵄨󵄨𝑈𝑖

󵄨󵄨󵄨󵄨 > 𝜆) ≤ 𝑐
∗

𝛼
𝜆

−𝛼
𝜎

𝛼
(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
(57)

for any 𝜆 > 0. Hence,

𝐼 ≤ 𝑐
∗

𝛼
𝜆

−𝛼
𝜎

𝛼

𝑚−1

∑

𝑖=0

(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝛽𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨

= 𝑐
∗

𝛼
𝜆

−𝛼
𝜎

𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑠.

(58)

We now treat 𝐼𝐼.We consider three cases. For the first two
cases we deviate from the original argument of [1] since we do
not require that 𝛽 = 0.

Case 1 (𝛼 < 1). Note that

𝐼𝐼 ≤ 𝑃( max
0≤𝑙≤𝑚−1

𝑀𝑙 > 𝜆) , (59)

where {𝑀𝑙 = ∑
𝑙

𝑖=0
|𝑊𝑖|1{|𝑊𝑖|≤𝜆},F𝑠𝑙+1

; 0 ≤ 𝑙 ≤ 𝑚 − 1} is
a submartingale. By the submartingale maximal inequality
(Theorem 35.3 of [23]),

𝑃( max
0≤𝑙≤𝑚−1

𝑀𝑙 > 𝜆) ≤
1

𝜆
𝐸 (𝑀𝑚−1)

=
1

𝜆

𝑚−1

∑

𝑖=0

𝐸 (
󵄨󵄨󵄨󵄨𝑊𝑖

󵄨󵄨󵄨󵄨 1|𝑊𝑖|≤𝜆) .

(60)

Using the independence between 𝛽
𝑖
and𝑍𝑖 it follows that

𝐸 [
󵄨󵄨󵄨󵄨𝑊𝑖

󵄨󵄨󵄨󵄨 1|𝑊𝑖|≤𝜆]

= ∫
R𝑁𝑖

𝐸[

[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑖

∑

𝑗=1

𝑥𝑗𝑍𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
{| ∑
𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗|≤𝜆}

]

]

𝑃
𝛽
𝑖

(𝑑𝑥) .

(61)

Let 𝑈𝑖 = ∑
𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗. Using (57) and Remark A.2

(Appendix A), we get

𝐸 [
󵄨󵄨󵄨󵄨𝑈𝑖

󵄨󵄨󵄨󵄨 1{|𝑈𝑖|≤𝜆}] ≤ 𝑐
∗

𝛼
𝜎

𝛼 1

1 − 𝛼
𝜆

1−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

×

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(62)

Hence,

𝐸 [
󵄨󵄨󵄨󵄨𝑊𝑖

󵄨󵄨󵄨󵄨 1|𝑊𝑖|≤𝜆] ≤ 𝑐
∗

𝛼
𝜎

𝛼 1

1 − 𝛼
𝜆

1−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

×

𝑁𝑖

∑

𝑗=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝛽𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(63)

From (59), (60), and (63), it follows that

𝐼𝐼 ≤ 𝑐
∗

𝛼
𝜎

𝛼 1

1 − 𝛼
𝜆

−𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑠. (64)

Case 2 (𝛼 > 1). We have

𝐼𝐼 ≤ 𝑃( max
0≤𝑙≤𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙

∑

𝑖=0

𝑋𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝜆

2
) + 𝑃( max

0≤𝑙≤𝑚−1

𝑌𝑖 >
𝜆

2
)

=: 𝐼𝐼
󸀠
+ 𝐼𝐼

󸀠󸀠
,

(65)

where 𝑋𝑖 = 𝑊𝑖1{|𝑊𝑖|≤𝜆} − 𝐸[𝑊𝑖1{|𝑊𝑖|≤𝜆} | F𝑠𝑖
] and 𝑌𝑖 =

|𝐸[𝑊𝑖1{|𝑊𝑖|≤𝜆} | F𝑠𝑖
]|.

We first treat the term 𝐼𝐼
󸀠. Note that {𝑀𝑙 =

∑
𝑙

𝑖=0
𝑋𝑖,F𝑠𝑙+1

; 0 ≤ 𝑙 ≤ 𝑚 − 1} is a zero-mean square
integrable martingale, and

𝐼𝐼
󸀠
= 𝑃( max

0≤𝑙≤𝑚−1

󵄨󵄨󵄨󵄨𝑀𝑙

󵄨󵄨󵄨󵄨 >
𝜆

2
) ≤

4

𝜆2

𝑚−1

∑

𝑖=0

𝐸 (𝑋
2

𝑖
)

≤
4

𝜆2

𝑚−1

∑

𝑖=0

𝐸 [𝑊
2

𝑖
1{|𝑊𝑖|≤𝜆}] .

(66)

Let 𝑈𝑖 = ∑
𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗. Using (57) and Remark A.2

(Appendix A), we get

𝐸 [𝑈
2

𝑖
1{|𝑈𝑖|≤𝜆}] ≤ 2𝑐

∗

𝛼
𝜎

𝛼 1

2 − 𝛼
𝜆

2−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

×

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(67)

As in Case 1, we obtain that

𝐸 [𝑊
2

𝑖
1{|𝑊𝑖|≤𝜆}] ≤ 𝑐

∗

𝛼
𝜎

𝛼 2

2 − 𝛼
𝜆

2−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

×

𝑁𝑖

∑

𝑗=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝛽𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
,

(68)

and hence

𝐼𝐼
󸀠
≤ 8𝑐

∗

𝛼
𝜎

𝛼 1

2 − 𝛼
𝜆

−𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑠. (69)

We now treat 𝐼𝐼󸀠󸀠. Note that {𝑁𝑙 = ∑
𝑙

𝑖=0
𝑌𝑖,F𝑠𝑙+1

; 0 ≤ 𝑙 ≤

𝑚 − 1} is a semimartingale and hence, by the submartingale
inequality,

𝐼𝐼
󸀠󸀠
≤
2

𝜆
𝐸 (𝑁𝑚−1) =

2

𝜆

𝑚−1

∑

𝑖=0

𝐸 (𝑌𝑖) . (70)
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To evaluate 𝐸(𝑌𝑖), we note that, for almost all 𝜔 ∈ Ω,

𝐸 [𝑊𝑖1{|𝑊𝑖|≤𝜆} | F𝑠𝑖
] (𝜔)

= 𝐸[

[

𝑁𝑖

∑

𝑗=1

𝛽𝑖𝑗 (𝜔) 𝑍𝑖𝑗1{| ∑
𝑁𝑖

𝑗=1
𝛽𝑖𝑗(𝜔)𝑍𝑖𝑗|≤𝜆}

]

]

,

(71)

due to the independence between 𝛽
𝑖
and 𝑍𝑖. We let 𝑈𝑖 =

∑
𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗 with 𝑥𝑗 = 𝛽𝑖𝑗(𝜔). Since 𝛼 > 1, 𝐸(𝑈𝑖) = 0. Using

(57) and Remark A.2, we obtain
󵄨󵄨󵄨󵄨󵄨
𝐸 [𝑈𝑖1{|𝑈𝑖|≤𝜆}]

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝐸 [𝑈𝑖1{|𝑈𝑖|>𝜆}]

󵄨󵄨󵄨󵄨󵄨
≤ 𝐸 [

󵄨󵄨󵄨󵄨𝑈𝑖

󵄨󵄨󵄨󵄨 1{|𝑈𝑖|>𝜆}]

≤ 𝑐
∗

𝛼
𝜎

𝛼 𝛼

𝛼 − 1
𝜆

1−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

×

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
.

(72)

Hence, 𝐸(𝑌𝑖) ≤ 𝑐
∗

𝛼
𝜎

𝛼
(𝛼/(𝛼 − 1))𝜆

1−𝛼
(𝑠𝑖+1 −

𝑠𝑖) ∑
𝑁𝑖

𝑗=1
𝐸|𝛽𝑖𝑗|

𝛼
|𝐻𝑖𝑗 ∩ 𝐵| and

𝐼𝐼
󸀠󸀠
≤ 𝑐

∗

𝛼
𝜎

𝛼 2𝛼

𝛼 − 1
𝜆

−𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑡, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑡. (73)

Case 3 (𝛼 = 1). In this case we assume that 𝛽 = 0. Hence,
𝑈𝑖 = ∑

𝑁𝑖

𝑗=1
𝑥𝑗𝑍𝑖𝑗 has a symmetric distribution for any𝑥 ∈ R𝑁𝑖 .

Using (71), it follows that 𝐸[𝑊𝑖1{|𝑊𝑖|≤𝜆} | F𝑠𝑖
] = 0 a.s. for all

𝑖 = 0, . . . , 𝑚 − 1. Hence, {𝑀𝑙 = ∑
𝑙

𝑖=0
𝑊𝑖1{|𝑊𝑖|≤𝜆},F𝑠𝑙+1

; 0 ≤ 𝑙 ≤

𝑚 − 1} is a zero-mean square integrable martingale. By the
martingale maximal inequality,

𝐼𝐼 ≤
1

𝜆2
𝐸 [𝑀

2

𝑚−1
] =

1

𝜆2

𝑚−1

∑

𝑖=0

𝐸 [𝑊
2

𝑖
1{|𝑊𝑖|≤𝜆}] . (74)

The result follows using (68).

We now proceed to the construction of the stochastic
integral. If 𝑌 = {𝑌(𝑡)}𝑡≥0 is a jointly measurable random
process, we define

‖𝑌‖
𝛼

𝛼,𝑇
= sup

𝜆>0

𝜆
𝛼
𝑃( sup

𝑡∈[0,𝑇]

|𝑌 (𝑡)| > 𝜆) . (75)

Let𝑋 ∈ L𝛼 be arbitrary. By Proposition 12, there exists a
sequence (𝑋𝑛)𝑛≥1 of simple functions such that ‖𝑋𝑛 − 𝑋‖𝛼 →

0 as 𝑛 → ∞. Let𝑇 > 0 and𝐵 ∈ B𝑏(R
𝑑
) be fixed. By linearity

of the integral andTheorem 13,
󵄩󵄩󵄩󵄩𝐼 (𝑋𝑛) (⋅, 𝐵) − 𝐼 (𝑋𝑚) (⋅, 𝐵)

󵄩󵄩󵄩󵄩

𝛼

𝛼,𝑇
≤ 𝑐𝛼

󵄩󵄩󵄩󵄩𝑋𝑛 − 𝑋𝑚

󵄩󵄩󵄩󵄩

𝛼

𝛼,𝑇,𝐵
󳨀→ 0,

(76)

as 𝑛,𝑚 → ∞. In particular, the sequence {𝐼(𝑋𝑛)(⋅, 𝐵)}𝑛 is
Cauchy in probability in the space𝐷[0, 𝑇] equipped with the
sup-norm.Therefore, there exists a random element𝑌(⋅, 𝐵) in
𝐷[0, 𝑇] such that, for any 𝜆 > 0,

𝑃( sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝐼 (𝑋𝑛) (𝑡, 𝐵) − 𝑌 (𝑡, 𝐵)
󵄨󵄨󵄨󵄨 > 𝜆) 󳨀→ 0. (77)

Moreover, there exists a subsequence (𝑛𝑘)𝑘 such that

sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝐼 (𝑋𝑛𝑘

) (𝑡, 𝐵) − 𝑌 (𝑡, 𝐵)
󵄨󵄨󵄨󵄨󵄨
󳨀→ 0 a.s. (78)

as 𝑘 → ∞. Hence, 𝑌(𝑡, 𝐵) is F𝑡-measurable for any 𝑡 ∈

[0, 𝑇]. The process 𝑌(⋅, 𝐵) does not depend on the sequence
(𝑋𝑛)𝑛 and can be extended to a càdlàg process on [0,∞),
which is unique up to indistinguishability. We denote this
extension by 𝐼(𝑋)(⋅, 𝐵) and we write

𝐼 (𝑋) (𝑡, 𝐵) = ∫

𝑡

0

∫
𝐵

𝑋 (𝑠, 𝑥) 𝑍 (𝑑𝑠, 𝑑𝑥) . (79)

If 𝐴 and 𝐵 are disjoint sets inB𝑏(R
𝑑
), then

𝐼 (𝑋) (𝑡, 𝐴 ∪ 𝐵) = 𝐼 (𝑋) (𝑡, 𝐴) + 𝐼 (𝑋) (𝑡, 𝐵) a.s. (80)

Lemma 14. Inequality (46) holds for any𝑋 ∈ L𝛼.

Proof. Let (𝑋𝑛)𝑛 be a sequence of simple functions such that
‖𝑋𝑛 − 𝑋‖𝛼 → 0. For fixed 𝐵, we denote 𝐼(𝑋) = 𝐼(𝑋)(⋅, 𝐵).
We let ‖ ⋅ ‖∞ be the sup-norm on 𝐷[0, 𝑇]. For any 𝜀 > 0, we
have

𝑃 (‖𝐼 (𝑋)‖∞ > 𝜆) ≤ 𝑃 (
󵄩󵄩󵄩󵄩𝐼 (𝑋) − 𝐼 (𝑋𝑛)

󵄩󵄩󵄩󵄩∞
> 𝜆𝜀)

+ 𝑃 (
󵄩󵄩󵄩󵄩𝐼 (𝑋𝑛)

󵄩󵄩󵄩󵄩∞
> 𝜆 (1 − 𝜀)) .

(81)

Multiplying by 𝜆𝛼 and usingTheorem 13, we obtain

sup
𝜆>0

𝜆
𝛼
𝑃 (‖𝐼 (𝑋)‖∞ > 𝜆)

≤ 𝜀
−𝛼sup

𝜆>0

𝜆
𝛼
𝑃 (
󵄩󵄩󵄩󵄩𝐼(𝑋) − 𝐼(𝑋𝑛)

󵄩󵄩󵄩󵄩∞
> 𝜆)

+ (1 − 𝜀)
−𝛼
𝑐𝛼
󵄩󵄩󵄩󵄩𝑋𝑛

󵄩󵄩󵄩󵄩

𝛼

𝛼,𝑇,𝐵
.

(82)

Let 𝑛 → ∞. Using (76) one can prove that
sup

𝜆>0
𝜆

𝛼
𝑃(‖𝐼(𝑋𝑛) − 𝐼(𝑋)‖∞ > 𝜆) → 0. We obtain

that sup
𝜆>0

𝜆
𝛼
𝑃(‖𝐼(𝑋)‖∞ > 𝜆) ≤ (1 − 𝜀)

−𝛼
𝑐𝛼‖𝑋‖

𝛼

𝛼,𝑇,𝐵
. The

conclusion follows letting 𝜀 → 0.

For an arbitrary Borel set O ⊂ R𝑑 (possibly O = R𝑑), we
assume, in addition, that𝑋 ∈ L𝛼 satisfies the condition:

𝐸∫

𝑇

0

∫
O
|𝑋 (𝑡, 𝑥)|

𝛼
𝑑𝑥 𝑑𝑡 < ∞, ∀𝑇 > 0. (83)

Then we can define 𝐼(𝑋)(⋅,O) as follows. Let O𝑘 = O ∩ 𝐸𝑘

where (𝐸𝑘)𝑘 is an increasing sequence of sets inB𝑏(R
𝑑
) such

that⋃
𝑘
𝐸𝑘 = R𝑑. By (80), Lemma 14, and (83),

sup
𝜆>0

𝜆
𝛼
𝑃(sup

𝑡≤𝑇

󵄨󵄨󵄨󵄨𝐼 (𝑋) (𝑡,O𝑘) − 𝐼 (𝑋) (𝑡,O𝑙)
󵄨󵄨󵄨󵄨 > 𝜆)

≤ 𝑐𝛼𝐸∫

𝑇

0

∫
O𝑘\O𝑙

|𝑋 (𝑡, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑡 󳨀→ 0,

(84)

as 𝑘, 𝑙 → ∞. This shows that {𝐼(𝑋)(⋅,O𝑘)}𝑘 is a Cauchy
sequence in probability in the space 𝐷[0, 𝑇] equipped with
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the sup-norm. We denote by 𝐼(𝑋)(⋅,O) its limit. As above,
this process can be extended to [0,∞) and 𝐼(𝑋)(𝑡,O) is F𝑡-
measurable for any 𝑡 > 0. We denote

𝐼 (𝑋) (𝑡,O) = ∫
𝑡

0

∫
O

𝑋(𝑠, 𝑥) 𝑍 (𝑑𝑠, 𝑑𝑥) . (85)

Similarly, to Lemma 14, one can prove that, for any 𝑋 ∈ L𝛼

satisfying (83),

sup
𝜆>0

𝜆
𝛼
𝑃(sup

𝑡≤𝑇

|𝐼 (𝑋) (𝑡,O)| > 𝜆)

≤ 𝑐𝛼𝐸∫

𝑇

0

∫
O
|𝑋 (𝑡, 𝑥)|

𝛼
𝑑𝑥 𝑑𝑡.

(86)

5. The Truncated Noise

For the study of nonlinear equations, we need to develop
a theory of stochastic integration with respect to another
process 𝑍𝐾 which is defined by removing from 𝑍 the jumps
whose modulus exceeds a fixed value 𝐾 > 0. More precisely,
for any 𝐵 ∈ B𝑏(R+ ×R𝑑

), we define

𝑍𝐾 (𝐵) = ∫
𝐵×{0<|𝑧|≤𝐾}

𝑧𝑁 (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) , if 𝛼 ≤ 1, (87)

𝑍𝐾 (𝐵) = ∫
𝐵×{0<|𝑧|≤𝐾}

𝑧𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) , if 𝛼 > 1. (88)

We treat separately the cases 𝛼 ≤ 1 and 𝛼 > 1.

5.1. The Case 𝛼 ≤ 1. Note that {𝑍𝐾(𝐵); 𝐵 ∈ B𝑏(R+ × R𝑑
)} is

an independently scattered randommeasure onR+×R
𝑑 with

characteristic function given by

𝐸 (𝑒
𝑖𝑢𝑍𝐾(𝐵)

) = exp{|𝐵| ∫
|𝑧|≤𝐾

(𝑒
𝑖𝑢𝑧

− 1) ]𝛼 (𝑑𝑧)} , ∀𝑢 ∈ R.

(89)

We first examine the tail of 𝑍𝐾(𝐵).

Lemma 15. For any set 𝐵 ∈ B𝑏(R+ ×R𝑑
),

sup
𝜆>0

𝜆
𝛼
𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝜆) ≤ 𝑟𝛼 |𝐵| , (90)

where 𝑟𝛼 > 0 is a constant depending only on 𝛼 (given by
Lemma A.3).

Proof. This follows from Example 3.7 of [1]. We denote by
]𝛼,𝐾 the restriction of ]𝛼 to {𝑧 ∈ R; 0 < |𝑧| ≤ 𝐾}. Note that

]𝛼,𝐾 ({𝑧 ∈ R; |𝑧| > 𝑡}) = {
𝑡
−𝛼
− 𝐾

−𝛼
, if 0 < 𝑡 ≤ 𝐾,

0, if 𝑡 > 𝐾,
(91)

and hence sup
𝑡>0
𝑡
𝛼]𝛼,𝐾({𝑧 ∈ R; |𝑧| > 𝑡}) = 1. Next we

observe that we do not need to assume that the measure ]𝛼,𝐾

is symmetric since we use a modified version of Lemma 2.1 of
[24] given by Lemma A.3 (Appendix A).

In fact, since the tail of ]𝛼,𝐾 vanishes if 𝑡 > 𝐾, we can
obtain another estimate for the tail of 𝑍𝐾(𝐵) which, together
with (90), will allow us to control its 𝑝th moment for 𝑝 ∈

(𝛼, 1). This new estimate is given below.

Lemma 16. If 𝛼 < 1, then

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) ≤
𝛼

1 − 𝛼
𝐾

1−𝛼
|𝐵| 𝑢

−1
, ∀𝑢 > 𝐾. (92)

If 𝛼 = 1, then 𝑃(|𝑍𝐾(𝐵)| > 𝑢) ≤ 𝐾|𝐵|𝑢
−2 for all 𝑢 > 𝐾.

Proof. We use the same idea as in Example 3.7 of [1]. For each
𝑘 ≥ 1, let 𝑍𝑘,𝐾(𝐵) be a random variable with characteristic
function:

𝐸 (𝑒
𝑖𝑢𝑍𝑘,𝐾(𝐵)

) = exp{|𝐵| ∫
{𝑘−1<|𝑧|≤𝐾}

(𝑒
𝑖𝑢𝑧

− 1) ]𝛼 (𝑑𝑧)} .

(93)

Since {𝑍𝑘,𝐾(𝐵)}𝑘 converges in distribution to𝑍𝐾(𝐵), it suffices
to prove the lemma for 𝑍𝑘,𝐾(𝐵). Let 𝜇𝑘 be the restriction of
]𝛼 to {𝑧; 𝑘−1

< |𝑧| ≤ 𝐾}. Since 𝜇𝑘 is finite, 𝑍𝑘,𝐾(𝐵) has a
compound Poisson distribution with

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝑘,𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) = 𝑒
−|𝐵|𝜇𝑘(R)

∑

𝑛≥0

|𝐵|
𝑛

𝑛!
𝜇

∗𝑛

𝑘
({𝑧; |𝑧| > 𝑢}) ,

(94)

where 𝜇∗𝑛

𝑘
denotes the 𝑛-fold convolution. Note that

𝜇
∗𝑛

𝑘
({𝑧; |𝑧| > 𝑢}) = [𝜇𝑘 (R)]

𝑛
𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜂𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑢) , (95)

where (𝜂𝑖)𝑖≥1 are i.i.d. random variables with law 𝜇𝑘/𝜇𝑘(R).
Assume first that 𝛼 < 1. To compute 𝑃(|∑𝑛

𝑖=1
𝜂𝑖| > 𝑢) we

consider the intersection with the event {max1≤𝑖≤𝑛|𝜂𝑖| > 𝑢}

and its complement. Note that 𝑃(|𝜂𝑖| > 𝑢) = 0 for any 𝑢 > 𝐾.
Using this fact and Markov’s inequality, we obtain that, for
any 𝑢 > 𝐾,

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜂𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑢) ≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜂𝑖1{|𝜂𝑖|≤𝑢}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑢)

≤
1

𝑢

𝑛

∑

𝑖=1

𝐸 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 1{|𝜂𝑖|≤𝑢}) .

(96)

Note that 𝑃(|𝜂𝑖| > 𝑠) ≤ (𝑠
−𝛼
− 𝐾

−𝛼
)/𝜇𝑘(R) if 𝑠 ≤ 𝐾. Hence,

for any 𝑢 > 𝐾

𝐸 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 1{|𝜂𝑖|≤𝑢}) ≤ ∫

𝑢

0

𝑃 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 > 𝑠) 𝑑𝑠 = ∫

𝐾

0

𝑃 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 > 𝑠) 𝑑𝑠

≤
1

𝜇𝑘 (R)

𝛼

1 − 𝛼
𝐾

1−𝛼
.

(97)

Combining all these facts, we get that for any 𝑢 > 𝐾

𝜇
∗𝑛

𝑘
({𝑧; |𝑧| > 𝑢}) ≤ [𝜇𝑘 (R)]

𝑛−1 𝛼

1 − 𝛼
𝐾

1−𝛼
𝑛𝑢

−1
, (98)

and the conclusion follows from (94).
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Assume now that 𝛼 = 1. In this case, 𝐸(𝜂𝑖1{|𝜂𝑖|≤𝑢}) =

0 since 𝜂𝑖 has a symmetric distribution. Using Chebyshev’s
inequality this time, we obtain

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜂𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑢) ≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝜂𝑖1{|𝜂𝑖|≤𝑢}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑢)

≤
1

𝑢2

𝑛

∑

𝑖=1

𝐸 (𝜂
2

𝑖
1{|𝜂𝑖|≤𝑢}) .

(99)

The result follows as above using the fact that, for any 𝑢 > 𝐾,

𝐸 (𝜂
2

𝑖
1{|𝜂𝑖|≤𝑢}) ≤ 2∫

𝑢

0

𝑠𝑃 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 > 𝑠) 𝑑𝑠

= 2∫

𝐾

0

𝑠𝑃 (
󵄨󵄨󵄨󵄨𝜂𝑖
󵄨󵄨󵄨󵄨 > 𝑠) 𝑑𝑠 ≤

1

𝜇𝑘 (R)
𝐾.

(100)

Lemma 17. If 𝛼 < 1 then

𝐸
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨

𝑝
≤ 𝐶𝛼,𝑝𝐾

𝑝−𝛼
|𝐵| 𝑓𝑜𝑟 𝑎𝑛𝑦𝑝 ∈ (𝛼, 1) , (101)

where 𝐶𝛼,𝑝 is a constant depending on 𝛼 and 𝑝. If 𝛼 = 1, then

𝐸
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨

𝑝
≤ 𝐶𝑝𝐾

𝑝−1
|𝐵| 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ (1, 2) , (102)

where 𝐶𝑝 is a constant depending on 𝑝.

Proof. Note that

𝐸
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨

𝑝
= ∫

∞

0

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨

𝑝
> 𝑡) 𝑑𝑡

= 𝑝∫

∞

0

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢.

(103)

We consider separately the integrals for 𝑢 ≤ 𝐾 and 𝑢 > 𝐾.
For the first integral we use (90):

∫

𝐾

0

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢 ≤ 𝑟𝛼 |𝐵| ∫

𝐾

0

𝑢
−𝛼+𝑝−1

𝑑𝑢

= 𝑟𝛼 |𝐵|
1

𝑝 − 𝛼
𝐾

𝑝−𝛼
.

(104)

For the second one we use Lemma 16: if 𝛼 < 1 then

∫

∞

𝐾

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢

≤
𝛼

1 − 𝛼
𝐾

1−𝛼
|𝐵| ∫

∞

𝐾

𝑢
𝑝−2

𝑑𝑢

=
𝛼

(1 − 𝛼) (1 − 𝑝)
|𝐵|𝐾

𝑝−𝛼
,

(105)

and if 𝛼 = 1, then

∫

∞

𝐾

𝑃 (
󵄨󵄨󵄨󵄨𝑍𝐾 (𝐵)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢

≤ 𝐾 |𝐵| ∫

∞

𝐾

𝑢
𝑝−3

𝑑𝑢 = |𝐵|
1

2 − 𝑝
𝐾

𝑝−1
.

(106)

We now proceed to the construction of the stochastic
integral with respect to𝑍𝐾. For this, we use the samemethod
as for 𝑍. Note that F𝑍𝐾

𝑡
⊂ F𝑡, where F

𝑍𝐾
𝑡

is the 𝜎-field
generated by 𝑍𝐾([0, 𝑠] × 𝐴) for all 𝑠 ∈ [0, 𝑡] and 𝐴 ∈ B𝑏(R

𝑑
).

For any 𝐵 ∈ B𝑏(R
𝑑
), we will work with a càdlàg modification

of the Lévy process {𝑍𝐾(𝑡, 𝐵) = 𝑍𝐾([0, 𝑡] × 𝐵); 𝑡 ≥ 0}.
If𝑋 is a simple process given by (40), we define

𝐼𝐾 (𝑋) (𝑡, 𝐵) = ∫

𝑡

0

∫
𝐵

𝑋 (𝑠, 𝑥) 𝑍𝐾 (𝑑𝑠, 𝑑𝑥) (107)

by the same formula (44) with 𝑍 replaced by 𝑍𝐾. The
following result shows that 𝐼𝐾(𝑋)(𝑡, 𝐵) has the same tail
behavior as 𝐼(𝑋)(𝑡, 𝐵).

Proposition 18. If𝑋 is a bounded simple process then

sup
𝜆>0

𝜆
𝛼
𝑃( sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡, 𝐵)
󵄨󵄨󵄨󵄨 > 𝜆)

≤ 𝑑𝛼𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑡, 𝑥)|
𝛼
𝑑𝑥 𝑑𝑡,

(108)

for any𝑇 > 0 and 𝐵 ∈ B𝑏(R
𝑑
), where 𝑑𝛼 is a constant depend-

ing only on 𝛼.

Proof. As in the proof of Theorem 13, it is enough to prove
that

𝑃( max
𝑙=0,...,𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙

∑

𝑖=0

𝑁𝑖

∑

𝑗=1

𝛽𝑖𝑗𝑍
∗

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆)

≤ 𝑑𝛼𝜆
−𝛼

𝑚−1

∑

𝑖=0

(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝛽𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
,

(109)

where𝑍∗

𝑖𝑗
= 𝑍𝐾((𝑠𝑖, 𝑠𝑖+1]×(𝐻𝑖𝑗∩𝐵)).This reduces to showing

that𝑈∗

𝑖
= ∑

𝑁𝑖

𝑗=1
𝑥𝑗𝑍

∗

𝑖𝑗
satisfies an inequality similar to (57) for

any 𝑥 ∈ R𝑁𝑖 ; that is,

𝑃 (
󵄨󵄨󵄨󵄨𝑈

∗

𝑖

󵄨󵄨󵄨󵄨 > 𝜆) ≤ 𝑑
∗

𝛼
𝜆

−𝛼
(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨󵄨
𝐻𝑖𝑗 ∩ 𝐵

󵄨󵄨󵄨󵄨󵄨
, (110)

for any 𝜆 > 0, for some 𝑑∗

𝛼
> 0. We first examine the tail of

𝑍
∗

𝑖𝑗
. By (90),

𝑃 (
󵄨󵄨󵄨󵄨󵄨
𝑍

∗

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝜆) ≤ 𝑟𝛼 (𝑠𝑖+1 − 𝑠𝑖)𝐾𝑖𝑗𝜆

−𝛼
, (111)

where 𝐾𝑖𝑗 = |𝐻𝑖𝑗 ∩ 𝐵|. Letting 𝜂𝑖𝑗 = 𝐾
−1/𝛼

𝑖𝑗
𝑍

∗

𝑖𝑗
, we obtain that,

for any 𝑢 > 0,

𝑃 (
󵄨󵄨󵄨󵄨󵄨
𝜂𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝑢) ≤ 𝑟𝛼 (𝑠𝑖+1 − 𝑠𝑖) 𝑢

−𝛼
, ∀𝑗 = 1, . . . , 𝑁𝑖. (112)

By Lemma A.3 (Appendix A), it follows that, for any 𝜆 > 0,

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑖

∑

𝑗=1

𝑏𝑗𝜂𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆) ≤ 𝑟
2

𝛼
(𝑠𝑖+1 − 𝑠𝑖)

𝑁𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏𝑗

󵄨󵄨󵄨󵄨󵄨

𝛼

𝜆
−𝛼
, (113)

for any sequence (𝑏𝑗)𝑗=1,...,𝑁𝑖
of real numbers. Inequality (110)

(with 𝑑∗

𝛼
= 𝑟

2

𝛼
) follows by applying this to 𝑏𝑗 = 𝑥𝑗𝐾

1/𝛼

𝑖𝑗
.
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In view of the previous result and Proposition 12, for any
process𝑋 ∈ L𝛼, we can construct the integral

𝐼𝐾 (𝑋) (𝑡, 𝐵) = ∫

𝑡

0

∫
𝐵

𝑋 (𝑠, 𝑥) 𝑍𝐾 (𝑑𝑠, 𝑑𝑥) (114)

in the same manner as 𝐼(𝑋)(𝑡, 𝐵), and this integral satisfies
(108). If in addition the process 𝑋 ∈ L𝛼 satisfies (83), then
we can define the integral 𝐼𝐾(𝑋)(𝑡,O) for an arbitrary Borel
set O ⊂ R𝑑 (possibly O = R𝑑). This integral will satisfy an
inequality similar to (108) with 𝐵 replaced by O.

The appealing feature of 𝐼𝐾(𝑋)(𝑡, 𝐵) is that we can control
its moments, as shown by the next result.

Theorem 19. If 𝛼 < 1, then for any 𝑝 ∈ (𝛼, 1) and for any
𝑋 ∈ L𝑝,

𝐸
󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡, 𝐵)

󵄨󵄨󵄨󵄨

𝑝
≤ 𝐶𝛼,𝑝𝐾

𝑝−𝛼
𝐸∫

𝑡

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠, (115)

for any 𝑡 > 0 and 𝐵 ∈ B𝑏(R
𝑑
), where 𝐶𝛼,𝑝 is a constant

depending on 𝛼, 𝑝. If O ⊂ R𝑑 is an arbitrary Borel set and
we assume, in addition, that the process𝑋 ∈ L𝑝 satisfies

𝐸∫

𝑇

0

∫
O
|𝑋 (𝑠, 𝑥)|

𝑝
𝑑𝑥 𝑑𝑠 < ∞, ∀𝑇 > 0, (116)

then inequality (115) holds with 𝐵 replaced by O.

Proof. Consider the following steps.

Step 1. Suppose that 𝑋 is an elementary process of the form
(39). Then 𝐼𝐾(𝑋)(𝑡, 𝐵) = 𝑌𝑍𝐾(𝐻) where𝐻 = (𝑡 ∧ 𝑎, 𝑡 ∧ 𝑏] ×

(𝐴∩𝐵). Note that𝑍𝐾(𝐻) is independent ofF𝑎. Hence,𝑍𝐾(𝐻)

is independent of 𝑌. Let 𝑃𝑌 denote the law of 𝑌. By Fubini’s
theorem,

𝐸
󵄨󵄨󵄨󵄨𝑌𝑍𝐾 (𝐻)

󵄨󵄨󵄨󵄨

𝑝

= 𝑝∫

∞

0

𝑃 (
󵄨󵄨󵄨󵄨𝑌𝑍𝐾 (𝐻)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢

= 𝑝∫
R

(∫

∞

0

𝑃 (
󵄨󵄨󵄨󵄨𝑦𝑍𝐾 (𝐻)

󵄨󵄨󵄨󵄨 > 𝑢) 𝑢
𝑝−1

𝑑𝑢)𝑃𝑌 (𝑑𝑦) .

(117)

We evaluate the inner integral. We split this integral into two
parts, for 𝑢 ≤ 𝐾|𝑦| and 𝑢 > 𝐾|𝑦|, respectively. For the first
integral, we use (90). For the second one, we use Lemma 16.
Therefore, the inner integral is bounded by

𝑟𝛼
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝛼
|𝐻| ∫

𝐾|𝑦|

0

𝑢
−𝛼+𝑝−1

𝑑𝑢

+
𝛼

1 − 𝛼

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 𝐾

1−𝛼
|𝐻|

× ∫

∞

𝐾|𝑦|

𝑢
𝑝−2

𝑑𝑢 = 𝐶
󸀠

𝛼,𝑝
𝐾

𝑝−𝛼󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝑝
|𝐻| ,

𝐸
󵄨󵄨󵄨󵄨𝑌𝑍𝐾 (𝐻)

󵄨󵄨󵄨󵄨

𝑝
≤ 𝑝𝐶

󸀠

𝛼,𝑝
𝐾

𝑝−𝛼
|𝐻| 𝐸|𝑌|

𝑝

= 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐸∫

𝑡

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠.

(118)

Step 2. Suppose now that 𝑋 is a simple process of the form
(40). Then 𝑋(𝑡, 𝑥) = ∑

𝑁−1

𝑖=0
∑

𝑚𝑖

𝑗=1
𝑋𝑖𝑗(𝑡, 𝑥) where 𝑋𝑖𝑗(𝑡, 𝑥) =

1(𝑡𝑖 ,𝑡𝑖+1]
(𝑡)1𝐴𝑖𝑗

(𝑥)𝑌𝑖𝑗.
Using the linearity of the integral, the inequality |𝑎+𝑏|𝑝 ≤

|𝑎|
𝑝
+|𝑏|

𝑝, and the result obtained in Step 1 for the elementary
processes𝑋𝑖𝑗, we get

𝐸
󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡, 𝐵)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐸

𝑁−1

∑

𝑖=0

𝑚𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐼𝐾 (𝑋𝑖𝑗) (𝑡, 𝐵)

󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐸

𝑁−1

∑

𝑖=0

𝑚𝑖

∑

𝑗=1

∫

𝑡

0

∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋𝑖𝑗 (𝑠, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 𝑑𝑠

= 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐸∫

𝑡

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠.

(119)

Step 3. Let 𝑋 ∈ L𝑝 be arbitrary. By Proposition 12, there
exists a sequence (𝑋𝑛)𝑛 of bounded simple processes such
that ‖𝑋𝑛 − 𝑋‖𝑝 → 0. Since 𝛼 < 𝑝, it follows that
‖𝑋𝑛 − 𝑋‖𝛼 → 0. By the definition of 𝐼𝐾(𝑋)(𝑡, 𝐵) there exists
a subsequence {𝑛𝑘}𝑘 such that {𝐼𝐾(𝑋𝑛𝑘

)(𝑡, 𝐵)}𝑘 converges to
𝐼𝐾(𝑋)(𝑡, 𝐵) a.s. Using Fatou’s lemma and the result obtained
in Step 2 (for the simple processes𝑋𝑛𝑘

), we get

𝐸
󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡, 𝐵)

󵄨󵄨󵄨󵄨

𝑝

≤ lim inf
𝑘→∞

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐼𝐾 (𝑋𝑛𝑘

) (𝑡, 𝐵)
󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝛼,𝑝𝐾
𝑝−𝛼lim inf

𝑘→∞

𝐸∫

𝑡

0

∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑋𝑛𝑘

(𝑠, 𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥 𝑑𝑠

= 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐸∫

𝑡

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠.

(120)

Step 4. Suppose that 𝑋 ∈ L𝑝 satisfies (116). Let O𝑘 = O ∩ 𝐸𝑘

where (𝐸𝑘)𝑘 is an increasing sequence of sets inB𝑏(R
𝑑
) such

that ⋃
𝑘≥1

𝐸𝑘 = R𝑑. By the definition of 𝐼𝐾(𝑋)(𝑡,O), there
exists a subsequence (𝑘𝑖)𝑖 such that {𝐼𝐾(𝑋)(𝑡,O𝑘𝑖

)}𝑖 converges
to 𝐼𝐾(𝑋)(𝑡,O) a.s. Using Fatou’s lemma, the result obtained in
Step 3 (for 𝐵 = O𝑘𝑖

) and the monotone convergence theorem,
we get

𝐸
󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡,O)

󵄨󵄨󵄨󵄨

𝑝

≤ lim inf
𝑖→∞

𝐸
󵄨󵄨󵄨󵄨󵄨
𝐼𝐾 (𝑋) (𝑡,O𝑘𝑖

)
󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝛼,𝑝𝐾
𝑝−𝛼lim inf

𝑖→∞
𝐸∫

𝑡

0

∫
O𝑘𝑖

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠

= 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐸∫

𝑡

0

∫
O
|𝑋 (𝑠, 𝑥)|

𝑝
𝑑𝑥 𝑑𝑠.

(121)
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Remark 20. Finding a similar moment inequality for the
cases 𝛼 = 1 and 𝑝 ∈ (1, 2) remains an open problem.
The argument used in Step 2 above relies on the fact that
𝑝 < 1. Unfortunately, we could not find another argument
to cover the case 𝑝 > 1.

5.2. The Case 𝛼>1. In this case, the construction of the
integral with respect to 𝑍𝐾 relies on an integral with respect
to 𝑁̂ which exists in the literature. We recall briefly the
definition of this integral. For more details, see Section 1.2.2
of [6], Section 24.2 of [25], or Section 8.7 of [12].

Let E = R𝑑
× (R \ {0}) endowed with the measure

𝜇(𝑑𝑥, 𝑑𝑧) = 𝑑𝑥]𝛼(𝑑𝑧) and let B𝑏(E) be the class of bounded
Borel sets in E. For a simple process 𝑌 = {𝑌(𝑡, 𝑥, 𝑧); 𝑡 ≥ 0,

(𝑥, 𝑧) ∈ E}, the integral 𝐼𝑁̂(𝑌)(𝑡, 𝐵) is defined in the usual
way, for any 𝑡 > 0, 𝐵 ∈ B𝑏(E). The process 𝐼𝑁̂(𝑌)(⋅, 𝐵)
is a (càdlàg) zero-mean square-integrable martingale with
quadratic variation

[𝐼
𝑁̂
(𝑌) (⋅, 𝐵)]

𝑡
= ∫

𝑡

0

∫
𝐵

|𝑌 (𝑠, 𝑥, 𝑧)|
2
𝑁(𝑑𝑠, 𝑑𝑥, 𝑑𝑧) (122)

and predictable quadratic variation

⟨𝐼
𝑁̂
(𝑌) (⋅, 𝐵)⟩

𝑡
= ∫

𝑡

0

∫
𝐵

|𝑌 (𝑠, 𝑥, 𝑧)|
2]𝛼 (𝑑𝑧) 𝑑𝑥 𝑑𝑠. (123)

By approximation, this integral can be extended to the class
of all P ×B(R \ {0})-measurable processes 𝑌 such that for
any 𝑇 > 0 and 𝐵 ∈ B𝑏(E)

‖𝑌‖
2

2,𝑇,𝐵
:= 𝐸∫

𝑇

0

∫
𝐵

|𝑌 (𝑠, 𝑥, 𝑧)|
2]𝛼 (𝑑𝑧) 𝑑𝑥 𝑑𝑠 < ∞. (124)

The integral is a martingale with the same quadratic
variations as above and has the isometry property:
𝐸|𝐼

𝑁̂
(𝑌)(𝑡, 𝐵)|

2
= ‖𝑌‖

2

2,𝑇,𝐵
. If, in addition, ‖𝑌‖2,𝑇,E < ∞, then

the integral can be extended to E. By the Burkholder-Davis-
Gundy inequality for discontinuous martingales, for any
𝑝 ≥ 1,

𝐸 sup
𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝑁̂
(𝑌) (𝑡,E)

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝑝𝐸[𝐼
𝑁̂
(𝑌) (⋅,E)]

𝑝/2

𝑇
. (125)

The previous inequality is not suitable for our purposes.
A more convenient inequality can be obtained for another
stochastic integral, constructed for 𝑝 ∈ [1, 2] fixed, as
suggested on page 293 of [6]. More precisely, one can show
that, for any bounded simple process 𝑌,

𝐸 sup
𝑡≤𝑇

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼
𝑁̂
(𝑌) (𝑡,E)

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝑝𝐸∫

𝑇

0

∫
R𝑑
∫
R\{0}

|𝑌 (𝑡, 𝑥, 𝑧)|
𝑝]𝛼 (𝑑𝑧) 𝑑𝑥 𝑑𝑡

=: |𝑌|
𝑝

𝑝,𝑇,E
,

(126)

where 𝐶𝑝 is the constant appearing in (125) (see Lemma 8.22
of [12]).

By the usual procedure, the integral can be extended to
the class of allP ×B(R \ {0})-measurable processes 𝑌 such
that [𝑌]𝑝,𝑇,E < ∞.The integral is defined as an element in the
space 𝐿𝑝

(Ω;𝐷[0, 𝑇]) and will be denoted by

𝐼
𝑁̂,𝑝

(𝑌) (𝑡,E) = ∫
𝑡

0

∫
R𝑑
∫
R\{0}

𝑌 (𝑠, 𝑥, 𝑧) 𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) .

(127)

Its appealing feature is that it satisfies inequality (126).
From now on, we fix 𝑝 ∈ [1, 2]. Based on (88), for any

𝐵 ∈ B𝑏(R
𝑑
), we let

𝐼𝐾 (𝑋) (𝑡, 𝐵) = ∫

𝑡

0

∫
𝐵

𝑋 (𝑠, 𝑥) 𝑍𝐾 (𝑑𝑠, 𝑑𝑥)

= ∫

𝑡

0

∫
𝐵

∫
{|𝑧|≤𝐾}

𝑋 (𝑠, 𝑥) 𝑧𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) ,

(128)

for any predictable process 𝑋 = {𝑋(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ R𝑑
}

for which the rightmost integral is well defined. Letting
𝑌(𝑡, 𝑥, 𝑧) = 𝑋(𝑡, 𝑥)𝑧1{0<|𝑧|≤𝐾}, we see that this is equivalent
to saying that 𝑝 > 𝛼 and𝑋 ∈ L𝑝. By (126),

𝐸 sup
𝑡≤𝑇

󵄨󵄨󵄨󵄨𝐼𝐾 (𝑋) (𝑡, 𝐵)
󵄨󵄨󵄨󵄨

𝑝
≤ 𝐶𝛼,𝑝𝐾

𝑝−𝛼
𝐸∫

𝑇

0

∫
𝐵

|𝑋 (𝑠, 𝑥)|
𝑝
𝑑𝑥 𝑑𝑠,

(129)

where𝐶𝛼,𝑝 = 𝐶𝑝𝛼/(𝑝−𝛼). If, in addition, the process𝑋 ∈ L𝑝

satisfies (116) then (129) holds with 𝐵 replaced by O, for an
arbitrary Borel set O ⊂ R𝑑.

Note that (129) is the counterpart of (115) for the case 𝛼 >
1. Together, these two inequalities will play a crucial role in
Section 6.

Table 1 summarizes all the conditions.

6. The Main Result

In this section, we state and prove the main result regarding
the existence of a mild solution of (1). For this result, O is a
bounded domain in R𝑑. For any 𝑡 > 0, we denote

𝐽𝑝 (𝑡) = sup
𝑥∈O

∫
O

𝐺(𝑡, 𝑥, 𝑦)
𝑝
𝑑𝑦. (130)

Theorem 21. Let 𝛼 ∈ (0, 2), 𝛼 ̸= 1. Assume that for any 𝑇 > 0

lim
ℎ→0

∫

𝑇

0

∫
O

󵄨󵄨󵄨󵄨𝐺 (𝑡, 𝑥, 𝑦) − 𝐺 (𝑡 + ℎ, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦𝑑𝑡 = 0, ∀𝑥 ∈ O,

(131)

lim
|ℎ|→0

∫

𝑇

0

∫
O

󵄨󵄨󵄨󵄨𝐺(𝑡, 𝑥, 𝑦) − 𝐺(𝑡, 𝑥 + ℎ, 𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦𝑑𝑡 = 0, ∀𝑥 ∈ O,

(132)

∫

𝑇

0

𝐽𝑝 (𝑡) 𝑑𝑡 < ∞, (133)

for some 𝑝 ∈ (𝛼, 1) if 𝛼 < 1, or for some 𝑝 ∈ (𝛼, 2] if 𝛼 > 1.
Then (1) has a mild solution. Moreover, there exists a sequence
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Table 1: Conditions for 𝐼𝐾(𝑋)(𝑡, 𝐵) to be well defined.

𝛼 < 1 𝛼 > 1

𝐵 is bounded 𝑋 ∈ L𝛼

𝑋 ∈ L𝑝

for some 𝑝 ∈ (𝛼, 2]

𝐵 = O is
unbounded

𝑋 ∈ L𝛼 and𝑋
satisfies (83)

𝑋 ∈ L𝑝 and
𝑋 satisfies (116)

for some 𝑝 ∈ (𝛼, 2]

(𝜏𝐾)𝐾≥1 of stopping times with 𝜏𝐾 ↑ ∞ a.s. such that, for any
𝑇 > 0 and 𝐾 ≥ 1,

sup
(𝑡,𝑥)∈[0,𝑇]×O

𝐸 (|𝑢(𝑡, 𝑥)|
𝑝
1{𝑡≤𝜏𝐾}

) < ∞. (134)

Example 22 (heat equation). Let 𝐿 = 𝜕/𝜕𝑡 − (1/2)Δ. Then
𝐺(𝑡, 𝑥, 𝑦) ≤ 𝐺(𝑡, 𝑥 − 𝑦) where 𝐺(𝑡, 𝑥) is the fundamental
solution of 𝐿𝑢 = 0 on R𝑑. Condition (133) holds if 𝑝 <

1 + 2/𝑑. If 𝛼 < 1, this condition holds for any 𝑝 ∈ (𝛼, 1).
If 𝛼 > 1, this condition holds for any 𝑝 ∈ (𝛼, 1 + 2/𝑑],
as long as 𝛼 satisfies (6). Conditions (131) and (132) hold by
the continuity of the function 𝐺 in 𝑡 and 𝑥, by applying the
dominated convergence theorem. To justify the application
of this theorem, we use the trivial bound (2𝜋𝑡)−𝑑𝑝/2 for both
𝐺(𝑡 + ℎ, 𝑥, 𝑦)

𝑝 and 𝐺(𝑡, 𝑥 + ℎ, 𝑦)𝑝, which introduces the extra
condition 𝑑𝑝 < 2. Unfortunately, we could not find another
argument for proving these two conditions (In the case of the
heat equation onR𝑑, Lemmas A.2 and A.3 of [6] estimate the
integrals appearing in (132) and (131), with 𝑝 = 1 in (131).
These arguments rely on the structure of 𝐺 and cannot be
used when O is a bounded domain.).

Example 23 (parabolic equations). Let 𝐿 = 𝜕/𝜕𝑡−LwhereL
is given by (31). Assuming (32), we see that (133) holds if 𝑝 <
1 + 2/𝑑. The same comments as for the heat equation apply
here as well (Although in a different framework, a condition
similar to (131) was probably used in the proof of Theorem
12.11 of [12] (page 217) for the claim lim𝑠→ 𝑡𝐸|𝐽3(𝑋)(𝑠) −

𝐽3(𝑋)(𝑡)|
𝑝

𝐿𝑝(O)
= 0. We could not see how to justify this claim,

unless 𝑑𝑝 < 2.).

Example 24 (heat equation with fractional power of the
Laplacian). Let 𝐿 = 𝜕/𝜕𝑡 + (−Δ)𝛾 for some 𝛾 > 0. By Lemma
B.23 of [12], if 𝛼 > 1, then condition (133) holds for any
𝑝 ∈ (𝛼, 1+2𝛾/𝑑), provided that𝛼 satisfies (36) (This condition
is the same as in Theorem 12.19 of [12], which examines the
same equation using the approach based on Hilbert-space
valued solution.).

To verify conditions (131) and (132), we use the continuity
of 𝐺 in 𝑡 and 𝑥 and apply the dominated convergence
theorem. To justify the application of this theorem, we use
the trivial bound 𝐶𝑑,𝛾𝑡

−𝑑𝑝/(2𝛾) for both 𝐺(𝑡 + ℎ, 𝑥, 𝑦)
𝑝 and

𝐺(𝑡, 𝑥 + ℎ, 𝑦)
𝑝, which introduces the extra condition 𝑑𝑝 <

2𝛾. This bound can be seen from (33), using the fact that
G(𝑡, 𝑥, 𝑦) ≤ G(𝑡, 𝑥 − 𝑦) where G and G are the fundamental
solutions of 𝜕𝑢/𝜕𝑡−Δ𝑢 = 0 onO andR𝑑, respectively. (In the
case of the same equation onR𝑑, elementary estimates for the

time and space increments of𝐺 can be obtained directly from
(35), as on page 196 of [26]. These arguments cannot be used
when O is a bounded domain.)

The remaining part of this section is dedicated to the
proof of Theorem 21. The idea is to solve first the equation
with the truncated noise 𝑍𝐾 (yielding a mild solution 𝑢𝐾)
and then identify a sequence (𝜏𝐾)𝐾≥1 of stopping times with
𝜏𝐾 ↑ ∞ a.s. such that, for any 𝑡 > 0, 𝑥 ∈ O, and 𝐿 > 𝐾,
𝑢𝐾(𝑡, 𝑥) = 𝑢𝐿(𝑡, 𝑥) a.s. on the event {𝑡 ≤ 𝜏𝐾}. The final
step is to show that process 𝑢 defined by 𝑢(𝑡, 𝑥) = 𝑢𝐾(𝑡, 𝑥)

on {𝑡 ≤ 𝜏𝐾} is a mild solution of (1). A similar method
can be found in Section 9.7 of [12] using an approach based
on stochastic integration of operator-valued processes, with
respect to Hilbert-space-valued processes, which is different
from our approach.

Since 𝜎 is a Lipschitz function, there exists a constant
𝐶𝜎 > 0 such that

|𝜎 (𝑢) − 𝜎 (V)| ≤ 𝐶𝜎 |𝑢 − V| , ∀𝑢, V ∈ R. (135)

In particular, letting𝐷𝜎 = 𝐶𝜎 ∨ |𝜎(0)|, we have

|𝜎 (𝑢)| ≤ 𝐷𝜎 (1 + |𝑢|) , ∀𝑢 ∈ R. (136)

For the proof ofTheorem 21, we need a specific construc-
tion of the Poisson random measure𝑁, taken from [13]. We
review briefly this construction.

Let (O𝑘)𝑘≥1 be a partition of R𝑑 with sets inB𝑏(R
𝑑
) and

let (𝑈𝑗)𝑗≥1 be a partition of R \ {0} such that ]𝛼(𝑈𝑗) < ∞

for all 𝑗 ≥ 1. We may take 𝑈𝑗 = Γ𝑗−1 for all 𝑗 ≥ 1.
Let (𝐸𝑗,𝑘

𝑖
, 𝑋

𝑗,𝑘

𝑖
, 𝑍

𝑗,𝑘

𝑖
)𝑖,𝑗,𝑘≥1 be independent random variables

defined on a probability space (Ω,F, 𝑃), such that

𝑃 (𝐸
𝑗,𝑘

𝑖
> 𝑡) = 𝑒

−𝜆𝑗,𝑘𝑡, 𝑃 (𝑋
𝑗,𝑘

𝑖
∈ 𝐵) =

󵄨󵄨󵄨󵄨𝐵 ∩ O𝑘

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨O𝑘

󵄨󵄨󵄨󵄨

,

𝑃 (𝑍
𝑗,𝑘

𝑖
∈ Γ) =

󵄨󵄨󵄨󵄨󵄨
Γ ∩ 𝑈𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑈𝑗

󵄨󵄨󵄨󵄨󵄨

,

(137)

where 𝜆𝑗,𝑘 = |O𝑘|]𝛼(𝑈𝑗). Let 𝑇
𝑗,𝑘

𝑖
= ∑

𝑖

𝑙=1
𝐸

𝑗,𝑘

𝑙
for all 𝑖 ≥ 1.

Then

𝑁 = ∑

𝑖,𝑗,𝑘≥1

𝛿
(𝑇
𝑗,𝑘

𝑖
,𝑋
𝑗,𝑘

𝑖
,𝑍
𝑗,𝑘

𝑖
) (138)

is a Poisson random measure on R+ × R𝑑
× (R \ {0}) with

intensity 𝑑𝑡𝑑𝑥]𝛼(𝑑𝑧).
This section is organized as follows. In Section 6.1 we

prove the existence of the solution of the equation with
truncated noise 𝑍𝐾. Sections 6.2 and 6.3 contain the proof
of Theorem 21 when 𝛼 < 1 and 𝛼 > 1, respectively.

6.1.The Equation with Truncated Noise. In this section, we fix
𝐾 > 0 and we consider the equation:

𝐿𝑢 (𝑡, 𝑥) = 𝜎 (𝑢 (𝑡, 𝑥)) 𝑍̇𝐾 (𝑡, 𝑥) , 𝑡 > 0, 𝑥 ∈ O (139)

with zero initial conditions and Dirichlet boundary condi-
tions. Amild solution of (139) is a predictable process𝑢which



International Journal of Stochastic Analysis 15

satisfies (2) with 𝑍 replaced by 𝑍𝐾. For the next result, O can
be a bounded domain in R𝑑 or O = R𝑑 (with no boundary
conditions).

Theorem 25. Under the assumptions of Theorem 21, (139) has
a unique mild solution 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O}. For any
𝑇 > 0,

sup
(𝑡,𝑥)∈[0,𝑇]×O

𝐸|𝑢(𝑡, 𝑥)|
𝑝
< ∞, (140)

and the map (𝑡, 𝑥) 󳨃→ 𝑢(𝑡, 𝑥) is continuous from [0, 𝑇]×O into
𝐿

𝑝
(Ω).

Proof. We use the same argument as in the proof ofTheorem
13 of [27], based on a Picard iteration scheme. We define
𝑢0(𝑡, 𝑥) = 0 and

𝑢𝑛+1 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢𝑛 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

(141)

for any 𝑛 ≥ 0. We prove by induction on 𝑛 ≥ 0 that (i) 𝑢𝑛(𝑡, 𝑥)

is well defined; (ii) 𝐾𝑛(𝑡) := sup
(𝑡,𝑥)∈[0,𝑇]×O𝐸|𝑢𝑛(𝑡, 𝑥)|

𝑝
< ∞

for any 𝑇 > 0; (iii) 𝑢𝑛(𝑡, 𝑥) is F𝑡-measurable for any 𝑡 > 0

and 𝑥 ∈ O; (iv) the map (𝑡, 𝑥) 󳨃→ 𝑢𝑛(𝑡, 𝑥) is continuous from
[0, 𝑇] × O into 𝐿𝑝

(Ω) for any 𝑇 > 0.
The statement is trivial for 𝑛 = 0. For the induction

step, assume that the statement is true for 𝑛. By an extension
to random fields of Theorem 30, Chapter IV of [28], 𝑢𝑛 has
a jointly measurable modification. Since this modification
is (F𝑡)𝑡-adapted (in the sense of (iii)), it has a predictable
modification (using an extension of Proposition 3.21 of [12]
to random fields). We work with this modification, that we
call also 𝑢𝑛.

We prove that (i)–(iv) hold for 𝑢𝑛+1. To show (i), it suffices
to prove that 𝑋𝑛 ∈ L𝑝, where 𝑋𝑛(𝑠, 𝑦) = 1[0,𝑡](𝑠)𝐺(𝑡 −

𝑠, 𝑥, 𝑦)𝜎(𝑢𝑛(𝑠, 𝑦)). By (136) and (133),

𝐸∫

𝑡

0

∫
O

󵄨󵄨󵄨󵄨𝑋𝑛 (𝑠, 𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦𝑑𝑠

≤ 𝐷
𝑝

𝜎
2
𝑝−1

(1 + 𝐾𝑛 (𝑡)) ∫

𝑡

0

𝐽𝑝 (𝑡 − 𝑠) 𝑑𝑠 < ∞.

(142)

In addition, if O = R𝑑, we have to prove that𝑋𝑛 satisfies (83)
if 𝛼 < 1, or (116) if 𝛼 > 1 (see Table 1). If 𝛼 < 1, this follows as
above, since 𝛼 < 𝑝 and hence sup

(𝑡,𝑥)∈[0,𝑇]×O𝐸|𝑢(𝑡, 𝑥)|
𝛼
< ∞;

the argument for 𝛼 > 1 is similar.
Combined with the moment inequality (115) (or (129)),

this proves (ii), since

𝐸
󵄨󵄨󵄨󵄨𝑢𝑛+1(𝑡, 𝑥)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐷
𝑝

𝜎
2
𝑝−1

(1 + 𝐾𝑛 (𝑡)) ∫

𝑡

0

𝐽𝑝 (𝑡 − 𝑠) 𝑑𝑠,

(143)

for any 𝑥 ∈ O. Property (iii) follows by the construction of
the integral 𝐼𝐾.

To prove (iv), we first show the right continuity in 𝑡. Let
ℎ > 0. Writing the interval [0, 𝑡 + ℎ] as the union of [0, 𝑡]

and (𝑡, 𝑡 + ℎ], we obtain that 𝐸|𝑢𝑛+1(𝑡 + ℎ, 𝑥) − 𝑢𝑛+1(𝑡, 𝑥)|
𝑝
≤

2
𝑝−1

(𝐼1(ℎ) + 𝐼2(ℎ)), where

𝐼1 (ℎ) = 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

∫
O

(𝐺 (𝑡 + ℎ − 𝑠, 𝑥, 𝑦) − 𝐺 (𝑡 − 𝑠, 𝑥, 𝑦))

× 𝜎 (𝑢𝑛 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

,

𝐼2 (ℎ) = 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+ℎ

𝑡

∫
O

𝐺 (𝑡 + ℎ − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢𝑛 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

.

(144)

Using again (136) and the moment inequality (115) (or (129)),
we obtain

𝐼1 (ℎ) ≤ 𝐷
𝑝

𝜎
2
𝑝−1

(1 + 𝐾𝑛 (𝑡))

× ∫

𝑡

0

∫
O

󵄨󵄨󵄨󵄨𝐺 (𝑠 + ℎ, 𝑥, 𝑦) − 𝐺 (𝑠, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦𝑑𝑠,

𝐼2 (ℎ) ≤ 𝐷
𝑝

𝜎
2
𝑝−1

(1 + 𝐾𝑛 (𝑡))

× ∫

ℎ

0

∫
O

𝐺(𝑠, 𝑥, 𝑦)
𝑝
𝑑𝑦𝑑𝑠.

(145)

It follows that both 𝐼1(ℎ) and 𝐼2(ℎ) converge to 0 as ℎ →

0, using (131) for 𝐼1(ℎ) and the Dominated Convergence
Theorem and (133) for 𝐼2(ℎ), respectively. The left continuity
in 𝑡 is similar, by writing the interval [0, 𝑡−ℎ] as the difference
between [0, 𝑡] and (𝑡 − ℎ, 𝑡] for ℎ > 0. For the continuity in 𝑥,
similarly as above, we see that 𝐸|𝑢𝑛+1(𝑡, 𝑥 + ℎ) −𝑢𝑛+1(𝑡, 𝑥)|

𝑝 is
bounded by

𝐷
𝑝

𝜎
2
𝑝−1

(1 + 𝐾𝑛 (𝑡))

× ∫

𝑡

0

∫
O

󵄨󵄨󵄨󵄨𝐺 (𝑠, 𝑥 + ℎ, 𝑦) − 𝐺 (𝑠, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑦𝑑𝑠,

(146)

which converges to 0 as |ℎ| → 0 due to (132). This finishes
the proof of (iv).

We denote𝑀𝑛(𝑡) = sup
𝑥∈O𝐸|𝑢𝑛(𝑡, 𝑥)|

𝑝. Similarly to (143),
we have

𝑀𝑛 (𝑡) ≤ 𝐶1 ∫

𝑡

0

(1 +𝑀𝑛−1 (𝑠)) 𝐽𝑝 (𝑡 − 𝑠) 𝑑𝑠, ∀𝑛 ≥ 1, (147)

where 𝐶1 = 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐷
𝑝

𝜎
2
𝑝−1. By applying Lemma 15 of

Erratum to [27] with 𝑓𝑛 = 𝑀𝑛, 𝑘1 = 0, 𝑘2 = 1, and 𝑔(𝑠) =
𝐶𝐽𝑝(𝑠), we obtain that

sup
𝑛≥0

sup
𝑡∈[0,𝑇]

𝑀𝑛 (𝑡) < ∞, ∀𝑇 > 0. (148)

We now prove that {𝑢𝑛(𝑡, 𝑥)}𝑛 converges in 𝐿𝑝
(Ω), uni-

formly in (𝑡, 𝑥) ∈ [0, 𝑇] × O. To see this, let 𝑈𝑛(𝑡) =

sup
𝑥∈O𝐸|𝑢𝑛+1(𝑡, 𝑥) − 𝑢𝑛(𝑡, 𝑥)|

𝑝 for 𝑛 ≥ 0. Using the moment
inequality (115) (or (129)) and (135), we have

𝑈𝑛 (𝑡) ≤ 𝐶2 ∫

𝑡

0

𝑈𝑛−1 (𝑠) 𝐽𝑝 (𝑡 − 𝑠) 𝑑𝑠, (149)
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where 𝐶2 = 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐶
𝑝

𝜎
. By Lemma 15 of Erratum to [27],

∑
𝑛≥0

𝑈𝑛(𝑡)
1/𝑝 converges uniformly on [0, 𝑇] (Note that this

lemma is valid for all 𝑝 > 0.).
We denote by 𝑢(𝑡, 𝑥) the limit of 𝑢𝑛(𝑡, 𝑥) in 𝐿

𝑝
(Ω). One

can show that 𝑢 satisfies properties (ii)–(iv) listed above. So 𝑢
has a predictablemodification.Thismodification is a solution
of (139). To prove uniqueness, let V be another solution and
denote𝐻(𝑡) = sup

𝑥∈O𝐸|𝑢(𝑡, 𝑥) − V(𝑡, 𝑥)|𝑝. Then

𝐻(𝑡) ≤ 𝐶2 ∫

𝑡

0

𝐻(𝑠) 𝐽𝑝 (𝑡 − 𝑠) 𝑑𝑠. (150)

Using (133), it follows that𝐻(𝑡) = 0 for all 𝑡 > 0.

6.2. Proof of Theorem 21: Case 𝛼<1. In this case, for any 𝑡 > 0
and 𝐵 ∈ B𝑏(R

𝑑
), we have (see (21))

𝑍 (𝑡, 𝐵) = ∫
[0,𝑡]×𝐵×(R\{0})

𝑧𝑁 (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) . (151)

The characteristic function of 𝑍(𝑡, 𝐵) is given by

𝐸 (𝑒
𝑖𝑢𝑍(𝑡,𝐵)

) = exp{𝑡 |𝐵| ∫
R\{0}

(𝑒
𝑖𝑢𝑧

− 1) ]𝛼 (𝑑𝑧)} ,

∀𝑢 ∈ R.

(152)

Note that {𝑍(𝑡, 𝐵)}𝑡≥0 is not a compound Poisson process
since ]𝛼 is infinite.

We introduce the stopping times (𝜏𝐾)𝐾≥1, as on page 239
of [13]:

𝜏𝐾 (𝐵) = inf {𝑡 > 0; |𝑍 (𝑡, 𝐵) − 𝑍 (𝑡−, 𝐵)| > 𝐾} , (153)

where 𝑍(𝑡−, 𝐵) = lim𝑠↑𝑡𝑍(𝑠, 𝐵). Clearly, 𝜏𝐿(𝐵) ≥ 𝜏𝐾(𝐵) for all
𝐿 > 𝐾.

We first investigate the relationship between 𝑍 and 𝑍𝐾

and the properties of 𝜏𝐾(𝐵). Using construction (138) of 𝑁
and definition (87) of 𝑍𝐾, we have

𝑍 (𝑡, 𝐵) = ∑

𝑖,𝑗,𝑘≥1

𝑍
𝑗,𝑘

𝑖
1
{𝑇
𝑗,𝑘

𝑖
≤𝑡}
1
{𝑋
𝑗,𝑘

𝑖
∈𝐵}

=: ∑

𝑗,𝑘≥1

𝑍
𝑗,𝑘
(𝑡, 𝐵) ,

𝑍𝐾 (𝑡, 𝐵) = ∑

𝑖,𝑗,𝑘≥1

𝑍
𝑗,𝑘

𝑖
1
{|𝑍
𝑗,𝑘

𝑖
|≤𝐾}

1
{𝑇
𝑗,𝑘

𝑖
≤𝑡}
1
{𝑋
𝑗,𝑘

𝑖
∈𝐵}
.

(154)

We observe that {𝑍𝑗,𝑘
(𝑡, 𝐵)}𝑡≥0 is a compound Poisson

process with

𝐸(𝑒
𝑖𝑢𝑍
𝑗,𝑘

(𝑡,𝐵)
)

= exp{𝑡 󵄨󵄨󵄨󵄨O𝑘 ∩ 𝐵
󵄨󵄨󵄨󵄨 ∫

𝑈𝑗

(𝑒
𝑖𝑢𝑧

− 1) ]𝛼 (𝑑𝑧)} , ∀𝑢 ∈ R.

(155)

Note that 𝜏𝐾(𝐵) > 𝑇 means that all the jumps of
{𝑍(𝑡, 𝐵)}𝑡≥0 in [0, 𝑇] are smaller than 𝐾 in modulus; that is,
{𝜏𝐾(𝐵) > 𝑇} = {𝜔; |𝑍

𝑗,𝑘

𝑖
(𝜔)| ≤ 𝐾 for all 𝑖, 𝑗, 𝑘 ≥ 1 for which

𝑇
𝑗,𝑘

𝑖
(𝜔) ≤ 𝑇 and𝑋𝑗,𝑘

𝑖
(𝜔) ∈ 𝐵}. Hence, on {𝜏𝐾(𝐵) > 𝑇},

𝑍 ([0, 𝑡] × 𝐴) = 𝑍𝐾 ([0, 𝑡] × 𝐴) = 𝑍𝐿 ([0, 𝑡] × 𝐴) , (156)

for any 𝐿 > 𝐾, 𝑡 ∈ [0, 𝑇], and 𝐴 ∈ B𝑏(R
𝑑
) with 𝐴 ⊂ 𝐵.

Using an approximation argument and the construction of
the integrals 𝐼(𝑋) and 𝐼𝐾(𝑋), it follows that, for any 𝑋 ∈ L𝛼

and for any 𝐿 > 𝐾, a.s. on {𝜏𝐾(𝐵) > 𝑇}, we have

𝐼 (𝑋) (𝑇, 𝐵) = 𝐼𝐾 (𝑋) (𝑇, 𝐵) = 𝐼𝐿 (𝑋) (𝑇, 𝐵) . (157)

The next result gives the probability of the event {𝜏𝐾(𝐵) >
𝑇}.

Lemma 26. For any 𝑇 > 0 and 𝐵 ∈ B𝑏(R
𝑑
),

𝑃 (𝜏𝐾 (𝐵) > 𝑇) = exp (−𝑇 |𝐵|𝐾−𝛼
) . (158)

Consequently, lim𝐾→∞𝑃(𝜏𝐾(𝐵) > 𝑇) = 1 and
lim𝐾→∞𝜏𝐾(𝐵) = ∞ a.s.

Proof. Note that {𝜏𝐾(𝐵) > 𝑇} = ⋂𝑗,𝑘≥1
{𝜏

𝑗,𝑘

𝐾
(𝐵) > 𝑇}, where

𝜏
𝑗,𝑘

𝐾
(𝐵) = inf {𝑡 > 0; 󵄨󵄨󵄨󵄨󵄨𝑍

𝑗,𝑘
(𝑡, 𝐵) − 𝑍

𝑗,𝑘
(𝑡−, 𝐵)

󵄨󵄨󵄨󵄨󵄨
> 𝐾} . (159)

Since ]𝛼({𝑧; |𝑧| > 𝐾}) = 𝐾
−𝛼 and (𝜏

𝑗,𝑘

𝐾
(𝐵))𝑗,𝑘≥1 are

independent, it is enough to prove that, for any 𝑗, 𝑘 ≥ 1,

𝑃 (𝜏
𝑗,𝑘

𝐾
(𝐵) > 𝑇) = exp {−𝑇 󵄨󵄨󵄨󵄨𝐵 ∩ O𝑘

󵄨󵄨󵄨󵄨 ]𝛼 ({𝑧; |𝑧| > 𝐾} ∩ 𝑈𝑗)} .

(160)

Note that {𝜏𝑗,𝑘
𝐾
(𝐵) > 𝑇} = {𝜔; |𝑍

𝑗,𝑘

𝑖
(𝜔)| ≤ 𝐾 for all 𝑖

for which 𝑇𝑗,𝑘

𝑖
≤ 𝑇 and 𝑋𝑗,𝑘

𝑖
∈ 𝐵} and (𝑇𝑗,𝑘

𝑛
)𝑛≥1 are the jump

times of a Poisson process with intensity 𝜆𝑗,𝑘. Hence,

𝑃 (𝜏
𝑗,𝑘

𝐾
(𝐵) > 𝑇)

= ∑

𝑛≥0

𝑛

∑

𝑚=0

∑

𝐼⊂{1,...,𝑛},card(𝐼)=𝑚

𝑃 (𝑇
𝑗,𝑘

𝑛
≤ 𝑇 < 𝑇

𝑗,𝑘

𝑛+1
)

× 𝑃(⋂

𝑖∈𝐼

{𝑋
𝑗,𝑘

𝑖
∈ 𝐵})

× 𝑃(⋂

𝑖∈𝐼

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝑍

𝑗,𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐾})

× 𝑃(⋂

𝑖∈𝐼𝑐

{𝑋
𝑗,𝑘

𝑖
∉ 𝐵})

= ∑

𝑛≥0

𝑒
−𝜆𝑗,𝑘𝑇

(𝜆𝑗,𝑘𝑇)
𝑛

𝑛!

× [1 − 𝑃 (𝑋
𝑗,𝑘

1
∈ 𝐵)𝑃 (

󵄨󵄨󵄨󵄨󵄨󵄨
𝑍

𝑗,𝑘

1

󵄨󵄨󵄨󵄨󵄨󵄨
> 𝐾)]

𝑛

= exp {−𝜆𝑗,𝑘𝑇𝑃 (𝑋
𝑗,𝑘

1
∈ 𝐵)𝑃 (

󵄨󵄨󵄨󵄨󵄨󵄨
𝑍

𝑗,𝑘

1

󵄨󵄨󵄨󵄨󵄨󵄨
> 𝐾)} ,

(161)

which yields (160).
To prove the last statement, let 𝐴(𝑛)

𝑘
= {𝜏𝐾(𝐵) > 𝑛}. Then

𝑃(lim𝐾𝐴
(𝑛)

𝐾
) ≥ lim𝐾𝑃(𝐴

(𝑛)

𝐾
) = 1 for any 𝑛 ≥ 1, and hence

𝑃(⋂
𝑛≥1

lim𝐾𝐴
(𝑛)

𝐾
) = 1. Hence, with probability 1, for any
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𝑛, there exists some 𝐾𝑛 such that 𝜏𝐾𝑛 > 𝑛. Since (𝜏𝐾)𝐾 is
nondecreasing, this proves that 𝜏𝐾 → ∞ with probability
1.

Remark 27. The construction of 𝜏𝐾(𝐵) given above is due
to [13] (in the case of a symmetric measure ]𝛼). This
construction relies on the fact that 𝐵 is a bounded set. Since
𝑍(𝑡,R𝑑

) (and consequently 𝜏𝐾(R
𝑑
)) is not well defined, we

could not see why this construction can also be used when
𝐵 = R𝑑, as it is claimed in [13]. To avoid this difficulty,
one could try to use an increasing sequence (𝐸𝑛)𝑛 of sets in
B𝑏(R

𝑑
) with ⋃

𝑛
𝐸𝑛 = R𝑑. Using (157) with 𝐵 = 𝐸𝑛 and

letting 𝑛 → ∞, we obtain that 𝐼(𝑋)(𝑡,R𝑑
) = 𝐼𝐾(𝑡,R

𝑑
)

a.s. on {𝑡 ≤ 𝜏𝐾}, where 𝜏𝐾 = inf𝑛≥1𝜏𝐾(𝐸𝑛). But 𝑃(𝜏𝐾 >

𝑡) ≤ 𝑃(lim
𝑛
{𝜏𝐾(𝐸𝑛) > 𝑡}) ≤ lim

𝑛
𝑃(𝜏𝐾(𝐸𝑛) > 𝑡) =

lim𝑛 exp(−𝑡|𝐸𝑛|𝐾
−𝛼
) = 0 for any 𝑡 > 0, which means that

𝜏𝐾 = 0 a.s. Finding a suitable sequence (𝜏𝐾)𝐾 of stopping
times which could be used in the case O = R𝑑 remains an
open problem.

In what follows, we denote 𝜏𝐾 = 𝜏𝐾(O). Let 𝑢𝐾 be
the solution of (139), whose existence is guaranteed by
Theorem 25.

Lemma 28. Under the assumptions ofTheorem 21, for any 𝑡 >
0, 𝑥 ∈ O, and 𝐿 > 𝐾,

𝑢𝐾 (𝑡, 𝑥) = 𝑢𝐿 (𝑡, 𝑥) 𝑎.𝑠. 𝑜𝑛 {𝑡 ≤ 𝜏𝐾} . (162)

Proof. By the definition of 𝑢𝐿 and (157),

𝑢𝐿 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢𝐿 (𝑠, 𝑦)) 𝑍𝐿 (𝑑𝑠, 𝑑𝑦)

= ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢𝐿 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

(163)

a.s. on the event {𝑡 ≤ 𝜏𝐾}. Using the definition of 𝑢𝐾 and
Proposition C.1 (Appendix C), we obtain that, with probabil-
ity 1,

(𝑢𝐾 (𝑡, 𝑥) − 𝑢𝐿 (𝑡, 𝑥)) 1{𝑡≤𝜏𝐾}

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)

× (𝜎 (𝑢𝐾 (𝑠, 𝑦)) − 𝜎 (𝑢𝐿 (𝑠, 𝑦)))

× 1{𝑠≤𝜏𝐾}
𝑍𝐾 (𝑑𝑠, 𝑑𝑦) .

(164)

Let 𝑀(𝑡) = sup
𝑥∈O𝐸(|𝑢𝐾(𝑡, 𝑥) − 𝑢𝐿(𝑡, 𝑥)|

𝑝
1{𝑡≤𝜏𝐾}

). Using
the moment inequality (115) and the Lipschitz condition
(135), we get

𝑀(𝑡) ≤ 𝐶∫

𝑡

0

𝐽𝑝 (𝑡 − 𝑠)𝑀 (𝑠) 𝑑𝑠, (165)

where 𝐶 = 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐶
𝑝

𝜎
. Using (133), it follows that𝑀(𝑡) = 0

for all 𝑡 > 0.

For any 𝑡 > 0 and 𝑥 ∈ O, let Ω𝑡,𝑥 = ⋂
𝐿>𝐾

{𝑡 ≤

𝜏𝐾(𝑡), 𝑢𝐾(𝑡, 𝑥) ̸= 𝑢𝐿(𝑡, 𝑥)}, where 𝐿 and𝐾 are positive integers.
LetΩ∗

𝑡,𝑥
= Ω𝑡,𝑥 ∩ {lim𝐾→∞𝜏𝐾 = ∞}.

By Lemmas 26 and 28, 𝑃(Ω∗

𝑡,𝑥
) = 1.

The next result concludes the proof of Theorem 21.

Proposition 29. Under the assumptions of Theorem 21, the
process 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O} defined by

𝑢 (𝜔, 𝑡, 𝑥) = 𝑢𝐾 (𝜔, 𝑡, 𝑥) , 𝑖𝑓 𝜔 ∈ Ω
∗

𝑡,𝑥
, 𝑡 ≤ 𝜏𝐾 (𝜔)

𝑢 (𝜔, 𝑡, 𝑥) = 0, 𝑖𝑓 𝜔 ∉ Ω
∗

𝑡,𝑥

(166)

is a mild solution of (1).

Proof. We first prove that 𝑢 is predictable. Note that

𝑢 (𝑡, 𝑥) = lim
𝐾→∞

(𝑢𝐾 (𝑡, 𝑥) 1{𝑡≤𝜏𝐾}
) 1Ω∗

𝑡,𝑥
. (167)

The process 𝑋(𝜔, 𝑡, 𝑥) = 1{𝑡≤𝜏𝐾}
(𝜔) is clearly predictable,

being in the class C defined in Remark 11. By the definition
ofΩ𝑡,𝑥, since 𝑢𝐾, 𝑢𝐿 are predictable, it follows that (𝜔, 𝑡, 𝑥) 󳨃→
1Ω∗
𝑡,𝑥
(𝜔) isP-measurable. Hence, 𝑢 is predictable.
We now prove that 𝑢 satisfies (2). Let 𝑡 > 0 and 𝑥 ∈ O

be arbitrary. Using (157) and Proposition C.1 (Appendix C),
with probability 1, we have

1{𝑡≤𝜏𝐾}
𝑢 (𝑡, 𝑥)

= 1{𝑡≤𝜏𝐾}
𝑢𝐾 (𝑡, 𝑥)

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢𝐾 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢𝐾 (𝑠, 𝑦)) 𝑍 (𝑑𝑠, 𝑑𝑦)

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢𝐾 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑍 (𝑑𝑠, 𝑑𝑦)

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑍 (𝑑𝑠, 𝑑𝑦)

= 1{𝑡≤𝜏𝐾}
∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎

× (𝑢 (𝑠, 𝑦)) 𝑍 (𝑑𝑠, 𝑑𝑦) .

(168)

For the second last equality, we used the fact that processes
𝑋(𝑠, 𝑦) = 1[0,𝑡](𝑠)𝐺(𝑡 − 𝑠, 𝑥, 𝑦)𝜎(𝑢𝐾(𝑠, 𝑦))1{𝑠≤𝜏𝐾}

and 𝑌(𝑠, 𝑦) =
1[0,𝑡](𝑠)𝐺(𝑡−𝑠, 𝑥, 𝑦)𝜎(𝑢(𝑠, 𝑦))1{𝑠≤𝜏𝐾}

are modifications of each
other (i.e., 𝑋(𝑠, 𝑦) = 𝑌(𝑠, 𝑦) a.s. for all 𝑠 > 0, 𝑦 ∈ O), and,
hence, [𝑋 − 𝑌]𝛼,𝑡,O = 0 and 𝐼(𝑋)(𝑡,O) = 𝐼(𝑌)(𝑡,O) a.s. The
conclusion follows letting𝐾 → ∞, since 𝜏𝐾 → ∞ a.s.
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6.3. Proof ofTheorem 21: Case 𝛼>1. In this case, for any 𝑡 > 0
and 𝐵 ∈ B𝑏(R

𝑑
), we have (see (22))

𝑍 (𝑡, 𝐵) = ∫
[0,𝑡]×𝐵×(R\{0})

𝑧𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) . (169)

To introduce the stopping times (𝜏𝐾)𝐾≥1 we use the same
idea as in Section 9.7 of [12].

Let 𝑀(𝑡, 𝐵) = ∑
𝑗≥1
(𝐿𝑗(𝑡, 𝐵) − 𝐸𝐿𝑗(𝑡, 𝐵)) and 𝑃(𝑡, 𝐵) =

𝐿0(𝑡, 𝐵), where 𝐿𝑗(𝑡, 𝐵) = 𝐿𝑗([0, 𝑡] × 𝐵) was defined in
Section 2. Note that {𝑀(𝑡, 𝐵)}𝑡≥0 is a zero-mean square-
integrable martingale and {𝑃(𝑡, 𝐵)}𝑡≥0 is a compound Poisson
process with 𝐸[𝑃(𝑡, 𝐵)] = 𝑡|𝐵|𝜇 where 𝜇 = ∫

|𝑧|>1
𝑧]𝛼(𝑑𝑧) =

𝛽(𝛼/(𝛼 − 1)). With this notation,

𝑍 (𝑡, 𝐵) = 𝑀 (𝑡, 𝐵) + 𝑃 (𝑡, 𝐵) − 𝑡 |𝐵| 𝜇. (170)

We let 𝑀𝐾(𝑡, 𝐵) = 𝑃𝐾(𝑡, 𝐵) − 𝐸[𝑃𝐾(𝑡, 𝐵)] = 𝑃𝐾(𝑡, 𝐵) −

𝑡|𝐵|𝜇𝐾, where

𝑃𝐾 (𝑡, 𝐵) = ∫
[0,𝑡]×𝐵×(R\{0})

𝑧1{1<|𝑧|≤𝐾}𝑁(𝑑𝑠, 𝑑𝑥, 𝑑𝑧) (171)

and 𝜇𝐾 = ∫
1<|𝑧|≤𝐾

𝑧]𝛼(𝑑𝑧). Recalling definition (88) of 𝑍𝐾, it
follows that

𝑍𝐾 (𝑡, 𝐵) = 𝑀 (𝑡, 𝐵) + 𝑃𝐾 (𝑡, 𝐵) − 𝑡 |𝐵| 𝜇𝐾. (172)

For any 𝐾 > 0, we let

𝜏𝐾 (𝐵) = inf {𝑡 > 0; |𝑃 (𝑡, 𝐵) − 𝑃 (𝑡−, 𝐵)| > 𝐾} , (173)

where 𝑃(𝑡−, 𝐵) = lim𝑠↑𝑡𝑃(𝑠, 𝐵).
Lemma 26 holds again, but its proof is simpler than in the

case 𝛼 < 1, since {𝑃(𝑡, 𝐵)}𝑡≥0 is a compound Poisson process.
By (138),

𝑃 (𝑡, 𝐵) = ∑

𝑖,𝑗,𝑘≥1

𝑍
𝑗,𝑘

𝑖
1
{|𝑍
𝑗,𝑘

𝑖
|>1}

1
{𝑇
𝑗,𝑘

𝑖
≤𝑡}
1
{𝑋
𝑗,𝑘

𝑖
∈𝐵}
,

𝑃𝐾 (𝑡, 𝐵) = ∑

𝑖,𝑗,𝑘≥1

𝑍
𝑗,𝑘

𝑖
1
{1<|𝑍

𝑗,𝑘

𝑖
|≤𝐾}

1
{𝑇
𝑗,𝑘

𝑖
≤𝑡}
1
{𝑋
𝑗,𝑘

𝑖
∈𝐵}
.

(174)

Hence, on {𝜏𝐾(𝐵) > 𝑇}, for any 𝐿 > 𝐾, 𝑡 ∈ [0, 𝑇], and 𝐴 ∈

B𝑏(R
𝑑
) with 𝐴 ⊂ 𝐵,

𝑃 ([0, 𝑡] × 𝐴) = 𝑃𝐾 ([0, 𝑡] × 𝐴) = 𝑃𝐿 ([0, 𝑡] × 𝐴) . (175)

Let 𝑏𝐾 = 𝜇−𝜇𝐾 = ∫
|𝑧|>𝐾

𝑧]𝛼(𝑑𝑧). Using (170) and (172), it
follows that

𝑍 ([0, 𝑡] × 𝐴) = 𝑍𝐾 ([0, 𝑡] × 𝐴) − 𝑡 |𝐴| 𝑏𝐾

= 𝑍𝐿 ([0, 𝑡] × 𝐴) − 𝑡 |𝐴| 𝑏𝐿

(176)

for any 𝐿 > 𝐾, 𝑡 ∈ [0, 𝑇], and 𝐴 ∈ B𝑏(R
𝑑
) with 𝐴 ⊂ 𝐵. Let

𝑝 ∈ (𝛼, 2] be fixed. Using an approximation argument and the
construction of the integrals 𝐼(𝑋) and 𝐼𝐾(𝑋), it follows that,

for any 𝑋 ∈ L𝛼 and for any 𝐿 > 𝐾, a.s. on {𝜏𝐾(𝐵) > 𝑇}, we
have

𝐼 (𝑋) (𝑇, 𝐵) = 𝐼𝐾 (𝑋) (𝑇, 𝐵) − 𝑏𝐾 ∫

𝑇

0

∫
O

𝑋(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

= 𝐼𝐿 (𝑋) (𝑇, 𝐵) − 𝑏𝐿 ∫

𝑇

0

∫
O

𝑋(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠.

(177)

We denote 𝜏𝐾 = 𝜏𝐾(O). We consider the following
equation:

𝐿𝑢 (𝑡, 𝑥) = 𝜎 (𝑢 (𝑡, 𝑥)) 𝑍̇𝐾 (𝑡, 𝑥) − 𝑏𝐾𝜎 (𝑢 (𝑡, 𝑥)) ,

𝑡 > 0, 𝑥 ∈ O
(178)

with zero initial conditions and Dirichlet boundary condi-
tions. Amild solution of (178) is a predictable process𝑢which
satisfies

𝑢 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

− 𝑏𝐾 ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠 a.s.

(179)

for any 𝑡 > 0, 𝑥 ∈ O. The existence and uniqueness of a mild
solution of (178) can be proved similarly to Theorem 25. We
omit these details. We denote this solution by V𝐾.

Lemma 30. Under the assumptions ofTheorem 21, for any 𝑡 >
0, 𝑥 ∈ O, and 𝐿 > 𝐾,

V𝐾 (𝑡, 𝑥) = V𝐿 (𝑡, 𝑥) 𝑎.𝑠. 𝑜𝑛 {𝑡 ≤ 𝜏𝐾} . (180)
Proof. By the definition of V𝐿 and (177), a.s. on the event {𝑡 ≤
𝜏𝐾}, V𝐿(𝑡, 𝑥) is equal to

∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (V𝐿 (𝑠, 𝑦)) 𝑍𝐿 (𝑑𝑠, 𝑑𝑦)

− 𝑏𝐿 ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (V𝐿 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

= ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (V𝐿 (𝑠, 𝑦)) 𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

− 𝑏𝐾 ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (V𝐿 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠.

(181)

Using the definition of V𝐾 and Proposition C.1
(Appendix C), we obtain that, with probability 1,

(V𝐾 (𝑡, 𝑥) − V𝐿 (𝑡, 𝑥)) 1{𝑡≤𝜏𝐾}

= 1{𝑡≤𝜏𝐾}
(∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) (𝜎 (V𝐾 (𝑠, 𝑦)))

− 𝜎 (V𝐿 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑍𝐾 (𝑑𝑠, 𝑑𝑦)

− ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) (𝜎 (V𝐾 (𝑠, 𝑦)))

−𝜎 (V𝐿 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑑𝑦𝑑𝑠) .

(182)
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Letting𝑀(𝑡) = sup
𝑥∈O𝐸(|V𝐾(𝑡, 𝑥) − V𝐿(𝑡, 𝑥)|

𝑝
1{𝑡≤𝜏𝐾}

), we
see that𝑀(𝑡) ≤ 2

𝑝−1
(𝐸|𝐴(𝑡, 𝑥)|

𝑝
+ 𝐸|𝐵(𝑡, 𝑥)|

𝑝
) where

𝐴 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) (𝜎 (V𝐾 (𝑠, 𝑦)))

− 𝜎 (V𝐿 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑍𝐾 (𝑑𝑠, 𝑑𝑦) ,

𝐵 (𝑡, 𝑥) = ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) (𝜎 (V𝐾 (𝑠, 𝑦)))

− 𝜎 (V𝐿 (𝑠, 𝑦)) 1{𝑠≤𝜏𝐾}
𝑑𝑦𝑑𝑠.

(183)

We estimate separately the two terms. For the first
term, we use the moment inequality (129) and the Lipschitz
condition (135). We get

sup
𝑥∈O

𝐸|𝐴 (𝑡, 𝑥)|
𝑝
≤ 𝐶∫

𝑡

0

𝐽𝑝 (𝑡 − 𝑠)𝑀 (𝑠) 𝑑𝑠, (184)

where𝐶 = 𝐶𝛼,𝑝𝐾
𝑝−𝛼

𝐶
𝑝

𝜎
. For the second term, we useHölder’s

inequality | ∫ 𝑓𝑔𝑑𝜇| ≤ (∫ |𝑓|
𝑝
𝑑𝜇)

1/𝑝
(∫ |𝑔|

𝑞
𝑑𝜇)

1/𝑞 with
𝑓(𝑠, 𝑦) = 𝐺(𝑡 − 𝑠, 𝑥, 𝑦)

1/𝑝
(𝜎(V𝐾(𝑠, 𝑦))) − 𝜎(V𝐿(𝑠, 𝑦))1{𝑠≤𝜏𝐾}

and 𝑔(𝑠, 𝑦) = 𝐺(𝑡 − 𝑠, 𝑥, 𝑦)1/𝑞, where 𝑝−1
+ 𝑞

−1
= 1. Hence,

|𝐵 (𝑡, 𝑥)|
𝑝
≤ 𝐶

𝑝

𝜎
𝐾

𝑝/𝑞

𝑡

× ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦)

×
󵄨󵄨󵄨󵄨V𝐾 (𝑠, 𝑦) − V𝐿 (𝑠, 𝑦)

󵄨󵄨󵄨󵄨

𝑝
1{𝑠≤𝜏𝐾}

𝑑𝑦𝑑𝑠,

(185)

where𝐾𝑡 = ∫
𝑡

0
𝐽1(𝑠)𝑑𝑠 < ∞ (Since O is a bounded set, 𝐽1(𝑠) ≤

𝐶𝐽𝑝(𝑠)
1/𝑝 where𝐶 is a constant depending on |O| and𝑝. Since

𝑝 > 1, ∫𝑡

0
𝐽𝑝(𝑠)

1/𝑝
𝑑𝑠 ≤ 𝑐𝑡(∫

𝑡

0
𝐽𝑝(𝑠)𝑑𝑠)

1/𝑝
< ∞ by (133). This

shows that𝐾𝑡 < ∞.). Therefore,

sup
𝑥∈O

𝐸|𝐵 (𝑡, 𝑥)|
𝑝
≤ 𝐶𝑡 ∫

𝑡

0

𝐽1 (𝑡 − 𝑠)𝑀 (𝑠) 𝑑𝑠, (186)

where 𝐶𝑡 = 𝐶
𝑝

𝜎
𝐾

𝑝/𝑞

𝑡
. From (184) and (186), we obtain that

𝑀(𝑡) ≤ 𝐶
󸀠

𝑡
∫

𝑡

0

(𝐽𝑝 (𝑡 − 𝑠) + 𝐽1 (𝑡 − 𝑠))𝑀 (𝑠) 𝑑𝑠, (187)

where 𝐶󸀠

𝑡
= 2

𝑝−1
(𝐶 ∨ 𝐶𝑡). This implies that𝑀(𝑡) = 0 for all

𝑡 > 0.

For any 𝑡 > 0 and 𝑥 ∈ O, we let Ω𝑡,𝑥 = ⋂
𝐿>𝐾

{𝑡 ≤

𝜏𝐾, V𝐾(𝑡, 𝑥) ̸= V𝐿(𝑡, 𝑥)} where 𝐾 and 𝐿 are positive integers,
and Ω

∗

𝑡,𝑥
= Ω𝑡,𝑥 ∩ {lim𝐾→∞𝜏𝐾 = ∞}. By Lemma 30,

𝑃(Ω
∗

𝑡,𝑥
) = 1.

Proposition 31. Under the assumptions of Theorem 21, the
process 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ O} defined by

𝑢 (𝜔, 𝑡, 𝑥) = V𝐾 (𝜔, 𝑡, 𝑥) , 𝑖𝑓 𝜔 ∈ Ω
∗

𝑡,𝑥
, 𝑡 ≤ 𝜏𝐾 (𝜔) ,

𝑢 (𝜔, 𝑡, 𝑥) = 0, 𝑖𝑓 𝜔 ∉ Ω
∗

𝑡,𝑥

(188)

is a mild solution of (1).

Proof. We proceed as in the proof of Proposition 29. In this
case, with probability 1, we have

1{𝑡≤𝜏𝐾}
𝑢 (𝑡, 𝑥)

= 1{𝑡≤𝜏𝐾}
(∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝑍 (𝑑𝑠, 𝑑𝑦)

− 𝑏𝐾 ∫

𝑡

0

∫
O

𝐺 (𝑡 − 𝑠, 𝑥, 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠) .

(189)

The conclusion follows letting 𝐾 → ∞, since 𝜏𝐾 → ∞ a.s.
and 𝑏𝐾 → 0.

Appendices

A. Some Auxiliary Results

The following result is used in the proof of Theorem 13.

Lemma A.1. If𝑋 has a 𝑆𝛼(𝜎, 𝛽, 0) distribution then

𝜆
𝛼
𝑃 (|𝑋| > 𝜆) ≤ 𝑐

∗

𝛼
𝜎

𝛼
, ∀𝜆 > 0, (A.1)

where 𝑐∗
𝛼
> 0 is a constant depending only on 𝛼.

Proof. Consider the following steps.

Step 1. We first prove the result for 𝜎 = 1. We treat only
the right tail, with the left tail being similar. We denote 𝑋 by
𝑋𝛽 to emphasize the dependence on 𝛽. By Property 1.2.15 of
[18], lim𝜆→∞𝜆

𝛼
𝑃(𝑋𝛽 > 𝜆) = 𝐶𝛼((1 + 𝛽)/2), where 𝐶𝛼 =

(∫
∞

0
𝑥

−𝛼 sin𝑥𝑑𝑥)−1. We use the fact that, for any 𝛽 ∈ [−1, 1],

𝑃 (𝑋𝛽 > 𝜆) ≤ 𝑃 (𝑋1 > 𝜆) , ∀𝜆 > 𝜆𝛼 (A.2)

for some 𝜆𝛼 > 0 (see Property 1.2.14 of [18] or Section 1.5 of
[29]). Since lim𝜆→∞𝜆

𝛼
𝑃(𝑋1 > 𝜆) = 𝐶𝛼, there exists 𝜆

∗

𝛼
> 𝜆𝛼

such that

𝜆
𝛼
𝑃 (𝑋1 > 𝜆) < 2𝐶𝛼, ∀𝜆 > 𝜆

∗

𝛼
. (A.3)

It follows that 𝜆𝛼
𝑃(𝑋𝛽 > 𝜆) < 2𝐶𝛼 for all 𝜆 > 𝜆

∗

𝛼
and 𝛽 ∈

[−1, 1]. Clearly, for all 𝜆 ∈ (0, 𝜆∗

𝛼
] and 𝛽 ∈ [−1, 1], 𝜆𝛼

𝑃(𝑋𝛽 >

𝜆) ≤ 𝜆
𝛼
≤ (𝜆

∗

𝛼
)
𝛼.

Step 2. We now consider the general case. Since 𝑋/𝜎 has a
𝑆𝛼(1, 𝛽, 0) distribution, by Step 1, it follows that 𝜆𝛼

𝑃(|𝑋| >

𝜎𝜆) ≤ 𝑐
∗

𝛼
for any 𝜆 > 0. The conclusion follows multiplying

by 𝜎𝛼.

In the proof of Theorem 13 and Lemma A.3 below, we
use the following remark, due to Adam Jakubowski (personal
communication).
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Remark A.2. Let 𝑋 be a random variable such that 𝑃(|𝑋| >
𝜆) ≤ 𝐾𝜆

−𝛼 for all 𝜆 > 0, for some𝐾 > 0 and 𝛼 ∈ (0, 2). Then,
for any 𝐴 > 0,

𝐸 (|𝑋| 1{|𝑋|≤𝐴}) ≤ ∫

𝐴

0

𝑃 (|𝑋| > 𝑡) 𝑑𝑡

≤ 𝐾
1

1 − 𝛼
𝐴

1−𝛼
, if 𝛼 < 1,

𝐸 (|𝑋| 1{|𝑋|>𝐴}) ≤ ∫

∞

𝐴

𝑃 (|𝑋| > 𝑡) 𝑑𝑡 + 𝐴𝑃 (|𝑋| > 𝐴)

≤ 𝐾
𝛼

𝛼 − 1
𝐴

1−𝛼
, if 𝛼 > 1,

𝐸 (𝑋
2
1{|𝑋|≤𝐴}) ≤ 2∫

𝐴

0

𝑡𝑃 (|𝑋| > 𝑡) 𝑑𝑡

≤ 𝐾
2

2 − 𝛼
𝐴

2−𝛼
, for any 𝛼 ∈ (0, 2) .

(A.4)

The next result is a generalization of Lemma 2.1 of [24]
to the case of nonsymmetric random variables. This result is
used in the proof of Lemma 15 and Proposition 18.

Lemma A.3. Let (𝜂𝑘)𝑘≥1 be independent random variables
such that

sup
𝜆>0

𝜆
𝛼
𝑃 (
󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨 > 𝜆) ≤ 𝐾, ∀𝑘 ≥ 1 (A.5)

for some 𝐾 > 0 and 𝛼 ∈ (0, 2). If 𝛼 > 1, we assume that
𝐸(𝜂𝑘) = 0 for all 𝑘, and, if 𝛼 = 1, we assume that 𝜂𝑘 has a
symmetric distribution for all 𝑘. Then for any sequence (𝑎𝑘)𝑘≥1

of real numbers, we have

sup
𝜆>0

𝜆
𝛼
𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑘≥1

𝑎𝑘𝜂𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆) ≤ 𝑟𝛼𝐾∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼
, (A.6)

where 𝑟𝛼 > 0 is a constant depending only on 𝛼.

Proof. We consider the intersection of the event on the left-
hand side of (A.6) with the event {sup

𝑘≥1
|𝑎𝑘𝜂𝑘| > 𝜆} and its

complement. Hence,

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑘≥1

𝑎𝑘𝜂𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆)

≤ ∑

𝑘≥1

𝑃 (
󵄨󵄨󵄨󵄨𝑎𝑘𝜂𝑘

󵄨󵄨󵄨󵄨 > 𝜆) + 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑘≥1

𝑎𝑘𝜂𝑘1{|𝑎𝑘𝜂𝑘|≤𝜆}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜆)

=: 𝐼 + 𝐼𝐼.

(A.7)

Using (A.5), we have 𝐼 ≤ 𝐾𝜆
−𝛼
∑

𝑘≥1
|𝑎𝑘|

𝛼. To treat 𝐼𝐼, we
consider 3 cases.

Case 1 (𝛼 < 1). By Markov’s inequality and Remark A.2, we
have

𝐼𝐼 ≤
1

𝜆
∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝐸 (

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨 1{|𝑎𝑘𝜂𝑘|≤𝜆}) ≤ 𝐾

1

1 − 𝛼
𝜆

−𝛼
∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼
.

(A.8)

Case 2 (𝛼 > 1). Let 𝑋 = ∑
𝑘≥1

𝑎𝑘𝜂𝑘1{|𝑎𝑘𝜂𝑘|≤𝜆}. Since 𝐸(∑𝑘≥1

𝑎𝑘𝜂𝑘) = 0,

|𝐸 (𝑋)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(∑

𝑘≥1

𝑎𝑘𝜂𝑘1{|𝑎𝑘𝜂𝑘|>𝜆})

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝐸 (

󵄨󵄨󵄨󵄨𝜂𝑘
󵄨󵄨󵄨󵄨 1{|𝑎𝑘𝜂𝑘|>𝜆})

≤
𝐾𝛼

𝛼 − 1
𝜆

1−𝛼
∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼
,

(A.9)

where we used Remark A.2 for the last inequality. From here,
we infer that

|𝐸 (𝑋)| <
𝜆

2
, for any 𝜆 > 𝜆𝛼, (A.10)

where 𝜆
𝛼

𝛼
= 2𝐾(𝛼/(𝛼 − 1))∑

𝑘≥1
|𝑎𝑘|

𝛼. By Chebyshev’s
inequality, for any 𝜆 > 𝜆𝛼,

𝐼𝐼 = 𝑃 (|𝑋| > 𝜆) ≤ 𝑃 (|𝑋 − 𝐸 (𝑋)| > 𝜆 − |𝐸 (𝑋)|)

≤
4

𝜆2
𝐸|𝑋 − 𝐸 (𝑋)|

2
≤

4

𝜆2
∑

𝑘≥1

𝑎
2

𝑘
𝐸 (𝜂

2

𝑘
1{|𝑎𝑘𝜂𝑘|≤𝜆})

≤
8𝐾

2 − 𝛼
𝜆

−𝛼
∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼
,

(A.11)

using Remark A.2 for the last inequality. On the other hand,
if 𝜆 ∈ (0, 𝜆𝛼],

𝐼𝐼 = 𝑃 (|𝑋| > 𝜆) ≤ 1 ≤ 𝜆
𝛼

𝛼
𝜆

−𝛼
= 2𝐾

𝛼

𝛼 − 1
𝜆

−𝛼
∑

𝑘≥1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼
.

(A.12)

Case 3 (𝛼 = 1). Since 𝜂𝑘 has a symmetric distribution, we can
use the original argument of [24].

B. Fractional Power of the Laplacian

Let𝐺(𝑡, 𝑥) be the fundamental solution of 𝜕𝑢/𝜕𝑡+(−Δ)𝛾𝑢 = 0
on R𝑑, 𝛾 > 0.

Lemma B.1. For any 𝑝 > 1, there exist some constants 𝑐1, 𝑐2 >
0 depending on 𝑑, 𝑝, and 𝛾 such that

𝑐1𝑡
−(𝑑/2𝛾)(𝑝−1)

≤ ∫
R𝑑
𝐺(𝑡, 𝑥)

𝑝
𝑑𝑥 ≤ 𝑐2𝑡

−(𝑑/2𝛾)(𝑝−1)
. (B.1)
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Proof. The upper bound is given by Lemma B.23 of [12]. For
the lower bound, we use the scaling property of the functions
(𝑔𝑡,𝛾)𝑡>0. We have

𝐺 (𝑡, 𝑥)

= ∫

∞

0

1

(4𝜋𝑡1/𝛾𝑟)
𝑑/2

exp(− |𝑥|
2

4𝑡1/𝛾𝑟
)𝑔1,𝛾 (𝑟) 𝑑𝑟

≥ ∫

∞

1

1

(4𝜋𝑡1/𝛾𝑟)
𝑑/2

exp(− |𝑥|
2

4𝑡1/𝛾𝑟
)𝑔1,𝛾 (𝑟) 𝑑𝑟

≥
1

(4𝜋𝑡1/𝛾)
𝑑/2

exp(− |𝑥|
2

4𝑡1/𝛾
)𝐶𝑑,𝛾

with 𝐶𝑑,𝛾 := ∫

∞

1

𝑟
−𝑑/2

𝑔1,𝛾 (𝑟) 𝑑𝑟 < ∞,

(B.2)

and hence

∫
R𝑑
𝐺(𝑡, 𝑥)

𝑝
𝑑𝑥 ≥ 𝑐

󸀠

𝑑,𝛾,𝑝
𝑡
−𝑑𝑝/2𝛾

× ∫
R𝑑

exp(−
𝑝|𝑥|

2

4𝑡1/𝛾
)𝑑𝑥 = 𝑐𝑑,𝑝,𝛾𝑡

−(𝑑/2𝛾)(𝑝−1)
.

(B.3)

C. A Local Property of the Integral

The following result is the analogue of Proposition 8.11 of [12].

Proposition C.1. Let 𝑇 > 0 and O ⊂ R𝑑 be a Borel set. Let
𝑋 = {𝑋(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ R𝑑

} be a predictable process such that
𝑋 ∈ L𝛼 if 𝛼 < 1, or 𝑋 ∈ L𝑝 for some 𝑝 ∈ (𝛼, 2] if 𝛼 > 1. If O
is unbounded, assume in addition that𝑋 satisfies (83) if 𝛼 < 1,
or 𝑋 satisfies (116) for some 𝑝 ∈ (𝛼, 2), if 𝛼 > 1. Suppose that
there exists an event 𝐴 ∈ F𝑇 such that

𝑋 (𝜔, 𝑡, 𝑥) = 0, ∀𝜔 ∈ 𝐴, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ O.
(C.1)

Then for any 𝐾 > 0, 𝐼(𝑋)(𝑇,O) = 𝐼𝐾(𝑋)(𝑇,O) = 0 a.s. on 𝐴.

Proof. We only prove the result for 𝐼(𝑋), with the proof
for 𝐼𝐾(𝑋) being the same. Moreover, we include only the
argument for 𝛼 < 1; the case 𝛼 > 1 is similar. The idea is to
reduce the argument to the case when 𝑋 is a simple process,
as in the proof Proposition of 8.11 of [12].

Step 1. We show that the proof can be reduced to the case of
a bounded set O. Let 𝑋𝑛(𝑡, 𝑥) = 𝑋(𝑡, 𝑥)1O𝑛

(𝑥) where O𝑛 =

O ∩ 𝐸𝑛 and (𝐸𝑛)𝑛 is an increasing sequence of sets inB𝑏(R
𝑑
)

such that ⋃
𝑛
𝐸𝑛 = R𝑑. Then 𝑋𝑛 ∈ L𝛼 satisfies (C.1). By the

dominated convergence theorem,

𝐸∫

𝑇

0

∫
O

󵄨󵄨󵄨󵄨𝑋𝑛 (𝑡, 𝑥) − 𝑋 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

𝛼
󳨀→ 0. (C.2)

By the construction of the integral, 𝐼(𝑋𝑛𝑘
)(𝑇,O) →

𝐼(𝑋)(𝑇,O) a.s. for a subsequence {𝑛𝑘}. It suffices to show
that 𝐼(𝑋𝑛)(𝑇,O) = 0 a.s. on 𝐴 for all 𝑛. But 𝐼(𝑋𝑛)(𝑇,O) =
𝐼(𝑋𝑛)(𝑇,O𝑛) and O𝑛 is bounded.

Step 2.We show that the proof can be reduced to the case of a
bounded processes. For this, let𝑋𝑛(𝑡, 𝑥) = 𝑋(𝑡, 𝑥)1{|𝑋(𝑡,𝑥)|≤𝑛}.
Clearly, 𝑋𝑛 ∈ L𝛼 is bounded and satisfies (C.1) for all 𝑛. By
the dominated convergence theorem, [𝑋𝑛 − 𝑋]𝛼 → 0, and
hence 𝐼(𝑋𝑛𝑘

)(𝑇,O) → 𝐼(𝑋)(𝑇,O) a.s. for a subsequence {𝑛𝑘}.
It suffices to show that 𝐼(𝑋𝑛)(𝑇,O) = 0 a.s. on 𝐴 for all 𝑛.

Step 3. We show that the proof can be reduced to the case
of bounded continuous processes. Assume that 𝑋 ∈ L𝛼 is
bounded and satisfies (C.1). For any 𝑡 > 0 and 𝑥 ∈ R𝑑, we
define

𝑋𝑛 (𝑡, 𝑥) = 𝑛
𝑑+1

∫

𝑡

(𝑡−1/𝑛)∨0

∫
(𝑥−1/𝑛,𝑥]∩O

𝑋(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠, (C.3)

where (𝑎, 𝑏] = {𝑦 ∈ R𝑑
; 𝑎𝑖 < 𝑦𝑖 ≤ 𝑏𝑖 for all 𝑖 = 1, . . . , 𝑑}.

Clearly,𝑋𝑛 is bounded and satisfies (C.1). We prove that𝑋𝑛 ∈

L𝛼. Since 𝑋𝑛 is bounded, [𝑋𝑛]𝛼 < ∞. To prove that 𝑋𝑛 is
predictable, we consider

𝐹 (𝑡, 𝑥) = ∫

𝑡

0

∫
(0,𝑥]∩O

𝑋(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠. (C.4)

Since 𝑋 is predictable, it is progressively measurable; that is,
for any 𝑡 > 0, the map (𝜔, 𝑠, 𝑥) 󳨃→ 𝑋(𝜔, 𝑠, 𝑥) fromΩ× [0, 𝑡] ×

R𝑑 toR isF𝑡 ×B([0, 𝑡]) ×B(R𝑑
)-measurable. Hence, 𝐹(𝑡, ⋅)

is F𝑡 × B(R𝑑
)-measurable for any 𝑡 > 0. Since the map

𝑡 󳨃→ 𝐹(𝜔, 𝑡, 𝑥) is left continuous for any 𝜔 ∈ Ω, 𝑥 ∈ R𝑑,
it follows that 𝐹 is predictable, being in the class C defined
in Remark 11. Hence, 𝑋𝑛 is predictable, being a sum of 2𝑑+1

terms involving 𝐹.
Since 𝐹 is continuous in (𝑡, 𝑥), 𝑋𝑛 is continuous in (𝑡, 𝑥).

By Lebesgue differentiation theorem in R𝑑+1, 𝑋𝑛(𝜔, 𝑡, 𝑥) →

𝑋(𝜔, 𝑡, 𝑥) for any 𝜔 ∈ Ω, 𝑡 > 0, and 𝑥 ∈ O. By the
bounded convergence theorem, [𝑋𝑛 − 𝑋]𝛼 → 0. Hence,
𝐼(𝑋𝑛𝑘

)(𝑇,O) → 𝐼(𝑋)(𝑇,O) a.s. for a subsequence {𝑛𝑘}. It
suffices to show that 𝐼(𝑋𝑛)(𝑇,O) = 0 a.s. on 𝐴 for all 𝑛.

Step 4. Assume that 𝑋 ∈ L𝛼 is bounded, continuous, and
satisfies (C.1). Let (𝑈(𝑛)

𝑗
)𝑗=1,...,𝑚𝑛

be a partition of O in Borel
sets with Lebesgue measure smaller than 1/𝑛. Let 𝑥𝑛

𝑗
∈ 𝑈

(𝑛)

𝑗

be arbitrary. Define

𝑋𝑛 (𝑡, 𝑥) =

𝑛−1

∑

𝑘=0

𝑚𝑛

∑

𝑗=1

𝑋(
𝑘𝑇

𝑛
, 𝑥

𝑛

𝑗
) 1(𝑘𝑇/𝑛,(𝑘+1)𝑇/𝑛] (𝑡) 1𝑈(𝑛)

𝑗

(𝑥) .

(C.5)

Since 𝑋 is continuous in (𝑡, 𝑥), 𝑋𝑛(𝑡, 𝑥) → 𝑋(𝑡, 𝑥). By the
bounded convergence theorem, [𝑋𝑛 − 𝑋]𝛼 → 0, and hence
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𝐼(𝑋𝑛𝑘
)(𝑇,O) → 𝐼(𝑋)(𝑇,O) a.s. for a subsequence {𝑛𝑘}. Since

on the event 𝐴,

𝐼 (𝑋𝑛) (𝑇,O)

=

𝑛−1

∑

𝑘=0

𝑚𝑛

∑

𝑗=1

𝑋(
𝑘𝑇

𝑛
, 𝑥

𝑛

𝑗
)𝑍((

𝑘𝑇

𝑛
,
(𝑘 + 1) 𝑇

𝑛
] × 𝑈

(𝑛)

𝑗
) = 0,

(C.6)

it follows that 𝐼(𝑋)(𝑇,O) = 0 a.s. on 𝐴.
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[6] E. S. L. Bié, “Étude d’une EDPS conduite par un bruit poisson-
nien,” Probability Theory and Related Fields, vol. 111, no. 2, pp.
287–321, 1998.

[7] D. Applebaum and J. L. Wu, “Stochastic partial differential
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Körezlioğlu and A. Üstünel, Eds., vol. 31, pp. 1–129, Birkhäuser
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with Lévy Noise, vol. 113 of Encyclopedia of Mathematics and
Its Applications, Cambridge University Press, Cambridge, UK,
2007.

[13] S. Peszat and J. Zabczyk, “Stochastic heat and wave equations
driven by an impulsive noise,” in Stochastic Partial Differential
Equations andApplications VII, G. Da Prato and L. Tubaro, Eds.,
vol. 245, pp. 229–242, Chapman & Hall/CRC, Boca Raton, Fla,
USA, 2006.

[14] S. Albeverio, V. Mandrekar, and B. Rüdiger, “Existence of mild
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chapter 1, Birkhäauser, Boston, Mass, USA, 2013, http://aca-
demic2.american.edu/∼jpnolan/stable/chap1.pdf.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


