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This paper is dedicated to the study of a nonlinear SPDE on a bounded domain in R, with zero initial conditions and Dirichlet
boundary, driven by an a-stable Lévy noise Z with a € (0,2), a # 1, and possibly nonsymmetric tails. To give a meaning to the
concept of solution, we develop a theory of stochastic integration with respect to this noise. The idea is to first solve the equation
with “truncated” noise (obtained by removing from Z the jumps which exceed a fixed value K), yielding a solution u, and then
show that the solutions u;, L > K coincide on the event ¢t < 7y, for some stopping times 7, converging to infinity. A similar idea
was used in the setting of Hilbert-space valued processes. A major step is to show that the stochastic integral with respect to Zy
satisfies a pth moment inequality. This inequality plays the same role as the Burkholder-Davis-Gundy inequality in the theory of

integration with respect to continuous martingales.

1. Introduction

Modeling phenomena which evolve in time or space-time
and are subject to random perturbations are a fundamental
problem in stochastic analysis. When these perturbations are
known to exhibit an extreme behavior, as seen frequently
in finance or environmental studies, a model relying on
the Gaussian distribution is not appropriate. A suitable
alternative could be a model based on a heavy-tailed distri-
bution, like the stable distribution. In such a model, these
perturbations are allowed to have extreme values with a
probability which is significantly higher than in a Gaussian-
based model.

In the present paper, we introduce precisely such a model,
given rigorously by a stochastic partial differential equation
(SPDE) driven by a noise term which has a stable distribution
over any space-time region and has independent values over
disjoint space-time regions (i.e., it is a Lévy noise). More
precisely, we consider the SPDE:

Lut,x)=0Wwt,x)Z(t,x), t>0,x€0 (1)
with zero initial conditions and Dirichlet boundary condi-
tions, where ¢ is a Lipschitz function, L is a second-order
pseudo-differential operator on a bounded domain O ¢ RY,

and Z(t,x) = 0"z [0tOx,,...,0x, is the formal derivative
of an a-stable Lévy noise with « € (0,2), a# 1. The goal
is to find sufficient conditions on the fundamental solution
G(t, x, y) of the equation Lu = 0 on R, x O, which will
ensure the existence of a mild solution of (1). We say that
a predictable process u = {u(t,x);t > 0,x € O} is a mild
solution of (1) if for any t > 0, x € O,

u(t,x) = L j@ G(t-sxy)o(u(sy))Z(dsdy) as.
2)

We assume that G(t, x, y) is a function in t, which excludes
from our analysis the case of the wave equation with d > 3.

To explain the connections with other works, we describe
briefly the construction of the noise (the details are given in
Section 2). This construction is similar to that of a classical
a-stable Lévy process and is based on a Poisson random
measure (PRM) N on R, x RY x (R \ {0}) of intensity
dtdxv,(dz), where

—a—1

Lio,00) (2) + q(=2) 1 (o) (2)] d2
3)

v, (dz) = [ paz
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for some p, g > 0 with p + g = 1. More precisely, for any set
B e B, (R, x RY),

Z(B) = j 2N (ds, dx, dz)

Bx{|z|<1}

(4)
N J 2N (ds, dx, dz) - |B|,
Bx{|z|>1}

where N(Bx-) = N(Bx-)— | Blv,(-) is the compensated process
and y is a constant (specified by Lemma 3). Here, %, (R, x
R%) is the class of bounded Borel sets in R, x R and |B| is
the Lebesgue measure of B.

As the term on the right-hand side of (2) is a stochastic
integral with respect to Z, such an integral should be
constructed first. Our construction of the integral is an
extension to random fields of the construction provided by
Giné and Marcus in [1] in the case of an a-stable Lévy process
{Z(t)}1¢[0,1)- Unlike these authors, we do not assume that the
measure v,, is symmetric.

Since any Lévy noise is related to a PRM, in a broad
sense, one could say that this problem originates in Itd’s
papers [2, 3] regarding the stochastic integral with respect
to a Poisson noise. SPDEs driven by a compensated PRM
were considered for the first time in [4], using the approach
based on Hilbert-space-valued solutions. This study was
motivated by an application to neurophysiology leading to
the cable equation. In the case of the heat equation, a similar
problem was considered in [5-7] using the approach based on
random-field solutions. One of the results of [6] shows that
the heat equation:

+J fltxut,x);2)N(txdz) O
U

+g (@t x,u(t, x))

has a unique solution in the space of predictable processes u
satisfying sup, (o rjxra Elu(t, x)|P < oo, for any p € (1 +
2/d, 2]. In this equation, N is the compensated process corre-
sponding to a PRM N on R, x R? xU of intensity dtdx»(dz),
for an arbitrary o-finite measure space (U, B(U),v) with
measure v satisfying jU |z|P¥(dz) < oo. Because of this later
condition, this result cannot be used in our case with U =
R\ {0} and v = v,. For similar reasons, the results of [7] also
do not cover the case of an a-stable noise. However, in the
case o > 1, we will be able to exploit successfully some ideas
of [6] for treating the equation with “truncated” noise Z,
obtained by removing from Z the jumps exceeding a value
K (see Section 5.2).

The heat equation with the same type of noise as in the
present paper was examined in [8, 9] in the cases a < 1 and
a > 1, respectively, assuming that the noise has only positive
jumps (i.e., g = 0). The methods used by these authors are
different from those presented here, since they investigate the
more difficult case of a non-Lipschitz function o(u) = u°
with & > 0. In [8], Mueller removes the atoms of Z of mass
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smaller than 27" and solves the equation driven by the noise
obtained in this way; here we remove the atoms of Z of mass
larger than K and solve the resulting equation. In [9], Mytnik
uses a martingale problem approach and gives the existence
of a pair (u, Z) which satisfies the equation (the so-called
“weak solution”), whereas in the present paper we obtain the
existence of a solution u for a given noise Z (the so-called
“strong solution”). In particular, when « > 1 and § = 1/a,
the existence of a “weak solution” of the heat equation with
a-stable Lévy noise is obtained in [9] under the condition

2
a<l+ p (6)
which we encounter here as well. It is interesting to note that
(6) is the necessary and sufficient condition for the existence
of the density of the super-Brownian motion with “a — 17-
stable branching (see [10]). Reference [11] examines the heat
equation with multiplicative noise (i.e., o(u) = u), driven by
an a-stable Lévy noise Z which does not depend on time.
To conclude the literature review, we should point out that
there are many references related to stochastic differential
equations with a-stable Lévy noise, using the approach based
on Hilbert-space valued solutions. We refer the reader to
Section 12.5 of the monograph [12] and to [13-16] for a sample
of relevant references. See also the survey article [17] for an
approach based on the white noise theory for Lévy processes.
This paper is organized as follows.

(i) In Section 2, we review the construction of the «-
stable Lévy noise Z, and we show that this can
be viewed as an independently scattered random
measure with jointly a-stable distributions.

(ii) In Section 3, we consider the linear equation (1) (with
o(u) = 1) and we identify the necessary and sufficient
condition for the existence of the solution. This
condition is verified in the case of some examples.

(iii) Section 4 contains the construction of the stochastic
integral with respect to the «-stable noise Z, for
a € (0,2). The main effort is dedicated to proving a
maximal inequality for the tail of the integral process,
when the integrand is a simple process. This extends
the construction of [1] to the case random fields and
nonsymmetric measure v,.

(iv) In Section 5, we introduce the process Z obtained by
removing from Z the jumps exceeding a fixed value K,
and we develop a theory of integration with respect to
this process. For this, we need to treat separately the
cases &« < 1 and « > 1. In both cases, we obtain a
pth moment inequality for the integral process for p €
(o, 1)ifa < 1and p € («,2) if « > 1. This inequality
plays the same role as the Burkholder-Davis-Gundy
inequality in the theory of integration with respect to
continuous martingales.

(v) In Section 6 we prove the main result about the
existence of the mild solution of (1). For this, we first
solve the equation with “truncated” noise Zy using
a Picard iteration scheme, yielding a solution uy.
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We then introduce a sequence (7x)gs; of stopping
times with 7 T 0o a.s. and we show that the solutions
u;, L > K coincide on the event t < 7. For the
definition of the stopping times 7y, we need again to
consider separately the cases o < 1 and & > 1.

(vi) Appendix A contains some results about the tail of a
nonsymmetric stable random variable and the tail of
an infinite sum of random variables. Appendix B gives
an estimate for the Green function associated with the
fractional power of the Laplacian. Appendix C gives a
local property of the stochastic integral with respect
to Z (or Zg).

2. Definition of the Noise

In this section we review the construction of the a-stable Lévy

noise on R, x R? and investigate some of its properties.

Let N = Y., 81, x,7,) be a Poisson random measure on
R, x R x (R \ {0}), defined on a probability space (Q, #, P),
with intensity measure dtdxv,(dz), where v, is given by (3).
Let (¢;) 5o be a sequence of positive real numbers such that
g > 0asj > coand1=¢ >¢ >¢ > . Let

Fj:{zeR;sj < |z| Sé‘j_l}, j=1,

7)
I ={z e R;|z| > 1}.
For any set B € %B,(R, x R?), we define
L= | aN@ndndz)
BxT;
(8)

Z Zilizeryp  J20.
(T;.X;)eB

Remark 1. The variable L,(B) is finite since the sum above
contains finitely many terms. To see this, we note that
E[N(B x I}))] = |B|v,(I,) < 00, and hence N(B x [})) =
card{i > 1;(T;, X;, Z;) € B x I} < oo.

Forany j > 0, the variable L ;(B) has a compound Poisson
distribution with jump intensity measure |B] - Va|r].; that is,

E [ei”Lf(B)] = exp {lBl J-

j

(ei”z - 1) Vg (dz)} , ueR.
)

It follows that E(L;(B)) = |B| [ z7,(dz) and Var(L (B)) =
]
| B| fr. zzvtx(dz) for any j > 0. Hence, Var(Lj(B)) < oo for any
]

j = 1and Var(Ly(B)) = co. If & > 1, then E(L(B)) is finite.
Define

Y(B)=) [L;(B)-E(L;(B))]+Ly(B). (10)

S

This sum converges a.s. by Kolmogorov’s criterion since
{L ]-(B) - E(L j(B))} j=1 are independent zero-mean random
variables with ) i1 Var(L ]-(B)) < 00.

From (9) and (10), it follows that Y(B) is an infinitely
divisible random variable with characteristic function:

E (eiuY(B))

= exp {|B| JR (eiuz -1- iuzl{|z|sl}) Vo (dz)} , (11)

ue€R.

Hence, E(Y(B)) = |B| [, z1(,.1}7.(d2) and Var(Y(B)) =
|B| [, 227, (d2).

Lemma 2. The family {Y(B); B € B,(R, x R?)} defined by
(10) is an independently scattered random measure; that is,

(a) for any disjoint sets B,...,B, in By(R, x RY),

Y(B,),...,Y(B,) are independent;

(b) for any sequence (B,,),~, of disjoint sets in B,(R, x
RY) such that |J,., B, is bounded, Y(U,, B,) =
Y1 Y(B,) as.

n>1

Proof. (a) Note that for any function ¢ € L*(R, x RY)
with compact support K, we can define the random variable
Y(p) = YpilLj(p) = E(Lj(@)] + Lo(p) where Lj(p) =
IKer @(t, x)z N(dt,dx, dz). For any u € R, we have

E (eiuY((p))

= exp {J (eiuzq’(t’x) -1
R, xR4xR

—iuzg (t, x) l{Izlil}) dtdxv, (dz) } .

(12)
For any disjoint sets B}, ..., B, and forany u,,...,u, € R,
we have
E|exp <iZukY (Bk))]
k=1
=E | exp <iY<Zulek)>]
k=1
= exp {J‘ (eiz 22:1 ulek(t,x)
R, xRIxR
x Y uly (t, x)> dtdxwv, (dz)}
k=1
= exp {Z lBk| J (eiu"z -1
k=1 R
—iukzl{|z|§1}) Vo (dZ) }
= [ 1E [exp (i Y (BY))],
k=1
(13)



using (12) with ¢ = Y7, w1, for the second equality and
(9) for the last equality. This proves that Y(B,),...,Y(B,) are
independent.

(b) Let S, = Y;_,Y(B) and S = Y(B), where B =
U,:»1 B,.- By Lévy’s equivalence theorem, (S,),s; converges
a.s. if and only if it converges in distribution. By (13), with
u; =uforalli=1,...,k, wehave

E (eius") = exp { CJB’C J (eiuz -1- iuZI{IZISI}) Ve (dz)} ’
k=1 R

(14)

This clearly converges to E(™) = exp{|B| IR(EWZ -1 -
iuzly,<1;)v,(d2)}, and hence (S,),, converges in distribu-
tion to S. 0

Recall that a random variable X has an «-stable distribu-
tion with parameters « € (0,2), 0 € [0,00), f € [-1,1], and
p € Rif, foranyu € R,

E (eiux) =exp {—|u|°‘0“ (1 —isgn (u) Btan 7-[2—0‘) + iuy} ,
ifa+1l,
(15)
or
; 2
E (e’”X) =exp {— lu| o <1 +1isgn (u) ,8; In |u|> + iuy} ,
ifa=1
(16)
(see Definition 1.1.6 of [18]). We denote this distribution by
Sa(ay ﬁ) M)'
Lemma 3. Y(B) has a Sa(UIBII/“, B, ulBl) distribution with
B=pr-a

Ir2-ow) P20
cos —,

if a1,
l-« f?b

, if a=1,

U= ﬁoc -1
Beos
and ¢, = _[Ooo(sinz - zl{zgl})z_zdz. Ifa > 1, then E(Y(B)) =
ulBl.

co
sin x

ao‘:J dx =
0o x*

17)

QR N[X

if a1,
if =1,

Proof. We first express the characteristic function (11) of Y(B)
in Feller’s canonical form (see Section XVII.2 of [19]):

E (eiuY(B))

iuz

. e~ —1—iusinz (18)
= exp 1iub |B| + | B| I z—M’x (dz)
R

2

with M, (dz) = z*v,(dz) and b = jR(sinz = 2l 0p)Va(d2).
Then the result follows from the calculations done in Example
XVIL3.(g) of [19]. O
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From Lemmas 2 and 3, it follows that
Z=1{2B)=Y (B)-ulBl;Be B, (R, xR))}  (19)

is an «-stable random measure, in the sense of Definition
3.3.1 of [18], with control measure m(B) = o%|B| and
constant skewness intensity f. In particular, Z(B) has a
S, (a|B|''%, B,0) distribution.

We say that Z is an a-stable Lévy noise. Coming back to
the original construction (10) of Y(B) and noticing that

HIBI = 1B | 21y (d2) = - E(L; (B)).

21
ifa<l,

(20)

u|B| = |B| JR Zl{s1y v (d2) = E (L, (B)),

ifa>1,

it follows that Z(B) can be represented as
ZB)=YL,®)= [ N@dudz), fa<l,
= Bx(R\{0})
(21)
2= [1,6)-5(L,®)]
>0
(22)
| eN@ndnda), ifa
Bx(R\{0})

Here N is the compensated Poisson measure associated with
N;thatis, N(A) = N(A)—E(N(A)) for any relatively compact
set Ain R, x R? x (R \ {0}).

In the case a = 1, we will assume that p = g so that v,
is symmetric around 0, E(L ;(B)) = 0 forall j > 1, and Z(B)
admits the same representation as in the case « < 1.

3. The Linear Equation

As a preliminary investigation, we consider first equation (1)
witho = 1:

Lu(t,x)=Z(t,x), t>0,x€0 (23)

with zero initial conditions and Dirichlet boundary condi-

tions. In this section @ is a bounded domain in R or 6 = R?.
By definition, the process {u(t, x); t > 0, x € O} given by

t

u(t,x) = J J G(t-sx,9)Z(ds,dy) (24)
0Jo
is a mild solution of (23), provided that the stochastic integral
on the right-hand side of (24) is well defined.

We define now the stochastic integral of a deterministic
function ¢:

Z(p) = L JRd ¢ (t,x) Z (dt,dx). (25)
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Ifp € L*(R, x R?), this can be defined by approximation
with simple functions, as explained in Section 3.4 of [18].
The process {Z(¢);¢ € LYR, x R?)} has jointly a-stable
finite dimensional distributions. In particular, each Z(¢) has
aS,(0,, B, 0)-distribution with scale parameter:

00 1/
0, = 0<J-O J-Rd o (£, x)|*dx dt) ) (26)

More generally, a measurable function ¢ : R, x RY —
R is integrable with respect to Z if there exists a sequence
(@,),>1 of simple functions such that ¢, — ¢ a.e., and, for
any B € B,(R, x R?), the sequence {Z(¢,15)}, converges in
probability (see [20]).

The next results show that condition ¢ € L*(R, x [R{d)
is also necessary for the integrability of ¢ with respect to Z.
Due to Lemma 2, this follows immediately from the general
theory of stochastic integration with respect to independently
scattered random measures developed in [20].

Lemma 4. A deterministic function ¢ is integrable with respect
to Z ifand only if o € L*(R, x RY).

Proof. We write the characteristic function of Z(B) in the
form used in [20]:

E (eiuZ(B))

ool

iua

+ JR (e -1 —iur (z)) Vg (dz)] dtdx}
(27)
witha = f—p, 7(z) = zif |z] < 1 and 7(2) = sgn(z) if |z| > 1.

By Theorem 2.7 of [20], ¢ is integrable with respect to Z if
and only if

J , |U (¢ (t,x))| dt dx < oo,
xR
(28)
J V(p(t x))dtdx < o,
R, xR4

where U(y) = ay + JR(T(yz) - y1(2))v,(dz) and V(y) =
IR(I/\ | yzlz)va(dz). Direct calculations show that, in our case,
U(y) = —=(B/(a-1))y*ifa#+1,U(y) = 0ifa = 1,and V(y) =
(2/(2 - a))y™ O

The following result follows immediately from (24) and
Lemma 4.

Proposition 5. Equation (23) has a mild solution if and only
if foranyt >0,x € O

I(t) = Lt J@ G(s,x, y)*dyds < co. (29)

In this case, {u(t,x);t > 0,x € O} has jointly a-stable
finite-dimensional distributions. In particular, u(t,x) has a
S, (oL (1), B,0) distribution.

Condition (29) can be easily verified in the case of several
examples.

Example 6 (heat equation). Let L = 0/0t — (1/2)A. Assume
first that © = R?. Then G(t,x,y) = G(t, x — y), where

e 1 <
G(t,x) = WGXP (—7), (30)

and condition (29) is equivalent to (6). In this case, I (t) =
ca)dtd(lf“)/“l. If O is a bounded domain in R? then

G(t,x,y) < G(t, x — y) (see page 74 of [11]) and condition
(29) is implied by (6).

Example 7 (parabolic equation). Let L = 0/0t — & where

2= a0+ L o
x) = a.: (x X (X)) — (X
e Y 0x;0x; =0 ox;

is the generator of a Markov process with values in [R{d,
without jumps (a diffusion). Assume that O is a bounded
domain in R? or 6 = R By Aronson estimate (see,
e.g., Theorem 2.6 of [12]), under some assumptions on the
coeflicients a;;, b;, there exist some constants ¢;,¢, > 0 such

lj’ (Rl
that

2
G(t,x y) <t “exp <—M> (32)
Q

forallt > 0 and x, y € O. In this case, condition (29) is
implied by (6).

Example 8 (heat equation with fractional power of the
Laplacian). Let L = 9/dt + (-A)? for some y > 0. Assume
that O is a bounded domain in R? or © = R?. Then (see, e.g.,
Appendix B.5 of [12])

G(t,x,y) = L G (5% ) gy (s)ds
(33)

o0
= J g (tl/ys, X, y) g,y () ds,
0

where (¢, x, y) is the fundamental solution of 0u/0t — Au =
0 on O and g,,, is the density of the measure g, \, (¢,);=0
being a convolution semigroup of measures on [0, co) whose
Laplace transform is given by

J e g, (s)ds = exp (-tu’), Vu>0. (34)
0

Note thatif y < 1, g, is the density of S, where (S,);5 is
a y-stable subordinator with Lévy measure p, (dx) = (y/I'(1-
y)xr! 1(0,00) (X)dx.

Assume first that @ = R%. Then G(t, x, y) = G(t,x - y),
where

Gt x) = J eiE‘xe—tlfde. (35)
Rd



If p < 1, then G(t,-) is the density of X, with (X,).0
being a symmetric (2y)-stable Lévy process with values in R?
defined by X, = W , with (W,)~, a Brownian motion in R?
with variance 2. By Lemma B.1 (Appendix B), if « > 1, then
(29) holds if and only if

2y
1+ —. 36
a<l+— (36)
If O is a bounded domain in R?, then G(t,x, y) < G(t, x—
y) (by Lemma 2.1 of [8]). In this case, if « > 1, then (29) is
implied by (36).

Example 9 (cable equation in IR_). Let Lu = 0u/0t—0*u/ox*+u
and O = R. Then G(t, x, y) = G(t, x — y), where
G(t,x) = . e

|x|* )
xp| ——— -t ), 37
Vamt R ( 4t (37)
and condition (29) holds for any « € (0, 2).

Example 10 (wave equation in R? with d = 1,2). Let L =
9?/0t> — Aand 0 = R? withd = 1 ord = 2. Then G(t,x,y) =
G(t,x — y), where

G(t, x) = El{lxkt}’ ifd= 1,

_ 1 1 (38)
Gt,x) = — - ifd=2.

—1
{lx|<t}>
2 e = |

Condition (29) holds for any « € (0, 2). In this case, I, (t) =
27 ifd = 1and I(t) = (2m)' " */2-a)(3-a))* ifd = 2.

4. Stochastic Integration

In this section we construct a stochastic integral with respect
to Z by generalizing the ideas of [1] to the case of random
fields. Unlike these authors, we do not assume that Z(B) has
a symmetric distribution, unless o = 1.

Let F, = F V W where ./ is the o-field of negligible
setsin (Q, #, P) and 9?1 is the o-field generated by N ([0, s] x
AxT)foralls € [0,t], A€ %b(Rd) and for all Borel sets ' C
R\ {0} bounded away from 0. Note that # tZ CF f\] where F tZ
is the o-field generated by Z([0,s] x A), s € [0,t], and A €
By, (RY).

A process X = {X(t, x)} ;50 xcpa is called elementary if it is
of the form

X (t) X) = 1(u,b] (t) 1A (X) Y, (39)

where 0 < a < b, A € B,(RY), and Y is F,-measurable
and bounded. A simple process is a linear combination of
elementary processes. Note that any simple process X can be
written as

N-1

X(tx) =11 (O Y (x)+ Y 1, ()Y (x) (40)
i=0
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with0 =, < t; <--- <ty <ooandY;(x) = Z;Zl 1, (Y5,
where (Y}j);-,
disjoint sets in %, (R?). Without loss of generality, we assume
that Y, = 0.

We denote by & the predictable o-field on Q x R, x R?,
that is, the o-field generated by all simple processes. We say
that a process X = {X(t, X)}1 xepe is predictable if the map
(w,t, x) = X(w,t, x) is PP-measurable.

))))) m; eeny

Remark 11. One can show that the predictable o-field & is
the o-field generated by the class € of processes X such that
t — X(w,t,x) is left continuous for any w € Q, x € R and
(w,x) = X(w,t,x)is F, x %(Rd)-measurable foranyt > 0.

Let £, be the class of all predictable processes X such
that

T

XIS ga= B[ [ X @0rdvd<co, @
B

0

forall T > 0 and B € %, (R?). Note that Z,, is a linear space.
Let (Ey);s; be an increasing sequence of sets in %, (R?)
such that | J, E, = RY. We define

LA X
Xl = Y —— = ifa>1,
k>1
LA X 2
a ok,Ep .
X1 =) oF , ifa<l.

k>1

We identify two processes X and Y for which [ X - Y], =
0; that is, X = Yv a.e., where v = Pdtdx. In particular, we
identify two processes X and Y if X is a modification of Y;
that is, X(t, x) = Y(t, x) a.s. for all (t,x) € R, x R

The space £, becomes a metric space endowed with the
metric d:

d,(X,Y)=|X-Y, if a>1,
(43)
dy(X,Y) =X -Y|% if a<l
This follows using Minkowski’s inequality if « > 1 and the
inequality |a + b|* < |a]® + |b|" ifa < 1.
The following result can be proved similarly to Proposi-
tion 2.3 of [21].

Proposition 12. For any X € Z, there exists a sequence
(X,)y=1 of bounded simple processes such that | X,, — X||, — 0
asn — oo.

By Proposition 5.7 of [22], the «a-stable Lévy process
{Z(t,B) = Z([0,t] x B);t > 0} has a cadlag modification,
for any B € %, (R%). We work with these modifications. If X
is a simple process given by (40), we define

N-1 m;
I(X)(tB) =Y Y V;Z((t; Attyy At]x (A;NB)).
i=0 j=1
] (44)
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Note that, for any B € %’b(le), I(X) (t, B) is #,-measurable
for any t > 0, and {I(X)(¢, B)},» is cadlag. We write

I1(X)(t,B) = J: JB X (s,x) Z (ds,dx) . (45)

The following result will be used for the construction of
the integral. This result generalizes Lemma 3.3 of [1] to the
case of random fields and nonsymmetric measures .

Theorem 13. If X is a bounded simple process then

supA“P( sup |I(X) (¢, B)| > A)
450 te[0,T]
(46)

T
< caEJ J- |X (t, x)|"dx dt,
o Js

for any T > 0 and B € B, (R?), where c, is a constant
depending only on «.

Proof. Suppose that X is of the form (40). Since {I(X)
(t, B)}iepory is cadlag, it is separable. Without loss of gener-
ality, we assume that its separating set D can be written as
D = U, F, where (F,), is an increasing sequence of finite sets
containing the points (t;);—, . n. Hence,

p( sup |I(X)(t,B)| > A)

te[0,T] (47)

= lim P (maxlI(X) (t, B)| > A).
n—oo \ teF,

Fixn > 1.Denoteby 0 = s, < s; < . = 1 the points
of the set F,. Say t; = 5; forsome 0 =i, <i; <+ <iy.Then
each interval (t;,1;,,] can be written as the union of some
intervals of the form (s;, s, ]:

(to tn ) = U (5i>Sia1) > (48)
icly
where I} = {i;i, <i <i,,}. By (44),foranyk=0,...,N -1
andi € I,
I(X) (5141, B) = 1(X) (s, B)
(49)

x (Ay; N B)).

- ZYk] ((51’ S1+1

For anyi € I, let N; = my, and, forany j = 1,..., N,
define B;; = Yy, H;; = Ay, and Z;; = Z((s, 5411 % (H;; N B)).
With this notation, we have

I(X) (s, B) = 1(X) (s;,

N,
B) =) ByZy Vi=0,
j=1
(50)

7
Consequently, forany/ =1,...,m
-1
1(X) (s, B) = ) (I(X) (5341, B) = I (X) (s, B))
i=0
(51)
I-1 N;
= D BiZi.
i=0 j=1

Using (47) and (51), it is enough to prove that for any A >

> )\)
(52)

0)

First, note that

T
E J.o JB |X (s, x)|*dx ds
(53)

m—1 N; «
= Z (Si1 = 5:) ZE|/3;]' 'Hij n B| .
par i1

This follows from the definition (40) of X and (48), since
X(ta x) Z ZzeIk 1(s s,H](t) Z] 1ﬁ1]1H (x)

We now prove (52). Let W, = ijl BijZij. For the event
on the left-hand side, we consider its intersection with the

event {max.,.,,_;|W;| > A} and its complement. Hence, the
probability of this event can be bounded by

-1
P|W|>A

§

Iy
o

(54)
I

ZW1{|W|<A

+P< max >A>—I+H
0<l<m-1
We treat separately the two terms.
For the first term, we note that B; = (B;j);<jn, is F -

measurable and Z; = = (Z;j)1<j<n, is independent of F . By
Fubini’s theorem

m—1 N,
i=0 JRY =

i
> .XZ;
j 1

> )L) llﬂ,- (dx), (55)

where X = (x;),jcn, and Py is the law of B,.

; N
ijl x;Z;; for a fixed
X € RM. By Lemma 3, Z;; has a Sy (0(s;y — si)l/“lHij N
B|'/%, B,0) distribution. Since the sets (Hjj);<j<n, are disjoint,
the variables (Z;;),< <y, are independent. Using elementary

We examine the tail of U; =



properties of the stable distribution (Properties 1.2.1 and 1.2.3
of [18]), it follows that U; has a S, (o}, B/, 0) distribution with
parameters:

N;

« « «@

of = 0" (i1 =) ) || [Hy 0 B
Jj=1

(56)

N;
: san (x,) | |Fiy 0 8]

5.*=
Xl |0 B

By Lemma A.1 (Appendix A), there exists a constant ¢, > 0
such that

N
P(JU| > A) < A0 (s —s0) D |x;| " [Hy n B (57)
=
for any A > 0. Hence,
I<cA %"

m—1 N; o
Z (Sia1 = 5) ZElﬁq' |Hij N B'
i=0 =

(58)

T
=c, A "0“E J J |X (s, x)|“dx ds.
o JB

We now treat II. We consider three cases. For the first two
cases we deviate from the original argument of [1] since we do
not require that 3 = 0.

Case 1 (x < 1). Note that

HSP< max M; >A) (59)

0<l<m-1

! .
where {M; = Y. Wil ap F,, 50 < 1 < m—1}is
a submartingale. By the submartingale maximal inequality
(Theorem 35.3 of [23]),

P< max Ml>/\>< ~E(M,,,)

0<l<m-1

(60)

Wl

Z (l‘/vtl 1IW,~|5/\)~

i=0

>* |

Using the independence between Bi and Z, it follows that

E[|W] 1|w,~|sA]

Jt

Let U, = Zj\; x;Z;. Using (57) and Remark A.2
(Appendix A), we get

(61)

P; (d%).

i

L, vz 1an

" 1 -
E “Uil 1{|U,-ISA}] < Caaam/v (5101 = 5:)
(62)

N
X .lexj| |H;;n B
=
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Hence,

" 1 _
E [|Wl| 1|m|g)t] < Caffam)u “(si1 —51)

N, (63)
o
x Y E|By|" |Hyn B
1
From (59), (60), and (63), it follows that
1 T
II < c;a“—)t_“EJ J |X (s, x)|"dx ds. (64)
-« 0o JB

Case 2 (a > 1). We have

1I < P< max
o<l<m-1

=II'+11",

1

>,

i=0

>& +P< maxY>&>
2 0<l<m—1 2 (65)

where X; = Wiljw oy
IEWiljw<ny | F 11

We first treat the term II'. Note that {M, =
ZLO X;p Fg, 30 < 1 < m - 1} is a zero-mean square
integrable martingale, and

II'=P< max |M] >—>—izmz ( )

0<l<m-—1 i=0

- EWilyw<cyy | F¢]l and Y;

(66)
4 m-
/\. Z [Mfizlnms/\}]'

(Appendix A), we get

1 X;Z;j. Using (57) and Remark A.2

" 1 _
E [Uizl{IUiIS/\}] < ZCQU“T“AZ (5101 = 51)

N (67)
[0
x Y| |Hy 0 B
=
As in Case 1, we obtain that
E[W Liwyi<ny ] <go® 2_ (XAZ “(si1—53)
(68)

I\Ti
X ZIE|/3U| |H;nB|,
=
and hence
II' < 8o Z—A EJ J- |X (s, x)|"dx ds. (69)

We now treat II". Note that {N; = 21 o VpF, 30<1<
m — 1} is a semimartingale and hence, by the submartingale

inequality,

" < % ) = ZE (Y). (70)
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To evaluate E(Y;), we note that, for almost all w € Q,
E[Wilgwey | 7] (@)

(71)
=E Zﬁlj (w) Zz] {|z i Byi(w)

Zgl<a) |

due to the independence between Ei and Z;. We let U; =
Z] 'L %;Z;; with x; = B;(w). Since a > 1, E(U;) = 0. Using
(57) and Remark A 2, we obtain

E[Uyuien ]| = |E Uty ]| < E[1Ul 1]

* (04 1-
< CaaaﬁA MORERY 72)

N
X Zl|xj' |H;nB|.
p=

Hence, E(Y;) <
N,
i) X e E|B;|*|H;; N Bl and

o*(af/(@ - 1IA (s,

" o T a
II" <¢,0"——A"E |X (t, x)|%dx dt. (73)
a—-1 o JB

Case 3 (o = 1). In this case we assume that 8 = 0. Hence,
U; = Zi\il x;Z;; has a symmetric distribution for any x € RMN:,
Using (71), it follows that EW ljyen | F5]1 = 0as. for all
i=0,...,m— 1. Hence, {M, = ZLOMIHWSM,?SM;O <l<
m — 1} is a zero-mean square integrable martingale. By the
martingale maximal inequality,

H<Lp E[M; ]—imz_lE[Wzl ] (74)
AZ m-1] — AZ P i WA} ] -

The result follows using (68). O

We now proceed to the construction of the stochastic
integral. If Y = {Y(t)},5, is a jointly measurable random
process, we define

IYllg.r = sup AaP( sup |Y (8)] > /\) ) (75)
A>0

te[0,T]
Let X € &, be arbitrary. By Proposition 12, there exists a
sequence (X,,),~; of simple functions such that | X, - X[, —

0asn — co.LetT > 0and B € %, (R?) be fixed. By linearity
of the integral and Theorem 13,

“I (Xn) (~B)-1I (Xm) (5 B)"aT = ”X -X

—0,

(76)

mlers

as n,m — 00. In particular, the sequence {I(X,,)(:, B)}, is
Cauchy in probability in the space D[0, T] equipped with the
sup-norm. Therefore, there exists a random element Y (-, B) in
D[0, T] such that, for any A > 0,

(sup II(X,)B)-Y(t B)|>/\>—>0 (77)
te[0,T]

Moreover, there exists a subsequence (1), such that

sup |I(

Sup. )(t,B)—Y(t,B)'—>O as.  (78)

as k — oo. Hence, Y(t, B) is #,-measurable for any ¢t €
[0, T]. The process Y(-, B) does not depend on the sequence
(X,,),, and can be extended to a cadlag process on [0, 00),
which is unique up to indistinguishability. We denote this
extension by I(X)(-, B) and we write

I1(X)(t,B) = JZ JB X (s,x) Z (ds,dx) . (79)

If A and B are disjoint sets in %b(Rd), then
IX)(t,AUB) =1(X)(t,A)+I(X)(t,B) as. (80)
Lemma 14. Inequality (46) holds for any X € &Z,.

Proof. Let (X,,), be a sequence of simple functions such that
X, — Xll, — O0.For fixed B, we denote I(X) = I(X)(-, B).
We let | - ||, be the sup-norm on D[0, T']. For any € > 0, we
have

P(II(X)lg > A) < P(|I(X) -

(X))o
>A(1-¢).

> Ae)
+P (I (Xl
Multiplying by A* and using Theorem 13, we obtain
sup AP (I (X)llgo > A)
150

<& “sup A"P (JI(X) - I(X,)| o, > A) (82)
A>0

+(1- 8)_0‘C“||Xn““

o, T,B*

Let n - co. Using (76) one can prove that
sup, oA P(II(X,) - I(X)I,, > A) — 0. We obtain
that sup, ) A“P(II(X)lls > A) < (1 = &) ¢, IXllg 1. The

conclusion follows letting e — 0. O

For an arbitrary Borel set O ¢ R (possibly O = R%), we
assume, in addition, that X € £ satisfies the condition:

T
EJ J. |X (t, x)|*dx dt < co, VT >0. (83)
0o Jo

Then we can define I(X)(-, 0) as follows. Let O, = O N E,,
where (E,), is an increasing sequence of sets in %, (R?) such
that | J, E; = R By (80), Lemma 14, and (83),

sup A“P (Sup [1(X) (t, 6,) - 1(X) (£, 0,)| > A)
A>0 t<T (84)

T
< caEJ J |X (t, x)|*dx dt — 0,
0 JOL\0O;

as k,I — oco. This shows that {I(X)(-, O))}, is a Cauchy
sequence in probability in the space D[0,T] equipped with
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the sup-norm. We denote by I(X)(:, 0) its limit. As above,
this process can be extended to [0, c0) and I(X)(t, 0) is F,-
measurable for any ¢ > 0. We denote

[(X)(t,0) = Lt j@ X (s,x) Z (ds, dx) . (85)

Similarly, to Lemma 14, one can prove that, for any X € £,
satistying (83),

sup A“P <sup I (X)(t, 0)| > /\)
A>0 t<T
(86)

T
< C“EJ J | X (t, x)|“dx dt.
0 Jo

5. The Truncated Noise

For the study of nonlinear equations, we need to develop
a theory of stochastic integration with respect to another
process Z which is defined by removing from Z the jumps
whose modulus exceeds a fixed value K > 0. More precisely,

for any B € B,(R, x R?), we define

Zg (B) = J zN (ds,dx,dz), ifa<l, (87)
Bx{0<|z|<K}

Zx (B) = I zN (ds,dx,dz), ifa> 1. (88)
Bx{0<|z|<K}

We treat separately the cases « < 1 and o > 1.

5.1 The Case o < 1. Note that {Z,(B); B € B,(R, x R} is
an independently scattered random measure on R, x R? with
characteristic function given by

E(e"4<®) = exp {|B| J (e =1), (dz)}, Vu € R.
|

z|<K
(89)
We first examine the tail of Z(B).
Lemma 15. For any set B € B,(R, x RY),
sup AP (|Zic (B)] > A) < o B, (90)

where ry, > 0 is a constant depending only on o (given by
Lemma A.3).

Proof. This follows from Example 3.7 of [1]. We denote by
Vq x the restriction of v, to {z € R; 0 < |z| < K}. Note that

r*-K*% ifo<t<K,
, zeR;|z| >t}) = 91
i ({ lz| > t}) {0, ifrs K, (91
and hence sup,.t*v, ({z € R;lz| > t}) = 1. Next we

observe that we do not need to assume that the measure v,
is symmetric since we use a modified version of Lemma 2.1 of
[24] given by Lemma A.3 (Appendix A). O
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In fact, since the tail of v, ;- vanishes if t > K, we can
obtain another estimate for the tail of Z(B) which, together
with (90), will allow us to control its pth moment for p €
(«, 1). This new estimate is given below.

Lemma 16. If & < 1, then

o
1-«

Ifa =1, then P(|Zy(B)| > u) < K|B|u_2for allu > K.

P(|Zx (B)| > u) < K" |Blu!,

Yu>K. (92)

Proof. We use the same idea as in Example 3.7 of [1]. For each
k = 1, let Z; x(B) be a random variable with characteristic
function:

E("%x®) = exp {|B| j (e 1), (dz)} :
{

(93)

k'<|z|<K}

Since {Z; x (B)}, converges in distribution to Z(B), it suffices
to prove the lemma for Z; ;(B). Let g be the restriction of
v, to {zsk™' < |z| < K}. Since g is finite, Z; x(B) has a
compound Poisson distribution with

i} B" .
P(|Zx (B)| >u)=e |B|Mk(R)z%Mkn (212 > ).
n>0 "7

(94)

where y;" denotes the n-fold convolution. Note that

> u), (95)

where (#;);5; are i.i.d. random variables with law g /g (R).
Assume first that o« < 1. To compute P(| Y-, ;] > u) we
consider the intersection with the event {max,_;_,l7;| > u}
and its complement. Note that P(|;| > u) = 0 for any u > K.
Using this fact and Markov’s inequality, we obtain that, for

anyu > K,
P< >u>§P< >u>

1

< =Y Bl L) -
i1

Note that P(Jr;| > s) < (s = K*)/mw(R) if s < K. Hence,

foranyu > K

n

Z’?i

i=1

W (a2 > W) = [ (R)]”P(

n
D i<

i=1

Zﬂi

i=1

(96)

E(Wltyiza) < || POl > 9)ds= [Pl > 9)ds

< 1 o Kl—a
T R)1-«
(97)
Combining all these facts, we get that for any u > K
W (22l > u}) < [ (R)]"_I%Kl_“nu_l, (98)

and the conclusion follows from (94).
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Assume now that « = 1. In this case, E(r;1y, <) =
0 since #; has a symmetric distribution. Using Chebyshev’s
inequality this time, we obtain
u)

($a]0) <5

D il i< | >
i=1
1< 2
< FZE (’li l{lniISu})'
i=1

The result follows as above using the fact that, for any u > K,

n

Z’?i

i=1

(99)

E (] 1y100) < 2J sP (|| > )

© (100)
:ZJO sP( |r],|>s e (R
O
Lemmal7. Ifa < 1 then
E|Zx (B)|P < Ca)PKP_“ |B|  for anyp € (a,1), (101)

where C, , is a constant depending on o and p. If a = 1, then
E|Zg B)|f < C,KPM Bl for any p € (1,2), (102)
where C, is a constant depending on p.
Proof. Note that
[ee]
E|Zx (B = J P(|Zc (B > t)dt
’ (103)

—pJ P(|Zx (B)| > u) uf"'du.

We consider separately the integrals for u < K and u > K.
For the first integral we use (90):

K K
J p (IZK (B)l > u) P du < 74 |Bl J WPl gy,
0 0

(104)
=7, |B| KP *
For the second one we use Lemma 16: if « < 1 then
J P(|Zx (B)| > u) uf " du
K
o l-a © p-2
< —K 7 |B| u’ “du (105)
1-« K
fo4 _
= — —  _|B|KF™%,
(1-a)(1-p)
and if « = 1, then
(o)
J P(|Zx (B)| > u) ' du
K
(106)
<K|B|J uP>du = |B| —KP h
-p
O

1

We now proceed to the construction of the stochastic
integral with respect to Z. For this, we use the same method
as for Z. Note that S’FtZK C %,, where FftZK is the o-field
generated by Z ([0, s] x A) foralls € [0,f] and A € =%’,,(IR”Z).
For any B € %,(R%), we will work with a cadlag modification
of the Lévy process {Z(t, B) = Z([0,t] x B);t > 0}.

If X is a simple process given by (40), we define

I (X) (t,B) = L L X (%) Zy (ds,dx)  (107)

by the same formula (44) with Z replaced by Zy. The
following result shows that Ix(X)(t, B) has the same tail
behavior as I(X)(t, B).

Proposition 18. If X is a bounded simple process then

sup )L“P( sup |Ix (X) (¢, B)| > A)
A>0 te[0,T]
(108)

T
< dan J IX (¢, ) “dx dt,
0 JB

foranyT > 0and B € B,(R
ing only on a.

4y, where d is a constant depend-

Proof. As in the proof of Theorem 13, it is enough to prove

that
> /\)

<d A""mi (50— 5) S EI, [y 1 5]
= Ya P i+1 i = ij ij ’

o S Y67

10]1

(109)

where Z* = ZK((s,, $i+1] X (H;;N B)). This reduces to showing
that U; =y

any x € RM

i1 %5255 * satisfies an inequality similar to (57) for

i; that is,
P(U| > A) <dA™ (s, — S)Z'xj| |H ﬂB| (110)

for any A > 0, for some d; > 0. We first examine the tail of
Z; By (90),

) < 1o (Si1 —81) KA ™, (111)

where Ki; = |Hij N BJ. Letting um
forany u > 0,

= K;”"‘Zi*j, we obtain that,

P(|11ij| > u) <t (s —s)u™ Vj=1,...,N,. (112)

By Lemma A.3 (Appendix A), it follows that, for any A > 0,
N,
p
j=1

2 bjti

for any sequence (b )

I\Ii
’ A) <72 (i1 - 51) Z|bj|a“’ (113)
=i

n, of real numbers. Inequality (110)

.....

(with d* = r2) follows by applying this to b; = x;K;; Le, O
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In view of the previous result and Proposition 12, for any
process X € Z,, we can construct the integral

Ix (X) (¢, B) = L JBX(S, x) Z (ds, dx) (114)

in the same manner as I(X)(¢, B), and this integral satisfies
(108). If in addition the process X € £, satisfies (83), then
we can define the integral I} (X)(t, O) for an arbitrary Borel
set O ¢ R? (possibly © = R?). This integral will satisfy an
inequality similar to (108) with B replaced by O.

The appealing feature of I (X)(t, B) is that we can control
its moments, as shown by the next result.

Theorem 19. If « < 1, then for any p € (a, 1) and for any
X € .Sfp,

t
E|Ix (X) (t, B)|f < ca,pKP*“EJ I IX (s, x)Pdx ds, (115)

0 J
foranyt > 0 and B € B,(RY), where Cq,p is a constant

depending on o, p. If © ¢ R? is an arbitrary Borel set and
we assume, in addition, that the process X € £, satisfies

T
EJ J |X (s, x)[Pdxds < co, VT >0, (116)
0 Jo
then inequality (115) holds with B replaced by O.
Proof. Consider the following steps.

Step 1. Suppose that X is an elementary process of the form
(39). Then I (X)(t, B) = YZx(H) where H = (t Aa,t Ab] x
(ANB). Note that Z (H) is independent of & ,. Hence, Z (H)
is independent of Y. Let P, denote the law of Y. By Fubini’s
theorem,

E[YZy (H)|®

- pJ-O P(|YZx (H)| > u) u? ' du a17)

= p IR ( Lm P(|yZg (H)| > ) uﬂdu) P, (dy).

We evaluate the inner integral. We split this integral into two
parts, for u < K|y| and u > K]|y|, respectively. For the first
integral, we use (90). For the second one, we use Lemma 16.
Therefore, the inner integral is bounded by

Kiyl
ralyl* 11 |

(04

u—[x+p—ldu

+ ly| K™ |H|

l1-«a
© !
X J upfzduzca’PKP7“|y|P |H|,
K|y|
E[YZy (H)|" < pC,, K™ |H| E[Y|?

t
=C, KI'°E |X (s, x)|Pdx ds.
wp o JB
(118)
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Step 2. Suppose now that X is a simple process of the form
(40). Then X(t,x) = Zggl ZTz’l Xij(t,x) where Xij(t,x) =
l(ti>ti+1] (t)lAij (x)Y’]

Using the linearity of the integral, the inequality |a+b|? <
|al? +|b|?, and the result obtained in Step 1 for the elementary
processes X;;, we get

E|Ix (X) (¢, B)|f

N-1m;

<EY Z'IK (x;) @, B)'p

i=0 j=1

Neim (119)

< Ca,prﬂxE Z Z Lt L |Xij (s, x)|pdx ds

i=0 j=1

t
=C, K'“E |X (s, x)|Pdx ds.
wp 0 JB

Step 3. Let X € &, be arbitrary. By Proposition 12, there
exists a sequence (X,,), of bounded simple processes such
that ||X,, - XIIP — 0. Since &« < p, it follows that
X, — Xll, — 0.By the definition of I (X)(¢, B) there exists
a subsequence {r;}; such that {Iy(X,, )(t, B)}; converges to
I (X)(t, B) a.s. Using Fatou’s lemma and the result obtained
in Step 2 (for the simple processes X, ), we get

E|Ix (X) (¢, B)|F
< lim inf E|I (X,, ) (4, B)|"

- t » (120)
SCaPKP aliminfEJ J 'Xn (s,x)| dxds
i k— oo 0o JB k

t
= Co K" E j j |X (s, x)|Pdx ds.
0 JB

Step 4. Suppose that X € Z satisfles (116). Let O, = O N E;

where (E,), is an increasing sequence of sets in %, (R) such
that | ., B, = R By the definition of I(X)(t, 0), there
exists a subsequence (k;); such that {I(X)(t, @k,.)}i converges
to I (X)(t, 0) a.s. Using Fatou’s lemma, the result obtained in
Step 3 (for B = 0 ) and the monotone convergence theorem,
we get

E|I¢ (X) (¢, 0)|
< liIE)infE|IK (X) (t’ @ki)'P

t

121
< C, ,KP*liminf E J 12

J |X (s, x)|Pdx ds
0 o,

t
= C, K" E J J |X (s, x)|Pdx ds.
0Jo
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Remark 20. Finding a similar moment inequality for the
casesa = 1 and p € (1,2) remains an open problem.
The argument used in Step 2 above relies on the fact that
p < 1. Unfortunately, we could not find another argument
to cover the case p > 1.

5.2. 'The Case «>1. In this case, the construction of the
integral with respect to Z relies on an integral with respect
to N which exists in the literature. We recall briefly the
definition of this integral. For more details, see Section 1.2.2
of [6], Section 24.2 of [25], or Section 8.7 of [12].

Let E = R x (R\ {0}) endowed with the measure
pldx, dz) = dxv,(dz) and let %8, (E) be the class of bounded
Borel sets in E. For a simple process Y = {Y(¢,x,2);t > 0,

(x,z) € [E}, the integral w (Y)(t, B) is defined in Ehe usual
way, for any t > 0, B € 3B,(E). The process YY), B)
is a (cadlag) zero-mean square-integrable martingale with
quadratic variation

—~ t
(M), =J J 1Y (5, % 2)°N (ds, dx,dz)  (122)
o JB
and predictable quadratic variation

(M my, B)) = Lt L 1Y (s, %, 2)Pv, (d2) dxds.  (123)

By approximation, this integral can be extended to the class
of all ? x B(R \ {0})-measurable processes Y such that for
any T > 0 and B € %B,(E)

T

Y055 = EJ I Y (s, x,2)|*v, (dz) dx ds < co. (124)
B

0
The integral is a martingale with the same quadratic
variations as above and has the isometry property:
EIIN(Y)(, B)* = Y15 1.5. If. in addition, [[Y]|, ¢ < 0o, then
the integral can be extended to E. By the Burkholder-Davis-
Gundy inequality for discontinuous martingales, for any
p>1,
N p N p/2
Esup|l™ () (1, [E)‘ stE[IN () (.,[E)] .
t<T T

(125)

The previous inequality is not suitable for our purposes.
A more convenient inequality can be obtained for another
stochastic integral, constructed for p € [1,2] fixed, as
suggested on page 293 of [6]. More precisely, one can show
that, for any bounded simple process Y,

Esup|l™ (V) (&, E)’P

t<T

<oyr
0

T
j J Y (t, %, 2)|Pv, (dz)dxde  (126)
R JR\{0}

— Y|P
= Y], e

where C,, is the constant appearing in (125) (see Lemma 8.22
of [12]).
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By the usual procedure, the integral can be extended to
the class of all 2 x (R \ {0})-measurable processes Y such
that [Y], g < co. The integral is defined as an element in the

space LP(Q; D[0, T]) and will be denoted by

— t -
N (V) (L E) = L de jR\{O} Y (s,x,2) N (ds, dx, dz) .
(127)

Its appealing feature is that it satisfies inequality (126).
From now on, we fix p € [1,2]. Based on (88), for any
Be %b(Rd), we let

t
Iy (X)(t,B) = L JB X (s,x) Z (ds, dx)
(128)

0

t
- J J- J X (s,x) zN (ds, dx, dz),
B J{|z|<K}

for any predictable process X = {X(t,x);t > 0,x € R}
for which the rightmost integral is well defined. Letting
Y(t, x,2) = X(t )zl ), <x}> We see that this is equivalent
to saying that p > a and X € Z,,. By (126),

T
Esup|Ix (X) (t, B)|f SC“,PKP_O‘EJ' j |X (s, x)|Pdx ds,
t<T o Js
(129)

whereC, , = C,a/(p—a).If, in addition, the process X € &,
satisfies (116) then (129) holds with B replaced by O, for an
arbitrary Borel set 0 c R?,

Note that (129) is the counterpart of (115) for the case o >
1. Together, these two inequalities will play a crucial role in
Section 6.

Table 1 summarizes all the conditions.

6. The Main Result

In this section, we state and prove the main result regarding
the existence of a mild solution of (1). For this result, @ is a
bounded domain in R?. For any ¢ > 0, we denote

I, () = supj G(t, x, y)’dy. (130)
x€0 JO

Theorem 21. Let « € (0,2), o # 1. Assume that for any T > 0

T
;}imoj J|G(t,x,y)—G(t+h,x,y)|pdydt:0, Vx € 0,
—-0lo Jo

131

T
lim J J |G(t, x,¥)—G(t,x +h, y)|de dt =0, VxeO,
)

lhl—0 Jo
(132)
T
j J,(®)dt < oo, (133)
0

for some p € (a,1) ifx < 1, or for some p € («,2] if x > 1.
Then (1) has a mild solution. Moreover, there exists a sequence
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TasLE 1: Conditions for I (X)(t, B) to be well defined.

a<l1 a>1
B is bounded XeZ, XeZ,
for some p € («, 2]

. X eZ, and
B=0is XeZ,and X e
unbounded satisfies (83) X satisfies (116)

for some p € («,2]

(Tx)k>1 Of stopping times with T, T 00 a.s. such that, for any
T>0andK > 1,

sup  E(|u(t, x)P1jery) < 00

(t,x)€[0,TIxO (134)

Example 22 (heat equation). Let L = 0/0t — (1/2)A. Then
G(t,x,y) < G(t, x — y) where G(t, x) is the fundamental
solution of Lu = 0 on R?. Condition (133) holds if p <
1 +2/d. If « < 1, this condition holds for any p € (a,1).
If « > 1, this condition holds for any p € («,1 + 2/d],
as long as « satisfies (6). Conditions (131) and (132) hold by
the continuity of the function G in t and x, by applying the
dominated convergence theorem. To justify the application
of this theorem, we use the trivial bound (27rt)_dp 2 for both
G(t +h, x, y)? and G(t, x + h, y)?, which introduces the extra
condition dp < 2. Unfortunately, we could not find another
argument for proving these two conditions (In the case of the
heat equation on R Lemmas A.2 and A.3 of [6] estimate the
integrals appearing in (132) and (131), with p = 1 in (131).
These arguments rely on the structure of G and cannot be
used when O is a bounded domain.).

Example 23 (parabolic equations). Let L = 0/0t—% where &
is given by (31). Assuming (32), we see that (133) holds if p <
1 + 2/d. The same comments as for the heat equation apply
here as well (Although in a different framework, a condition
similar to (131) was probably used in the proof of Theorem
12.11 of [12] (page 217) for the claim lim,_, E[J5(X)(s) —
T (X)(®) Iip © = 0. We could not see how to justify this claim,
unless dp < 2.).

Example 24 (heat equation with fractional power of the
Laplacian). Let L = 0/0t + (—~A) for some y > 0. By Lemma
B.23 of [12], if « > 1, then condition (133) holds for any
p € (o, 1+2y/d), provided that « satisfies (36) ('This condition
is the same as in Theorem 12.19 of [12], which examines the
same equation using the approach based on Hilbert-space
valued solution.).

To verify conditions (131) and (132), we use the continuity
of G in t and x and apply the dominated convergence
theorem. To justify the application of this theorem, we use
the trivial bound C,,t /" for both G(t + h,x, y)? and

G(t,x + h, y)p , which introduces the extra condition dp <
2y. This bound can be seen from (33), using the fact that

Z(t,x,y) < Gt x — y) where & and Z are the fundamental
solutions of /0t — Au = 0 on 6 and R?, respectively. (In the
case of the same equation on R, elementary estimates for the
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time and space increments of G can be obtained directly from
(35), as on page 196 of [26]. These arguments cannot be used
when 0 is a bounded domain.)

The remaining part of this section is dedicated to the
proof of Theorem 21. The idea is to solve first the equation
with the truncated noise Zy (yielding a mild solution uy)
and then identify a sequence (7x)gs; of stopping times with
Tx T o0 as. such that, forany t > 0, x € O,and L > K,
ug(t,x) = wu;(t,x) as. on the event {t < 7g}. The final
step is to show that process u defined by u(t, x) = ug(t, x)
on {t < 7} is a mild solution of (1). A similar method
can be found in Section 9.7 of [12] using an approach based
on stochastic integration of operator-valued processes, with
respect to Hilbert-space-valued processes, which is different
from our approach.

Since o is a Lipschitz function, there exists a constant
C, > 0 such that

low)—oW)| <C,lu-v|, VuveR. (135)
In particular, letting D, = C, V |0(0)|, we have
o) <D, (1+ul), YueR. (136)

For the proof of Theorem 21, we need a specific construc-
tion of the Poisson random measure N, taken from [13]. We
review briefly this construction.

Let (O));>; be a partition of R? with sets in %b(Rd) and
let (Uj)jZl be a partition of R \ {0} such that va(Uj) < 00
for all j > 1. We may take U; = I, forall j > 1

Let (E{ K XIJ x Z{ ’k)i) k=1 be independent random variables
defined on a probability space (2, %, P), such that

P(E >t)=¢?#,  P(X/*eB)= %,
k
rny) (137)
jik nyj
P(zl"er)= o]

where A, = [0y, (U)). Let T/* = ¥ E}* foralli > 1.
Then

N = Z 8(,1«{1‘,k’X;'1',k)Z;‘1',k)

ijk>1 (138)
is a Poisson random measure on R, x R x (R \ {0}) with
intensity dtdxv,(dz).

This section is organized as follows. In Section 6.1 we
prove the existence of the solution of the equation with
truncated noise Zy. Sections 6.2 and 6.3 contain the proof
of Theorem 21 when & < 1 and & > 1, respectively.

6.1. The Equation with Truncated Noise. In this section, we fix
K > 0 and we consider the equation:

Lu(t,x) =0 u(t,x) Zg (t,x), t>0,x€0 (139)

with zero initial conditions and Dirichlet boundary condi-
tions. A mild solution of (139) is a predictable process u which
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satisfies (2) with Z replaced by Z. For the next result, O can
be a bounded domain in R? or © = R? (with no boundary
conditions).

Theorem 25. Under the assumptions of Theorem 21, (139) has
a unique mild solution u = {u(t,x);t > 0,x € O}. For any
T >0,

sup  Elu(t,x)|? < oo,

(t.x)€[0,T]x0 (140)

and the map (t, x) — u(t, x) is continuous from [0, T] x O into
LP(Q).

Proof. We use the same argument as in the proof of Theorem
13 of [27], based on a Picard iteration scheme. We define
uy(t,x) = 0 and

oy (5) = || Gt =5.%.9)0 (1, 5, )) Zi (ds.dy)
(141)

foranyn > 0. We prove by induction onn > 0 that (i) u,,(t, x)
is well defined; (ii) K,,(t) = sup, \yc(o.r1x0Elta(t; )P < 00
for any T' > 0; (iii) u, (¢, x) is F,-measurable for any t > 0
and x € O; (iv) the map (¢, x) — u, (f, x) is continuous from
[0,T] x O into L¥(Q) for any T > 0.

The statement is trivial for n = 0. For the induction
step, assume that the statement is true for . By an extension
to random fields of Theorem 30, Chapter IV of [28], u, has
a jointly measurable modification. Since this modification
is (#,),-adapted (in the sense of (iii)), it has a predictable
modification (using an extension of Proposition 3.21 of [12]
to random fields). We work with this modification, that we
call also u,,.

We prove that (i)-(iv) hold for u,,, ;. To show (i), it suffices
to prove that X, € £, where X,(s,y) = 14(s)G(t -
s, %, ¥)o(u,(s, y)). By (136) and (133),

EJ j X, (s, )| dy ds
07 (142)

t
< DP2PN (14K, (1) J J, (t=s)ds < co.
0

In addition, if ® = R%, we have to prove that X, satisfies (83)
ifa < 1, or (116) if « > 1 (see Table 1). If & < 1, this follows as
above, since a < p and hence sup(, )cjo <o Elu(t, X)|* < 00
the argument for « > 1 is similar.

Combined with the moment inequality (115) (or (129)),
this proves (ii), since

Elu,,,, (t, x)lp

¢ (143)
< Ca,pKP*an;zP*l (1+K,()) I ], (t—s)ds,
0

for any x € O. Property (iii) follows by the construction of
the integral I

To prove (iv), we first show the right continuity in ¢. Let
h > 0. Writing the interval [0, + k] as the union of [0, ]
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and (t,t + h], we obtain that E|u,,,(t + h, x) — u,,,(t x)|f <
2P71(1,(h) + L (h)), where

I (h)=E L L(G(t+h—s,x,y)—G(t—s,x,y))
p
x 0 (u, (5, ) Zx (ds,dy) | ,
t+h (144)
L (h=E L J@G(t+h—s,x,y)0
p

x (u, (s, )) Zi (ds, dy)

Using again (136) and the moment inequality (115) (or (129)),
we obtain

I, (h) < DP2P71 (1 + K, (1))

t
X J J |G (s+hx,y) -G (sx )| dyds,
0 (145)
L (h) < D271 (14K, (1)

h
X J J G(s, x, y)’dy ds.
0 Jo
It follows that both I,(h) and I,(h) converge to 0 as h —
0, using (131) for I,(h) and the Dominated Convergence
Theorem and (133) for I,(h), respectively. The left continuity
in t is similar, by writing the interval [0, t — /] as the difference
between [0, t] and (t — h, t] for h > 0. For the continuity in x,
similarly as above, we see that E|u,,,, (¢, x + h) —u,,,, (£, x)|? is
bounded by

DP2PH (14K, (1))
t (146)
X I J- |G (s,x +h,y) -G (s,x, )|Pdyds,
0 Jo

which converges to 0 as [h| — 0 due to (132). This finishes
the proof of (iv).

We denote M,,(t) = sup,.,Elu,(t, x)|F. Similarly to (143),
we have

M, () <C, Lt (1+ M, ()], (t~s)ds, Vn=z1, (147)

where C; = Ca)PKP_“D§2P_1. By applying Lemma 15 of
Erratum to [27] with f, = M,, k; = 0,k, = 1, and g(s) =
CJ P(S)’ we obtain that

sup sup M, (t) < oo, VT >0.

n=0t€[0,T] (148)

We now prove that {u,(t, x)},, converges in LF(Q), uni-
formly in (t,x) € [0,T] x O. To see this, let U,(t) =
SUp o Elt, 1 (£, x) — u,, (£, x)|? for n > 0. Using the moment
inequality (115) (or (129)) and (135), we have

t

U, () <C, J Up1 ()], (E—5) ds,

0

(149)
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where C, = C, ,KP"*Cl. By Lemma 15 of Erratum to [27],

20 Un(t)l/ P converges uniformly on [0,T] (Note that this
lemma is valid for all p > 0.).

We denote by u(t, x) the limit of u,(t, x) in L (Q2). One
can show that u satisfies properties (ii)-(iv) listed above. So u
has a predictable modification. This modification is a solution
of (139). To prove uniqueness, let v be another solution and
denote H(t) = sup, .o Elu(t, x) — v(t, x)|?. Then

t

H) < czj H($) ], (t - ) ds. (150)
0

Using (133), it follows that H(¢) = 0 for all ¢ > 0. O

6.2. Proof of Theorem 21: Case a<1. In this case, for any t > 0
and B € %b(Rd), we have (see (21))

Z(t,B) = J zN (ds,dx,dz) . (151)

[0,£]xBx(R\{0})

The characteristic function of Z(¢, B) is given by

B (2B _ { BJ 1)y, (d })
(e ) exp 1t |B| R\{()}(e 1)1/ (dz)

Yu € R.

(152)

Note that {Z(t, B)},, is not a compound Poisson process
since v, is infinite.

We introduce the stopping times (7x)g~;, as on page 239
of [13]:

Tk (B) = inf {t > 0;|Z (¢, B) — Z (t—, B)| > K}, (153)

where Z(t-, B) = limg,Z(s, B). Clearly, 7;(B) > 1¢(B) for all
L>K.

We first investigate the relationship between Z and Zy
and the properties of 7,(B). Using construction (138) of N
and definition (87) of Z, we have

ik ik
ZtB)= ) 7 Lot Likepy = Yz, B),
i,jk>1 ' ' k=1

Ly ik
Zx B = ) Z g Liran Logreny
ijk=1

(154)

We observe that {Z"*(t, B)},., is a compound Poisson
process with

E (eiuz/"k(t,B))

:exp{t|@kﬂB|J (ei"z—l)va(dz)]», Yu € R.
U.

J

(155)

Note that 1x(B) > T means that all the jumps of

{Z(t, B)};5¢ in [0, T] are smaller than K in modulus; that is,

{tx(B) > T} = {w; IZf’k(w)I < K for all 4, j,k > 1 for which
Tij’k(w) < T and X{’k(w) € B}. Hence, on {r(B) > T},

Z([0,t] x A) = Zx ([0,£] x A) = Z, ([0,t] x A),  (156)
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forany L > K,t € [0,T],and A € %b(Rd) with A C B.
Using an approximation argument and the construction of
the integrals I(X) and I (X)), it follows that, for any X € &,
and for any L > K, a.s. on {7 (B) > T}, we have

I(X)(T,B) = Ix (X) (T, B) = I (X) (T, B).. (157)

The next result gives the probability of the event {Tx(B) >
T}

Lemma 26. Forany T > 0 and B € %,(R%),

P(1x (B)>T)=exp(-T|BIK ™). (158)

Consequently, limg_,  P(zx(B) > T) = 1 and

limg _, .7k (B) = 00 a.s.
Proof. Note that {t(B) > T} = ﬂj)kzl{‘rljgk(B) > T}, where
o (B) = inf {t > 0;|Z7* (t, B) - Z* (-, B)| > K} . (159)

Since v,({zzlzl > KP) = K and (1f(B))js are
independent, it is enough to prove that, for any j, k > 1,

P (" (B)>T) = exp {-T|BN O, ({z: 121 > K} nU;)}
(160)

Note that {r}*(B) > T} = {w;|Z*(w)| < K for all i

for which Tij * < Tand X{ * ¢ B} and (T,{’k)n21 are the jump
times of a Poisson process with intensity A ;. Hence,

P(d*(B)>T)
-YY 3 p(rrer<ri)
n=>0 m=0 Ic{1,...,n},card(I)=m

_ ze—Aj,kT (’\j,k!T)n

n=0 n

x[1-P(x}* e B)P (|21 > )]
= exp{-A, TP (X" € B) P (|2 > K)},
which yields (160).
To prove the last statement, let A(k") = {1 (B) > n}. Then

P(EKA(;)) > EKP(A(I?)) = 1 forany n > 1, and hence

P((Nps1 EKA(I?)) = 1. Hence, with probability 1, for any
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n, there exists some K, such that 7x > n. Since (1) is
nondecreasing, this proves that 7, — ©o0 with probability
L. O

Remark 27, The construction of 7y (B) given above is due
to [13] (in the case of a symmetric measure v,). This
construction relies on the fact that B is a bounded set. Since
Z(t,R%) (and consequently TK(Rd)) is not well defined, we
could not see why this construction can also be used when
B = RY as it is claimed in [13]. To avoid this difficulty,
one could try to use an increasing sequence (E,), of sets in
B,(RY) with |J, E, = RY. Using (157) with B = E, and
letting n — 00, we obtain that I(X)(t, RY) = Ix(t, R%)
as. on {t < 7}, where ¢ = inf, 7x(E,). But P(tx >
) < Plim,{te(E,) > 1) < lLm,Prg(E,) > 1) =
lim, exp(—t|E,|K™®) = 0 for any ¢t > 0, which means that
Tx = 0 a.s. Finding a suitable sequence (7x)g of stopping
times which could be used in the case ®© = R“ remains an
open problem.

In what follows, we denote 7 = Tk(0). Let ug be
the solution of (139), whose existence is guaranteed by
Theorem 25.

Lemma 28. Under the assumptions of Theorem 21, for any t >
0,x€0,andL > K,

ug (t,x) =u; (t,x) as.on{t<tg}. (162)

Proof. By the definition of u; and (157),
t
up (t,x) = L J@ G(t-sx,y)0(u;(s,y)Z; (ds,dy)
t
= | ] 6= sx3)0 (g (5. ) 2 (ds.y)
(163)
a.s. on the event {t < 7x}. Using the definition of uy and
Proposition C.1 (Appendix C), we obtain that, with probabil-
ity 1,

(uge (8, %) = up (6, %)) Lypar

t
= l{tS‘rK}J J G(t-sxy)
0Jo

x (0 (ug (s, ) =0 (ur (s, 9)))
X Lser 1 Zx (ds, dy).

(164)

Let M(t) = sup, ., E(lug(t, x) — u(t, x)[P 1, ;). Using
the moment inequality (115) and the Lipschitz condition
(135), we get

M((t)<C Jt I (t —s) M (s) ds, (165)
0

where C = C, ,KP™*CP. Using (133), it follows that M(t) = 0
forallt > 0. O
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Foranyt > Oand x € O, let O, = [klt <
T (1), ug (t, x) # uy (t, x)}, where L and K are positive integers.
Let Q; = Q, N {limg_, 7 = 00}

By Lemmas 26 and 28, P(Q;,) = 1.

The next result concludes the proof of Theorem 21.

Proposition 29. Under the assumptions of Theorem 21, the
process u = {u(t,x);t > 0, x € O} defined by

u(w,t,x) = ug (w,t,x), if weQ,, t<1g(w)

(166)
u(w,t,x) =0, if w¢Q,
is a mild solution of (1).
Proof. We first prove that u is predictable. Note that
u(t,x) = Kli_r)noo (uK (t, x) l{tS‘rK}) lo: . (167)

The process X(w,t,x) = 1y, 1(w) is clearly predictable,
being in the class € defined in Remark 11. By the definition
of Q, ,, since uy, u; are predictable, it follows that (w, ¢, x) —
lo: (w) is P-measurable. Hence, u is predictable.

We now prove that u satisfies (2). Let# > 0O and x € O
be arbitrary. Using (157) and Proposition C.1 (Appendix C),
with probability 1, we have

Lipergu (£, X)

= lyer Uk (t, x)
t
= ljyary J J G(t-sxy)o
0Jo
x (ug (s, y)) Zx (ds, dy)
t
= ljyery J J@G(t -5xY)0

0
x (ug (5, ) Z (ds, dy)
(168)

t
= ljyery Jo J@ G(t-sxy)o

X (g (5, 7)) Lsery Z (ds, dy)

t
= l{tSTK}J J G(t-sxy)o
0 Jo

x (4 (5, 3)) Lisery Z (ds, dy)

t
= l{ter}J J G(t-sxy)o
0 Jo

x (u(s, y)) Z (ds,dy).

For the second last equality, we used the fact that processes
X(s,y) = 119 (8)G(t = 5, x, y)o(ug(s, J’))l{sng} and Y (s, y) =
10,1 ($)G(t =, x, y)o(u(s, y))1 (s, are modifications of each
other (ie, X(s,y) = Y(s,y) as. forall s > 0, y € 0), and,
hence, [X -~ Y],; s = 0 and I(X)(t, 0) = I(Y)(t, 0) a.s. The
conclusion follows letting K — oo, since 7x — ocoas. [
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6.3. Proof of Theorem 21: Case «>1. In this case, foranyt > 0
and B € %‘b(le), we have (see (22))

zN (ds, dx, dz).
[0,t]xBx(R\{0})

Z(t,B) = j (169)

To introduce the stopping times (7x)g>; we use the same
idea as in Section 9.7 of [12].

Let M(t,B) = ijl(Lj(t, B) - EL(t,B)) and P(t,B) =
L,(t, B), where Lj(t, B) = Lj([O, t] x B) was defined in
Section 2. Note that {M(t,B)},, is a zero-mean square-
integrable martingale and {P(t, B)},. is a compound Poisson
process with E[P(t, B)] = t|Blu where y = [ zv,(dz) =
Bla/(x — 1)). With this notation,

Z(t,B) = M (t,B) + P (t,B) —t |B| p. (170)

We let M (t,B) = Py(t,B) — E[Px(t,B)] = Px(t,B) —
t|B|ug, where

Pe(tB) = | e N [@s,dx,dz)  (171)

[0,£]xBx(R\{0})

and pg = J1<|z|<K zv,(dz). Recalling definition (88) of Z, it
follows that

Zy (t,B) = M (t, B) + Px (t, B) — t | B| p. (172)
For any K > 0, we let
Tg (B) = inf {t > 0;|P (t, B) — P (t—, B)| > K}, (173)

where P(t—, B) = lim,P(s, B).

Lemma 26 holds again, but its proof is simpler than in the
case « < 1, since {P(t, B)},5, is a compound Poisson process.
By (138),

- ik . .
P(t,B) = ) Z] Lyzi i Lty L eny
i,j,k=>1

— ik . . .
Py t.B) = Z Zi 1{1<|Zf’k|sK}l{Ti]’kst}l{X{’keB}’
i,jk>1

(174)

Hence, on {tx(B) > T}, forany L > K, t € [0,T], and A €
B,(R?) with A ¢ B,

P ([0,t] x A) = P ([0,t] x A) = P, ([0,£] x A).  (175)
Letbg = p— g = [ 27(d2). Using (170) and (172), it
follows that

Z([0,4] x A) = Zx ([0, ] x A) — £ |A] be
(176)
= 7, ([0,] x A) ~ £ |Al b,

forany L > K, t € [0,T],and A € %’b(Rd) with A C B. Let
P € (e, 2] be fixed. Using an approximation argument and the
construction of the integrals I(X) and I (X), it follows that,
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forany X € £, and for any L > K, a.s. on {ry(B) > T}, we
have

T

IO (1) = 1 (0 (T.B) - b |

0

j X (s,y)dyds
’ (177)

T
=1, (X)(T,B) - b, L J@X(s,y) dyds.

We denote 7y
equation:

= 1¢(0). We consider the following

Lu(t,x) =0 u(t,x)) Zg (t, x) — beo (u(t, x)), 78)
t>0, xeO

with zero initial conditions and Dirichlet boundary condi-
tions. A mild solution of (178) is a predictable process u which
satisfies

w0 = [ [ Gl sx)ouls) Zi (dsdy)

- by r J G(t-sxy)o(u(s,y))dyds as.
0 179)

foranyt > 0, x € O. The existence and uniqueness of a mild
solution of (178) can be proved similarly to Theorem 25. We
omit these details. We denote this solution by vi.

Lemma 30. Under the assumptions of Theorem 21, for any t >
0,x€0,andL > K,
(180)

Proof. By the definition of v; and (177), a.s. on the event {t <
T}, vi(t, x) is equal to

Lt J@ G(t-sxy)o(v, (s y))Z, (ds,dy)

v (t,x) = v, (t,x) as. on {t <1¢}.

o[ [ G500 (5)dys
0 (181)

= Lt J@ G(t-sxy)0(v (s y)) Zk (ds,dy)

- bg J: J-@ G(t-s,xy)o(v, (s, y))dyds.

Using the definition of v and Proposition C.1
(Appendix C), we obtain that, with probability 1,

(vi (£,x) = vy (£, %)) Licry)
e ([ [ 605200 @ G5
= (7 (59) e Zc ()

_ Jt J@G(t -5%y) (0 (vg (s 9)))

0

0 (7 (53)) Ty ds ).
(182)
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Letting M(t) = sup, ., E(|vi(t, x) = v, (t, )P 1y ) We
see that M(t) < 2P"Y(E|A(t, x)|P + E|B(t, x)|?) where

A0 = [ [ G55 (00
=0 (15D Ly Zi (s ).

B0 = [ G520 0 (s2)

(183)

-0 (VL (5’ )/)) 1{SSTK}dy ds.

We estimate separately the two terms. For the first
term, we use the moment inequality (129) and the Lipschitz
condition (135). We get

t
sup E|A (t, x)[F < CJ J, (t = 5) M (s)ds, (184)
0

x€0
where C = C, ,K? “CP. For the second term, we use Holder’s
inequality | [ fgdul < ([ If1Pdw) ([ |gl%du)"'* with
fls,9) = Gt = s,%, )P (a(vg(s, ) - o(vy(s, I e
and g(s, y) = G(t — s, x, )"/, where p~' + g ! = 1. Hence,

p/
B (t, x)|P < CPKP

thJ@G(t—s,x,y)

0

x [vic (5,9) = vy (5 )| Lsery dy ds,
(185)
where K, = Jg J1(s)ds < oo (Since O is a bounded set, J,(s) <
CJ p(s)l/ P where C is a constant depending on | 0] and p. Since

p > L [y 1,(9)"7ds < o[ ],(s)ds)"" < co by (133). This
shows that K, < 00.). Therefore,

t
sup E|B (¢, x)|P < C, J J, (t—s)M(s)ds,
xe0 0

(186)
where C, = C?K? /4 From (184) and (186), we obtain that

t
MO <Cl[ (-4 ) a-9)MEds 07

where C, = 2P7'(C v C,). This implies that M(t) = 0 for all
t>0. U

Foranyt > Oand x € O, welet O, = [ ¢lt <
Tie> Vi (t, x) # v (¢, x)} where K and L are positive integers,
and Q;, = Q,, n {limg_ 7% = oo}. By Lemma 30,
PQ;,) =1

t,x

Proposition 31. Under the assumptions of Theorem 21, the
process u = {u(t, x);t > 0, x € O} defined by

u(w t,x) = vg (,t,x), if weQ, t <1 (w),
(188)
u(w,t,x) =0, if w¢Q,

is a mild solution of (1).
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Proof. We proceed as in the proof of Proposition 29. In this
case, with probability 1, we have

I{tgr,(}” (t, x)

e (], [ 695000 u(s. ) Z ds)

- by Jot J@ G(t-sxy)o(u(sy)) dyds) .
(189)

The conclusion follows letting K — 00, since 7x — 00 a.s.
and by — 0. O

Appendices

A. Some Auxiliary Results

The following result is used in the proof of Theorem 13.

Lemma A.l. If X has a S, (0, 8,0) distribution then

AP (IX| > A) <c 0%, VYA>0, (A

where c;, > 0 is a constant depending only on a.

Proof. Consider the following steps.

Step 1. We first prove the result for ¢ = 1. We treat only
the right tail, with the left tail being similar. We denote X by
X to emphasize the dependence on f3. By Property 1.2.15 of
(18], limA_mo)L“P(Xﬁ > 1) = C,((1+ B)/2), where C, =

(IOOO x %sin xdx)~'. We use the fact that, for any 8 € [-1,1],

P(Xz>A)<P(X;>1), VA>2A, (A.2)
for some A, > 0 (see Property 1.2.14 of [18] or Section 1.5 of
[29]). Since lim, _, (L A®P(X, > A) = C,, there exists A}, > A,
such that

A*P(X, >A)<2C,, VA>A.L (A3)
It follows that A*P(Xg > A) < 2C, forall A > A and f €
[-1,1]. Clearly, forall A € (0, ] and 8 € [-1,1], /\"‘P(Xﬁ >
A) <A%< (A%

Step 2. We now consider the general case. Since X /o has a
S,(1, 3,0) distribution, by Step 1, it follows that A*P(|X| >
oA) < ¢, forany A > 0. The conclusion follows multiplying
by o“.

In the proof of Theorem 13 and Lemma A.3 below, we
use the following remark, due to Adam Jakubowski (personal
communication).
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Remark A.2. Let X be a random variable such that P(|X| >
A) < KA *forall A > 0, for some K > 0 and « € (0, 2). Then,
forany A > 0,

A
E(IX] 1yxen) < j P(X] > t)dt
1 _
<K——AY ifa<l,
1-«

(o]
E(IX|1yx54) < J P(|X|>t)dt + AP(|X]| > A)
A (A.4)
<KL A" ifa>1,
a—1

A
E(X*1yxjen) < 2 L tP(|1X| > t)dt

2 2-«
<K——A"", forany a € (0,2).
- y a € (0,2)

The next result is a generalization of Lemma 2.1 of [24]
to the case of nonsymmetric random variables. This result is
used in the proof of Lemma 15 and Proposition 18.

Lemma A.3. Let (1)~ be independent random variables
such that

sup A%p (II’]kl > A) <K, Vk>1 (AS)
A>0

for some K > 0 and a € (0,2). If « > 1, we assume that
E(n) = 0 for all k, and, if « = 1, we assume that n has a
symmetric distribution for all k. Then for any sequence (a;); s
of real numbers, we have

Zak’?k

k>1

(A.6)
A>0

sup A“P <

> A) <1 K |l

k>1

where r, > 0 is a constant depending only on a.

Proof. We consider the intersection of the event on the left-
hand side of (A.6) with the event {sup,.,|a;#;| > A} and its
complement. Hence,

P( > agn| > )t)

k>1
< ZP(|ak71k| > A) +P<

k>1

Zaknkl{laquls/\}
k=1

. /\) (A7)

=I+1I

Using (A.5), we have I < KA™ Y., |a|*. To treat II, we
consider 3 cases.

Case 1 (a < 1). By Markov’s inequality and Remark A.2, we
have

1 1
1< 5> el E (el Ljaien) < Ke—o A X lal”

k>1 k>1
(A.8)
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Case 2 (OC > 1) Let X = Zkzl aki/]kl{laknkls/\}. Since E(Zkzl
a1) = 0,

|E(X)| =

E (Zak"]kl{luknkb)t})

k>1

S Z |a| E (|’1k| 1{|akr]k|>/\}) (A.9)

k=1

< ﬁA17“Z|ak|a,
a-1 k=1

where we used Remark A.2 for the last inequality. From here,
we infer that

|E(X)| < %, for any A > A, (A.10)

where A% = 2K(a/( — 1)) Yjs; lagl®. By Chebyshev’s
inequality, for any A > A,

II=P(X|>A) <P(X-E(X)|>A-|EX)])

IN

4 2 4 2 2
SEX-EX)|" <= ) aE(nl 2
22 /\2]; k ( k*{lagml< }) (A1)

IN

8K . _
— « |61k|(x,
2-« ];

using Remark A.2 for the last inequality. On the other hand,
ifA e (0,A,],

_ [24 - «

II=P(X|>A)<1<AAV*=2K——1"" .

(IX] > ) ; a1t 2l
(A.12)

Case 3 (« = 1). Since ;. has a symmetric distribution, we can
use the original argument of [24]. O

B. Fractional Power of the Laplacian

Let G(t, x) be the fundamental solution of 9u/0t +(=A) u = 0
on RY, y>0.

Lemma B.1. Forany p > 1, there exist some constants c;, ¢, >
0 depending on d, p, and y such that

D J

» G(t, x)Pdx < clt_(d/z”)(‘”_l). (B.1)
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Proof. The upper bound is given by Lemma B.23 of [12]. For
the lower bound, we use the scaling property of the functions
(Gty)i>0- We have

G (t, x)

- jm ! exp [T (r)dr
0 (47Tt1/Vr)d/2 p 4t1/yr gl,)/

o0 1 2
> J 773 &P (— |T/| )91,y (r)dr (B2)
U (4mt'vr) 4t vr .

1 |x|*
" (™ (‘w Car

o0
with Cy, = L r_d/zgl,y (r)dr < oo,

and hence

= p ! —dp/2y
JRd G(t, x) dx > Caypt

. (B.3)
X J L exXp (_p|x| )dx = Cappt ~@mp-n,
R

441y

C. A Local Property of the Integral

The following result is the analogue of Proposition 8.11 of [12].

Proposition C.1. Let T > 0 and 6 ¢ R? be a Borel set. Let
X = {X(t,x);t > 0, x € R?} be a predictable process such that
XeZyifa<l orXeZ, forsomep € (2] ifa>1.1fO
is unbounded, assume in addition that X satisfies (83) ifa < 1,
or X satisfies (116) for some p € («,2), if« > 1. Suppose that
there exists an event A € F such that
X(w,t,x) =0, YweA tecl[0,T],xecO.
(C1)

Then for any K > 0, I(X)(T, 0) = Iy (X)(T, ©) = 0 a.s. on A.

Proof. We only prove the result for I(X), with the proof
for Ix(X) being the same. Moreover, we include only the
argument for & < 1; the case > 1 is similar. The idea is to
reduce the argument to the case when X is a simple process,

as in the proof Proposition of 8.11 of [12].

Step 1. We show that the proof can be reduced to the case of
a bounded set 0. Let X,,(t,x) = X(t,x)1, (x) where 0, =
6 NE, and (E,), is an increasing sequence of sets in %, (R?)
such that |, E, = R?. Then X, € &, satisfies (C.1). By the
dominated convergence theorem,

T
E J J |X,, (£, x) = X (t,x)|" — 0. (C2)
0 Jo
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By the construction of the integral, I (Xnk)(T, 0) -
I(X)(T, 0) as. for a subsequence {n;}. It suffices to show
that I(X,)(T, ©) = 0 a.s. on A for all n. But I(X,)(T, 0) =
I(X,)(T, 0,) and O,, is bounded.

Step 2. We show that the proof can be reduced to the case of a
bounded processes. For this, let X, (£, x) = X(, ) 1{jx(t.x)1<n}-
Clearly, X,, € Z, is bounded and satisfies (C.1) for all n. By
the dominated convergence theorem, [X, — X], — 0, and
hence I(X,, )(T, 0) — I(X)(T, 0) as. for a subsequence {1 }.
It suffices to show that I(X,,)(T, ©) = 0 a.s. on A for all .

Step 3. We show that the proof can be reduced to the case
of bounded continuous processes. Assume that X € &, is
bounded and satisfies (C.1). For any t > 0 and x € R%, we
define

t
X, (t,x) = n*"! J J X (s,y)dyds, (C3)
(t—=1/n)v0 J(x—1/n,x]NO

where (a,b] = {y € IRd;a,- <y <bforali=1,...,d}.
Clearly, X,, is bounded and satisfies (C.1). We prove that X, €
Z,. Since X, is bounded, [X,], < co. To prove that X, is
predictable, we consider

o

F(t,x) = Jt J X (s,y)dyds. (C.4)
0 J(0,x]nO

Since X is predictable, it is progressively measurable; that is,
for any ¢t > 0, the map (w, s, x) — X(w, s, x) from Q x [0, ¢] x
R to R is F,x B([0,t]) x .%(Rd)—measurable. Hence, F(t,-)
is F, x B(RY)-measurable for any t > 0. Since the map
t — F(w,t,x) is left continuous for any w € Q,x € RY,
it follows that F is predictable, being in the class € defined
in Remark 11. Hence, X, is predictable, being a sum of 2441
terms involving F.

Since F is continuous in (¢, x), X,, is continuous in (t, x).
By Lebesgue differentiation theorem in R, X, (w, t,x) —
X(w,t,x) for any w € Q,t > 0, and x € O. By the
bounded convergence theorem, [X, — X], — 0. Hence,
I(Xnk)(T, 0) — I(X)(T,0) as. for a subsequence {n;}. It
suffices to show that I(X,,)(T, ©) = 0 a.s. on A for all .

Step 4. Assume that X € &£, is bounded, continuous, and
satisfies (C.1). Let (UJ(.")) j=1,.,m, D€ a partition of O in Borel
sets with Lebesgue measure smaller than 1/x. Let x;' € UJ(")
be arbitrary. Define

n—1m,
X, (t,x) = Z ZX< n> «rmiesnyrm ) L o (x).
k=0 j=1
(C.5)

Since X is continuous in (t, x), X, (t,x) — X(t, x). By the
bounded convergence theorem, [X,, — X], — 0, and hence
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I(Xnk)(T, 0) — I(X)(T, 0) a.s. for a subsequence {n;}. Since
on the event A,

I1(X,)(T,0)
n—1m,
-2 2 ()2 (G 5 ) o
k=0 j=1 h h h
(C.6)
it follows that I(X)(T, ©) = 0 a.s. on A. O
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