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We present a single server in which customers arrive in batches and the server provides service one by one. The server provides
two heterogeneous service stages such that service time of both stages is different and mandatory to all arriving customers in such
a way that, after the completion of first stage, the second stage should also be provided to the customers. The server may subject to
random breakdowns with brake down rate 𝜆 and, after break down, it should be repaired but it has to wait for being repaired and
such waiting time is called delay time. Both the delay time and repair time follow exponential distribution. Upon the completion
of the second stage service, the server will go for vacation with probability 𝑝 or stay back in the system probability 1 −𝑝, if any.The
vacation time follows general (arbitrary) distribution. Before providing service to a new customer or a batch of customers that joins
the system in the renewed busy period, the server enters into a random setup time process such that setup time follows exponential
distribution. We discuss the transient behavior and the corresponding steady state results with the performance measures of the
model.

1. Introduction

Due to the improvement and advancement of science and
technology, performance in modeling is one of the vital parts
that affects the design, configuration, and implementation
of any real time system. Queueing modeling is being used
tremendously and effectively in congestion problems encoun-
tered in day to day life as well as industrial scenario including
computer systems, web services and communication net-
works, waiting lines at airports, railway stations, and banks.

Many authors have put their contributions on queueing
systems with random setup time. Setup time plays a signif-
icant role in the study of queueing systems and which is
defined as follows: at every beginning of new busy period, the
server enters into a random setup time process before actually
providing service to a new customer. Levy and Kleinrock
[1] studied such types of models. Choudhury [2] studied a
batch arrival queueing system having a setup period and a
vacation period. Ke [3] examined the steady-state results of
the unreliable system and startup time with also modified 𝑇

vacation policy. The same author [4] extended his work with
also NT policies and close down period.Wang et al. [5] found
important performance measures for such systems with both
𝑁-policy and𝑇-policy. Yang et al. [6] studied optimal control
policy for an unreliable system with second optional service
and startup period.

Baba [7] studied about batch arrival single server with
vacation. A comprehensive survey can be found in Doshi
[8]. Keilson and Servi [9] studied the dynamics of non-
Markovian vacation. Maraghi et al. [10] have obtained steady
state solution of batch arrival queueing system with random
breakdowns and Bernoulli schedule server vacations having
general vacation time. In most of the research study of
queueing models, the server is assumed to be reliable such
that the server works forever, but this is not the case in most
of the real scenarios that the servers are reliable such that
the servers may meet breakdowns. Also there are numerous
papers on queueing models with vacations and breakdowns.

Many researchers have paid their attention and efforts
in queueing theory by considering various aspects like
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two phases queue system with random break downs and
Bernoulli vacation. Anabosi and Madan [11] studied a single
server queue with two types of service, Bernoulli schedule
server vacations, and a single vacation policy. Artalejo and
Choudhury [12] discussed about the steady state analysis
of an 𝑀/𝐺/1 queue with repeated attempts and two-phase
service. Zadeh and Shahkar [13] studied two phases queue
systemwithBernoulli feedback andBernoulli schedule server
vacation. Choudhury and Madan [14] analyzed a two-phase
batch arrival queueing system with a vacation time under
Bernoulli schedule. Choudhury and Paul [15] studied a two-
phase queueing system with Bernoulli feedback. Madan [16,
17] discussed a single server with two types of service and
deterministic server vacations as well as Bernoulli vacation.

Whenever the server encounters a break down, it would
not be able to serve unless it should be repaired. Therefore
the server should undergo a repair process, but sometimes
the repair process will not be started immediately due to
the nonavailability of the repairing equipment or repairmen.
Such situations can also be modeled as queueing model and
which has been studied by many authors. Burke [18] studied
delays in single-server queues with batch input. Madan [19]
studied queueing system with random failures and delayed
repairs. Choudhury et al. [20] discussed a batch arrival,
single server queue with two phases of service subject to the
server breakdown, and delay time. Khalaf et al. [21] have
obtained the steady state solution of an 𝑀[𝑋]/𝐺/1 queue
with Bernoulli schedule, general vacation times, random
breakdowns, general delay times, and general repair times.

Most recently, the studies of transient behavior in queue-
ing systems have been growing extensively due to their
potential applications in which a practitioner needs to know
how the system will function up to a time horizon. Takagi
[22] analyzed time-dependent analysis of 𝑀/𝐺/1 vacation
models with exhaustive service. Thangaraj and Vanitha [23]
have obtained transient solution of two-phase heterogeneous
services with compulsory vacation and random break downs.

In this paper, we consider a queueing system where the
customers arrive in batches and the server provides service
one by one in FCFS basis. Each arriving batch has to undergo
two stages of service provided by a single server and the
service time for two stages is assumed to follow general
distribution. As soon as the second stage of a customer’s
service is completed, the server may go for a vacation with
probability 𝑝 or continue staying in the system to provide
service to the next customer, if any, with probability 1 − 𝑝.
Further, assuming that, after returning from a vacation, if the
server does not find any customers in the system, even thenhe
joins the systemwithout taking any further vacations and this
policy is termed as single vacation with Bernoulli schedule.
Further, we assume thatwhenever the systembecomes empty,
the server is turned off each time and which is called turned
off period. During this period, the server may be either
available but turned off in the system or else it may be
on vacation. After service completion, the server goes on
vacation with probability 𝑝 or the server stays back in the
system with probability 1−𝑝. If the server is ready for service
in the system, then the system becomes operative only when

a new customer or a batch of customers arrives to the system.
The server startup corresponds to the preparatory work of the
server before starting the service. In some actual situations,
the server often needs a startup time before providing service.
In this case, it will take a random setup time before it actually
starts serving a new customer. This random setup time is
usually termed as SET (during which no proper work is
done) in order to set the system into operative mode before
actual service begins (setup period). On account of that, the
systemmay be subject to breakdowns; the breakdowns occur
according to Poisson process. Once the system breaks down,
the repair process will not be started immediately so that the
system has to wait before it could be repaired; such a waiting
time is known as “delay time” which follows exponential
distribution.The repair time follows exponential distribution.
After the repair process is complete, the server resumes its
work immediately. Also, whenever the system meets a break
down, the customer whose service is interrupted goes back to
the head of the queue and the interrupted customer restarts
its service from the beginning again.

The rest of the paper is organized as follows. The
mathematical description of our model is in Section 2 and
equations governing the model are given in Section 3. The
corresponding steady state results have been derived explic-
itly in Section 4, followed by the particular cases of the
prescribed model which have been discussed in Section 5,
and in Section 6, the concluding marks have been given.

2. Mathematical Description of the Model

We assume the following to describe the queueing model of
our study.

(i) Customers arrive at the system in batches of variable
size in a compound Poisson process. Let 𝜆𝑐𝑖Δ𝑡 (𝑖 =
1, 2, 3, . . .) be the first order probability that a batch of 𝑖
customers arrives at the systemduring a short interval
of time (𝑡, 𝑡+Δ𝑡), where 0 ≤ 𝑐𝑖 ≤ 1,∑

∞

𝑖=1 𝑐𝑖 = 1, and𝜆 >
0 are the mean arrival rates of batches.The customers
are served one-by-one on a “first come-first served”
basis.

(ii) The random setup time is a random variable called
SET variable following exponential distribution with
mean setup time being ].

(iii) Each customer undergoes two stages of heteroge-
neous service provided by a single server on a first
come-first served basis. The service time of the two
stages follows different general (arbitrary) distribu-
tions with distribution function 𝐵𝑗(V) and the density
function 𝑏𝑗(V), 𝑗 = 1, 2.

(iv) Let 𝜇𝑖(𝑥)𝑑𝑥 be the conditional probability of com-
pletion of the 𝑖th stage of service during the interval
(𝑥, 𝑥+𝑑𝑥] given that elapsed service time is 𝑥, so that

𝜇𝑖 (𝑥) =
𝑏𝑖 (𝑥)

1 − 𝐵𝑖 (𝑥)
, 𝑖 = 1, 2. (1)
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And therefore,

𝑏𝑖 (V) = 𝜇𝑖 (V) 𝑒
−∫

V
0
𝜇𝑖(𝑥)𝑑𝑥, 𝑖 = 1, 2. (2)

(v) As soon as the second stage service of a customer is
completed, the servermay go for a vacation of random
length 𝑉 with probability 𝑝 (0 ≤ 𝑝 ≤ 1) or it may
continue to serve the next customer (1 − 𝑝).

(vi) The vacation time also follows general (arbitrary)
distribution with distribution function 𝑉(𝑠) and the
density function V(𝑠). Let 𝛾(𝑥)𝑑𝑥 be the conditional
probability of a completion of a vacation during the
interval (𝑥, 𝑥 + 𝑑𝑥] given that the elapsed vacation
time is 𝑥, so that

𝛾 (𝑥) =
V (𝑥)

1 − 𝑉 (𝑥)
, (3)

and therefore,

V (𝑠) = 𝛾 (𝑠) 𝑒−∫
𝑠

0
𝛾(𝑥)𝑑𝑥

. (4)

(vii) On returning fromvacation, the server instantly starts
serving the customer at the head of the queue, if any.
The server stays in the system for being available if
there are no customers.

(viii) The system may break down at random and break-
downs are assumed to occur according to a Poisson
stream with mean breakdown rate 𝛼 > 0.

(ix) Whenever the system breaks down, its repairs do not
start immediately and there is a delay time. The delay
time follows exponential distribution with mean 1/𝜂.

(x) The repair time of the server is exponentially dis-
tributed with mean 1/𝛽.

(xi) The server’s breakdown does not occur during setup
time.

(xii) Various stochastic processes involved in the system
are assumed to be independent of each other.

3. Definitions and Equations Governing the
System

We let

(i) 𝑆𝑛(𝑡) = Probability that at time 𝑡, the server is in setup
time while there are “𝑛” (𝑛 ≥ 1) customers in the
queue;

(ii) 𝑃(1)𝑛 (𝑥, 𝑡) = Probability that at time “𝑡” the server
is active providing first stage service and there are
“𝑛” (𝑛 ≥ 1) customers in the queue excluding the
one being served and the elapsed service time for
this customer is 𝑥. Consequently, 𝑃(1)𝑛 (𝑡) denotes the
probability that at time “𝑡,” there are “𝑛” customers in
the queue excluding the one customer in the first stage
service irrespective of the value of 𝑥;

(iii) 𝑃(2)𝑛 (𝑥, 𝑡) = Probability that at time “𝑡,” the server is
active providing second stage service and there are
“𝑛” (𝑛 ≥ 1) customers in the queue excluding the
one being served and the elapsed service time for
this customer is 𝑥. Consequently, 𝑃(2)𝑛 (𝑡) denotes the
probability that at time “𝑡,” there are “𝑛” customers in
the queue excluding the one customer in the second
stage service irrespective of the value of 𝑥;

(iv) 𝑉𝑛(𝑥, 𝑡) = probability that at time “𝑡,” the server is
on vacation with elapsed vacation time 𝑥, and there
are “𝑛” (𝑛 ≥ 0) customers waiting in the queue for
service. Consequently 𝑉𝑛(𝑡) denotes the probability
that at time “𝑡,” there are “𝑛” customers in the queue
and the server is on vacation irrespective of the value
of 𝑥;

(v) 𝐷𝑛(𝑡) = Probability that at time 𝑡, the server is inactive
due to breakdown and the system is under waiting
time before the server getting repaired while there are
“𝑛” (𝑛 ≥ 1) customers in the queue;

(vi) 𝑅𝑛(𝑡) = Probability that at time 𝑡, the server is inactive
due to breakdown and the system is under repair
while there are “𝑛” (𝑛 ≥ 1) customers in the queue;

(vii) 𝑄(𝑡) = probability that at time “𝑡,” there are no
customers in the system and the server is idle but
available in the system.

The queueingmodel is then governed by the following set
of differential-difference equations:

𝑑

𝑑𝑡
𝑆𝑛 (𝑡) = − (𝜆 + ]) 𝑆𝑛 (𝑡) + 𝜆

𝑛

∑
𝑖=1

𝑐𝑖𝑆𝑛−𝑖 (𝑡)+ 𝜆𝑐𝑛𝑄 (𝑡) , 𝑛 ≥ 1,

𝜕

𝜕𝑡
𝑃
(1)

𝑛 (𝑥, 𝑡) +
𝜕

𝜕𝑥
𝑃
(1)

𝑛 (𝑥, 𝑡) + (𝜆 + 𝜇1 (𝑥) + 𝛼) 𝑃
(1)

𝑛 (𝑥, 𝑡)

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑃
(1)

𝑛−𝑖 (𝑥, 𝑡) , 𝑛 ≥ 1,

𝜕

𝜕𝑡
𝑃
(2)

𝑛 (𝑥, 𝑡) +
𝜕

𝜕𝑥
𝑃
(2)

𝑛 (𝑥, 𝑡) + (𝜆 + 𝜇2 (𝑥) + 𝛼) 𝑃
(2)

𝑛 (𝑥, 𝑡)

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑃
(2)

𝑛−𝑖 (𝑥, 𝑡) , 𝑛 ≥ 1,

𝜕

𝜕𝑡
𝑉𝑛 (𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑉𝑛 (𝑥, 𝑡) + (𝜆 + 𝛾 (𝑥)) 𝑉𝑛 (𝑥, 𝑡)

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑉𝑛−𝑖 (𝑥, 𝑡) , 𝑛 ≥ 1,

𝜕

𝜕𝑡
𝑉0 (𝑥, 𝑡) +

𝜕

𝜕𝑥
𝑉0 (𝑥, 𝑡) + (𝜆 + 𝛾 (𝑥)) 𝑉0 (𝑥, 𝑡) = 0,

𝑑

𝑑𝑡
𝐷𝑛 (𝑡) = − (𝜆 + 𝜂)𝐷𝑛 (𝑡) + 𝜆

𝑛

∑
𝑖=1

𝑐𝑖𝐷𝑛−𝑖 (𝑡)

+ 𝛼∫
∞

0

𝑃
(1)

𝑛−1 (𝑥, 𝑡) 𝑑𝑥 + 𝛼∫
∞

0

𝑃
(2)

𝑛−1 (𝑥, 𝑡) 𝑑𝑥,
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𝑑

𝑑𝑡
𝑅𝑛 (𝑡) = − (𝜆 + 𝛽) 𝑅𝑛 (𝑡) + 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑅𝑛−𝑖 (𝑡) + 𝜂𝐷𝑛 (𝑡) ,

𝑑

𝑑𝑡
𝑄 (𝑡) = −𝜆𝑄 (𝑡) + ∫

∞

0

𝑉0 (𝑥, 𝑡) 𝛾 (𝑥) 𝑑𝑥

+ (1 − 𝑝)∫
∞

0

𝑃
(2)

1 (𝑥, 𝑡) 𝜇2 (𝑥) 𝑑𝑥.

(5)

Equation (5) is to be solved subject to the following
boundary conditions:

𝑃
(1)

𝑛 (0, 𝑡) = 𝛽𝑅𝑛 (𝑡) + ∫
∞

0

𝑉𝑛 (𝑥, 𝑡) 𝛾 (𝑥) 𝑑𝑥

+ (1 − 𝑝)∫
∞

0

𝑃
(2)

𝑛+1 (𝑥, 𝑡) 𝜇2 (𝑥) 𝑑𝑥

+ ]𝑆𝑛 (𝑡) , 𝑛 ≥ 1,

𝑃
(2)

𝑛 (0, 𝑡) = ∫
∞

0

𝑃
(1)

𝑛 (𝑥, 𝑡) 𝜇1 (𝑥) 𝑑𝑥, 𝑛 ≥ 1,

𝑉𝑛 (0, 𝑡) = 𝑝∫
∞

0

𝑃
(2)

𝑛 (𝑥, 𝑡) 𝜇2 (𝑥) 𝑑𝑥, 𝑛 ≥ 0.

(6)

We assume that initially there are no customers in the
system and the server is idle. So the initial conditions are

𝑃
(𝑗)

𝑛 (0) = 0; 𝑛 = 0, 1, 2 . . . , 𝑗 = 1, 2;

𝑉0 (0) = 𝑉𝑛 (0) = 0; 𝑄 (0) = 1.

(7)

We define the probability generating function as follows:

𝑃
(𝑖)

𝑞 (𝑥, 𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑃
(𝑖)

𝑛 (𝑥, 𝑡) ;

𝑃
(𝑖)

𝑞 (𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑃
(𝑖)

𝑛 (𝑡) ;

𝑖 = 1, 2;

𝑉𝑞 (𝑥, 𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑉𝑛 (𝑥, 𝑡) ; 𝑉𝑞 (𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑉𝑛 (𝑡) ;

𝑆𝑞 (𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑆𝑛 (𝑡) ;

𝐷𝑞 (𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝐷𝑛 (𝑡) ;

𝑅𝑞 (𝑧, 𝑡) =

∞

∑
𝑛=0

𝑧
𝑛
𝑅𝑛 (𝑡) ;

𝐶 (𝑧) =

∞

∑
𝑛=1

𝑐𝑛𝑧
𝑛
,

(8)
which are convergent inside the circle given by |𝑧| ≤ 1, and
define the Laplace transform of a function 𝑓(𝑡) as

𝑓 (𝑠) = ∫
∞

0

𝑓 (𝑡) 𝑒
−𝑠𝑡
𝑑𝑡. (9)

Taking Laplace transforms of (5),

(𝑠 + 𝜆 + ]) 𝑆𝑛 (𝑠) = 𝜆
𝑛

∑
𝑖=1

𝑐𝑖𝑆𝑛−𝑖 (𝑠) + 𝜆𝑐𝑛𝑄 (𝑠) , 𝑛 ≥ 1, (10)

𝜕

𝜕𝑥
𝑃
(1)

𝑛 (𝑥, 𝑠) + (𝑠 + 𝜆 + 𝜇1 (𝑥) + 𝛼) 𝑃
(1)

𝑛 (𝑥, 𝑠) ,

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑃
(1)

𝑛−𝑖 (𝑥, 𝑠) , 𝑛 ≥ 1,

(11)

𝜕

𝜕𝑥
𝑃
(2)

𝑛 (𝑥, 𝑠) + (𝑠 + 𝜆 + 𝜇2 (𝑥) + 𝛼) 𝑃
(2)

𝑛 (𝑥, 𝑠)

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑃
(2)

𝑛−𝑖 (𝑥, 𝑠) , 𝑛 ≥ 1,

(12)

𝜕

𝜕𝑥
𝑉𝑛 (𝑥, 𝑠) + (𝑠 + 𝜆 + 𝛾 (𝑥)) 𝑉𝑛 (𝑥, 𝑠)

= 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑉𝑛−𝑖 (𝑥, 𝑠) ,

(13)

𝜕

𝜕𝑥
𝑉0 (𝑥, 𝑠) + (𝑠 + 𝜆 + 𝛾 (𝑥)) 𝑉0 (𝑥, 𝑠) = 0, (14)

(𝑠 + 𝜆 + 𝜂)𝐷𝑛 (𝑠) = 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝐷𝑛−𝑖 (𝑠) + 𝛼∫
∞

0

𝑃
(1)

𝑛−1 (𝑥, 𝑠) 𝑑𝑥

+ 𝛼∫
∞

0

𝑃
(2)

𝑛−1 (𝑥, 𝑠) 𝑑𝑥,

(15)

(𝑠 + 𝜆 + 𝛽) 𝑅𝑛 (𝑠) = 𝜆

𝑛−1

∑
𝑖=1

𝑐𝑖𝑅𝑛−𝑖 (𝑠) + 𝜂𝐷𝑛 (𝑠) , (16)

(𝑠 + 𝜆)𝑄 (𝑠) = 1 + ∫
∞

0

𝑉0 (𝑥, 𝑠) 𝛾 (𝑥) 𝑑𝑥

+ (1 − 𝑝)∫
∞

0

𝑃
(2)

0 (𝑥, 𝑠) 𝜇2 (𝑥) 𝑑𝑥,

(17)

for the following boundary conditions:

𝑃
(1)

𝑛 (0, 𝑠) = (1 − 𝑝)∫
∞

0

𝑃
(2)

𝑛+1 (𝑥, 𝑠) 𝜇2 (𝑥) 𝑑𝑥

+ ∫
∞

0

𝑉𝑛 (𝑥, 𝑠) 𝛾 (𝑥) 𝑑𝑥 + 𝛽𝑅𝑛 (𝑠)

+ ]𝑆𝑛 (𝑠) ; 𝑛 ≥ 1;

(18)
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𝑃
(2)

𝑛 (0, 𝑠) = ∫
∞

0

𝑃
(1)

𝑛 (𝑥, 𝑠) 𝜇1 (𝑥) 𝑑𝑥; 𝑛 = 0, 1, 2, . . . ; (19)

𝑉𝑛 (0, 𝑠) = 𝑝∫
∞

0

𝑃
(2)

𝑛 (𝑥, 𝑠) 𝜇2 (𝑥) 𝑑𝑥; 𝑛 = 0, 1, 2, . . . .

(20)

Nowmultiplying (10) by 𝑧𝑛, summing over 𝑛 from 1 to∞,
and using the definition of probability generating function,
we obtain

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ]) 𝑆𝑞 (𝑧, 𝑠) = 𝜆𝐶 (𝑧)𝑄 (𝑠) , 𝑛 ≥ 1. (21)

Performing similar operations on (11) to (16), we have

𝜕

𝜕𝑥
𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠) + (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜇1 (𝑥) + 𝛼) 𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠)

= 0

(22)

𝜕

𝜕𝑥
𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) + (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜇2 (𝑥) + 𝛼) 𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠)

= 0

(23)

𝜕

𝜕𝑥
𝑉𝑞 (𝑥, 𝑧, 𝑠) + (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛾 (𝑥)) 𝑉𝑞 (𝑥, 𝑧, 𝑠) = 0

(24)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜂)𝐷𝑞 (𝑧, 𝑠)

= 𝛼𝑧 [∫
∞

0

𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠) 𝑑𝑥 +∫
∞

0

𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) 𝑑𝑥]

(25)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛽) 𝑅𝑞 (𝑧, 𝑠) = 𝜂𝐷𝑞 (𝑧, 𝑠) . (26)

Multiplying both sides of (18) by 𝑧𝑛+1, summing over 1 to∞,
and using the definition of probability generating function,
we get

𝑧𝑃
(1)

𝑞 (0, 𝑧, 𝑠) = (1 − 𝑝)∫
∞

0

𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) 𝜇2 (𝑥) 𝑑𝑥

+ 𝑧∫
∞

0

𝑉𝑞 (𝑥, 𝑧, 𝑠) 𝛾 (𝑥) 𝑑𝑥 + 𝑧]𝑆𝑞 (𝑧, 𝑠)

+ 𝑧𝛽𝑅𝑞 (𝑧, 𝑠) + 𝑧 [1 − 𝑠𝑄 (𝑠)]

+ 𝜆𝑧 (𝐶 (𝑧) − 1)𝑄 (𝑠) .

(27)

Performing similar operations on (19) and (20), we obtain

𝑃
(2)

𝑞 (0, 𝑧, 𝑠) = ∫
∞

0

𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠) 𝜇1 (𝑥) 𝑑𝑥 (28)

𝑉𝑞 (0, 𝑧, 𝑠) = 𝑝∫
∞

0

𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) 𝜇2 (𝑥) 𝑑𝑥. (29)

Integrating (22) from 0 to 𝑥 yields

𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠) = 𝑃
(1)

𝑞 (0, 𝑧, 𝑠) 𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧)+𝛼)𝑥−∫

𝑥

0
𝜇1(𝑡)𝑑𝑡, (30)

where 𝑃(1)𝑞 (0, 𝑧, 𝑠) is given by (27).
Again integrating (30) by parts with respect to 𝑥 yields

𝑃
(1)

𝑞 (𝑧, 𝑠) = 𝑃
(1)

𝑞 (0, 𝑧, 𝑠) [
1 − 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)
] ,

(31)

where

𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) = ∫
∞

0

𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧)+𝛼)𝑥

𝑑𝐵1 (𝑥) (32)

is a Laplace-Stieltjes transform of the first stage service time
𝐵1(𝑥). Now multiplying both sides of (30) by 𝜇1(𝑥) and
integrating over 𝑥, we get

∫
∞

0

𝑃
(1)

𝑞 (𝑥, 𝑧, 𝑠) 𝜇1 (𝑥) 𝑑𝑥

= 𝑃
(1)

𝑞 (0, 𝑧, 𝑠) 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) .

(33)

Similarly, on integrating (23) and (24) from 0 to 𝑥,
respectively, we get

𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) = 𝑃
(2)

𝑞 (0, 𝑧, 𝑠) 𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧)+𝛼)𝑥−∫

𝑥

0
𝜇2(𝑡)𝑑𝑡 (34)

𝑉𝑞 (𝑥, 𝑧, 𝑠) = 𝑉𝑞 (0, 𝑧, 𝑠) 𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧))𝑥−∫

𝑥

0
𝛾(𝑡)𝑑𝑡

, (35)

where 𝑃(2)𝑞 (0, 𝑧, 𝑠) and 𝑉𝑞(0, 𝑧, 𝑠) are given by (28) and (29),
respectively.

Again integrating (34) and (35) by parts with respect to 𝑥,
respectively, yields

𝑃
(2)

𝑞 (𝑧, 𝑠) = 𝑃
(2)

𝑞 (0, 𝑧, 𝑠) [
1 − 𝐵2 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)
]

(36)

𝑉𝑞 (𝑧, 𝑠) = 𝑉𝑞 (0, 𝑧, 𝑠) [
1 − 𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧))

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧))
] , (37)

where

𝐵2 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) = ∫
∞

0

𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧)+𝛼)𝑥

𝑑𝐵2 (𝑥) (38)

is a Laplace-Stieltjes transform of the second stage service
time 𝐵2(𝑥), and

𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧)) = ∫
∞

0

𝑒
−(𝑠+𝜆−𝜆𝐶(𝑧))𝑥

𝑑𝑉 (𝑥) (39)

is Laplace-Stieltjes transform of the vacation time𝑉(𝑥). Now
multiplying both sides of (34) by 𝜇2(𝑥) and integrating over
𝑥, we get

∫
∞

0

𝑃
(2)

𝑞 (𝑥, 𝑧, 𝑠) 𝜇2 (𝑥) 𝑑𝑥

= 𝑃
(2)

𝑞 (0, 𝑧, 𝑠) 𝐵2 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) .

(40)
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Now, using (33), (28) is reduced to

𝑃
(2)

𝑞 (0, 𝑧, 𝑠) = 𝑃
(1)

𝑞 (0, 𝑧, 𝑠) 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) . (41)

Now multiplying both sides of (35) by 𝛾(𝑥) and integrat-
ing over 𝑥, we get

∫
∞

0

𝑉𝑞 (𝑥, 𝑧, 𝑠) 𝛾 (𝑥) 𝑑𝑥 = 𝑉𝑞 (0, 𝑧, 𝑠) 𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧)) .

(42)

Now using (40) and (41), (29) can be written as

𝑉𝑞 (0, 𝑧, 𝑠) = 𝑝𝑃
(1)

𝑞 (0, 𝑧, 𝑠) 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) +𝛼)

× 𝐵2 (𝑠 + 𝜆 −𝜆𝐶 (𝑧) + 𝛼) .

(43)

From (21), we get

𝑆𝑞 (𝑧, 𝑠) =
𝜆𝐶 (𝑧)𝑄 (𝑠)

𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ]
. (44)

Using (43), (37) becomes

𝑉𝑞 (𝑧, 𝑠) = 𝑝𝑃
(1)

𝑞 (0, 𝑧, 𝑠) 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) 𝐵2

× (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) [
1 − 𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧))

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧))
] .

(45)

Using (31) and (36), (25) becomes

𝐷𝑞 (𝑧, 𝑠)

= 𝛼𝑧𝑃
(1)

𝑞 (0, 𝑧, 𝑠)

× [
1 − 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) 𝐵2 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼) (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜂)
] .

(46)

Using (46), (26) becomes

𝑅𝑞 (𝑧, 𝑠) = 𝛼𝜂𝑧𝑃
(1)

𝑞 (0, 𝑧, 𝑠)

× [(1 − 𝐵1 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)

×𝐵2 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼))

× ( (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼)

× (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛽)

× (𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜂))
−1
] .

(47)

Now using (44), (45), (46), and (47) in (27) and solving
for 𝑃(1)𝑞 (0, 𝑧, 𝑠), we get

𝑃
(1)

𝑞 (0, 𝑧, 𝑠)

= (𝑓1 (𝑧, 𝑠) 𝑓2 (𝑧, 𝑠) 𝑓3 (𝑧, 𝑠)

× [𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1])

× (𝐷 (𝑧, 𝑠))
−1
,

(48)

where

𝐷 (𝑧, 𝑠) = 𝑓1 (𝑧, 𝑠) 𝑓2 (𝑧, 𝑠) 𝑓3 (𝑧, 𝑠)

× {𝑧− [(1 − 𝑝) − 𝑝𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧))]

×𝐵1 [𝑓1 (𝑧, 𝑠)] 𝐵2 [𝑓1 (𝑧, 𝑠)]}

− 𝛼𝛽𝜂𝑧 (1 − 𝐵1 [𝑓1 (𝑧, 𝑠)] 𝐵2 [𝑓1 (𝑧, 𝑠)])

(49)

𝑓1 (𝑧, 𝑠) = 𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛼

𝑓2 (𝑧, 𝑠) = 𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝛽

𝑓3 (𝑧, 𝑠) = 𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + 𝜂.

(50)

Substituting the value of 𝑃(1)𝑞 (0, 𝑧, 𝑠) from (48) into (31),
(36), (45), (46), and (47), we get

𝑃
(1)

𝑞 (𝑧, 𝑠)

= (𝑓2 (𝑧, 𝑠) 𝑓3 (𝑧, 𝑠) {𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)

× [
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1]}

× [1 − 𝐵1 [𝑓1 (𝑧, 𝑠)]] ) × (𝐷 (𝑧, 𝑠))
−1

(51)

𝑃
(2)

𝑞 (𝑧, 𝑠)

= (𝑓2 (𝑧, 𝑠) 𝑓3 (𝑧, 𝑠) {𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)

× [
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1]}

×𝐵1 [𝑓1 (𝑧, 𝑠)] [1 − 𝐵2 [𝑓1 (𝑧, 𝑠)]] )

× (𝐷 (𝑧, 𝑠))
−1

(52)
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𝑉𝑞 (𝑧, 𝑠)

= (𝑝𝑓1 (𝑧, 𝑠) 𝑓2 (𝑧, 𝑠) 𝑓3 (𝑧, 𝑠)

× 𝐵1 [𝑓1 (𝑧, 𝑠)] 𝐵2 [𝑓1 (𝑧, 𝑠)]

× {𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)

× [
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1]}

×[
1 − 𝑉 (𝑠 + 𝜆 − 𝜆𝐶 (𝑧))

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧))
]) × (𝐷 (𝑧, 𝑠))

−1

(53)

𝐷𝑞 (𝑧, 𝑠) = 𝑓2 (𝑧, 𝑠)

× (𝛼𝑧 [1 − 𝐵1 [𝑓1 (𝑧, 𝑠)] 𝐵2 [𝑓1 (𝑧, 𝑠)]]

× {𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)

× [
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1]})

× (𝐷 (𝑧, 𝑠))
−1

(54)

𝑅𝑞 (𝑧, 𝑠)

= 𝛼𝜂𝑧( [1 − 𝐵1 [𝑓1 (𝑧, 𝑠)] 𝐵2 [𝑓1 (𝑧, 𝑠)]]

× {𝑧 (1 − 𝑠𝑄 (𝑠)) + 𝜆𝑧𝑄 (𝑠)

× [
]𝐶 (𝑧)

(𝑠 + 𝜆 − 𝜆𝐶 (𝑧) + ])
− 1]})

× (𝐷 (𝑧, 𝑠))
−1
,

(55)

where𝐷(𝑧, 𝑠) is given by (49).

4. The Steady State Analysis

In this section, we will derive the steady state probability
distribution for our queueing model. To define the steady
state probabilities, suppress the argument “𝑡” where ever it
appears in the time dependent analysis.

By using well known Tauberian property,

𝐿𝑡𝑠→0𝑠𝑓 (𝑠) = 𝐿𝑡𝑡→∞𝑓 (𝑡) . (56)

Multiplying both sides of (44), (51), (52), (53), (54), and (55)
by 𝑠 and applying property (56) and simplifying, we get

𝑆𝑞 (𝑧) =
𝜆𝑄𝐶 (𝑧)

𝜆 − 𝜆𝐶 (𝑧) + ]

𝑃
(1)

𝑞 (𝑧)

=
𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 (𝜆 + ]) [𝜆 (𝐶 (𝑧) − 1)] [1 − 𝐵1 [𝑓1 (𝑧)]]𝑄

𝐷𝑟𝑓4 (𝑧)

𝑃
(2)

𝑞 (𝑧) = (𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 (𝜆 + ])

× [𝜆 ((𝐶 (𝑧)) − 1)] [𝐵1 [𝑓1 (𝑧)]]

× [1 − 𝐵2 [𝑓1 (𝑧)]]𝑄) × (𝐷𝑟𝑓4 (𝑧))
−1

𝑉𝑞 (𝑧)

= 𝑝 ([𝑓1 (𝑧) 𝑓2 (𝑧) 𝑓3 (𝑧) (𝜆 + ]) 𝐵1 [𝑓1 (𝑧)] 𝐵2

× [𝑓1 (𝑧)] ] [𝑉 (𝜆 − 𝜆𝐶 (𝑧)) − 1]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1

𝐷𝑞 (𝑧) = 𝛼𝑧 (𝑓2 (𝑧) (𝜆 + ]) 𝜆 (𝐶 (𝑧) − 1)

× [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1

𝑅𝑞 (𝑧) = 𝛼𝜂𝑧 ( (𝜆 + ]) 𝜆 (𝐶 (𝑧) − 1)

× [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1
,

(57)

where
𝐷𝑟 = 𝑓1 (𝑧) 𝑓2 (𝑧) 𝑓3 (𝑧) {𝑧 − [(1 − 𝑝) − 𝑝𝑉 (𝜆 − 𝜆𝐶 (𝑧))]

×𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝜂𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]) ,

(58)

𝑓1 (𝑧) = 𝜆 − 𝜆𝐶 (𝑧) + 𝛼

𝑓2 (𝑧) = 𝜆 − 𝜆𝐶 (𝑧) + 𝛽

𝑓3 (𝑧) = 𝜆 − 𝜆𝐶 (𝑧) + 𝜂

𝑓4 (𝑧) = 𝜆 − 𝜆𝐶 (𝑧) + ].

(59)

Let 𝑃(𝑧) denote the probability generating function of
queue size irrespective of the state of the system.Then, adding
(57), we get

𝑃 (𝑧) = 𝑆𝑞 (𝑧) + 𝑃
(1)

𝑞 (𝑧) + 𝑃
(2)

𝑞 (𝑧) + 𝑉𝑞 (𝑧) + 𝐷𝑞 (𝑧) + 𝑅𝑞 (𝑧) .

(60)
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Let𝑊𝑞(𝑧) be defined as

𝑊𝑞 (𝑧) = 𝑃
(1)

𝑞 (𝑧) + 𝑃
(2)

𝑞 (𝑧) + 𝑉𝑞 (𝑧) + 𝐷𝑞 (𝑧) + 𝑅𝑞 (𝑧) (61)

𝑊𝑞 (𝑧) = (𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 (𝜆 + ]) [𝜆 (𝐶 (𝑧) − 1)]

× [1 − 𝐵1 [𝑓1 (𝑧)]]𝑄) × (𝐷𝑟𝑓4 (𝑧))
−1

+ (𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 (𝜆 + ]) [𝜆 ((𝐶 (𝑧)) − 1)]

× [𝐵1 [𝑓1 (𝑧)]] [1 − 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1

+ 𝑝 ([𝑓1 (𝑧) 𝑓2 (𝑧) 𝑓3 (𝑧) (𝜆 + ]) 𝐵1 [𝑓1 (𝑧)]

×𝐵2 [𝑓1 (𝑧)]] [𝑉 (𝜆 − 𝜆𝐶 (𝑧)) − 1]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1

+ 𝜆𝛼𝑧 (𝑓2 (𝑧) (𝜆 + ]) (𝐶 (𝑧) − 1)

× [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1

+ 𝜆𝛼𝜂𝑧 ( (𝜆 + ]) (𝐶 (𝑧) − 1)

× [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝐷𝑟𝑓4 (𝑧))
−1
.

(62)

In order to obtain 𝑄, we use the normalization condition
as follows:

𝑃 (1) + 𝑄 = 1, (63)

where 𝐵𝑖(0) = 1, 𝑖 = 1, 2; 𝑉(0) = 1, −𝑉

(0) = 𝐸[𝑉] is the

mean vacation time.
Now,

𝑆𝑞 (1) =
𝜆𝑄

]

𝑃
(1)

𝑞 (1) =
(𝜆 + ]) 𝜆𝛽𝜂𝑄 [1 − 𝐵1 (𝛼)] 𝐸 (𝐼)

𝑑𝑟

𝑃
(2)

𝑞 (1) =
(𝜆 + ]) 𝜆𝛽𝜂𝑄 [1 − 𝐵2 (𝛼)] 𝐵1 (𝛼) 𝐸 (𝐼)

𝑑𝑟

𝑉𝑞 (1) = 𝑝
(𝜆 + ]) 𝜆𝛼𝛽𝜂𝑄𝐵1 (𝛼) 𝐵2 (𝛼) 𝐸 (𝐼) 𝐸 (𝑉)

𝑑𝑟

𝐷𝑞 (1) =
(𝜆 + ]) 𝜆𝛼𝛽𝑄𝐸 (𝐼) (1 − 𝐵1 (𝛼) 𝐵2 (𝛼))

𝑑𝑟

𝑅𝑞 (1) =
(𝜆 + ]) 𝜆𝛼𝜂𝑄𝐸 (𝐼) (1 − 𝐵1 (𝛼) 𝐵2 (𝛼))

𝑑𝑟

𝑊𝑞 (1)

= (𝜆𝑄𝐸 (𝐼) (𝜆 + ]) { (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

× [1 − 𝐵1 (𝛼) 𝐵2 (𝛼)]

+ 𝛼𝛽𝜂𝑝𝐵1 (𝛼)

× 𝐵2 (𝛼) 𝐸 (𝑉)})

× (𝑑𝑟)
−1
,

(64)

where

𝑑𝑟 = ] {𝛼𝛽𝜂𝐵1 (𝛼) 𝐵2 (𝛼) − 𝜆𝐸 (𝐼) [ (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

× [1 − 𝐵1 (𝛼) 𝐵2 (𝛼)]]

−𝑝𝛼𝛽𝜂𝐸 (𝐼) 𝐸 (𝑉) 𝐵1 (𝛼) 𝐵2 (𝛼)}

(65)

𝑄 =
1

1 + 𝜆/]
{1 − 𝜆𝐸 (𝐼) [

1

𝜂𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)

+
1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝜂
−
1

𝛽
−
1

𝛼

+𝑝𝐸 (𝑉) ]} ,

(66)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [
1

𝜂𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)

+
1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝜂
−
1

𝛽
−
1

𝛼
+ 𝑝𝐸 (𝑉)] ,

(67)

where 𝜌 < 1 is the stability condition under which the steady
state exists; (66) gives the probability that the server is idle.
Substitute 𝑄 from (66) into (60), 𝑃(𝑧) have been completely
and explicitly determined which is the probability generating
function of the queue size.

Let𝐿𝑞 denote themeannumber of customers in the queue
under the following steady state:

𝐿𝑞 =
𝑑

𝑑𝑧
𝑃 (𝑧)|𝑧=1, (68)

that is,

𝐿𝑞 =
𝑑

𝑑𝑧
𝑊𝑞 (𝑧)|𝑧=1 +

𝑑

𝑑𝑧
𝐷𝑞 (𝑧)|𝑧=1. (69)

Since the formula for𝑊𝑞(𝑧) gives 0/0 form, we write𝑊𝑞(𝑧) =
𝑁(𝑧)/𝐷(𝑧), where 𝑁(𝑧) and 𝐷(𝑧) are the numerator and
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denominator of the right hand side of (61), respectively; then
(69) becomes

𝐿𝑞 =
𝐷

(1)𝑁

(1) − 𝑁


(1)𝐷

(1)

2[𝐷 (1)]
2

+ 𝜆𝐸 (𝐼)𝑄 [
𝜆 + ]
]2

] ,

(70)

where primes and double primes in (70) denote first and
second derivation at 𝑧 = 1, respectively. Carrying out the
derivatives at 𝑧 = 1, we have

𝑁

(1) = (𝜆 + ]) {𝜆𝐸 (𝐼)𝑄 { (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

+ (𝐵1 (𝛼) 𝐵2 (𝛼)) [𝑝𝛼𝛽𝜂𝐸 (𝑉)

− (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)] }}

(71)

𝑁

(1)

=(𝜆 + ]){2𝑄[𝜆𝐸 (𝐼)]2{(
𝛼

𝜆𝐸 (𝐼)
− 1)+ 𝐵1 (𝛼) 𝐵2 (𝛼)

× [1 −
𝛼

𝜆𝐸 (𝐼)
− 𝑝𝛼𝐸 (𝑉)

− 𝑝𝛽𝐸 (𝑉) − 𝑝𝜂𝐸 (𝑉)

+
1

2
𝑝𝛼𝛽𝜂𝐸 (𝑉

2
) ]

+ 𝐵


1 (𝛼) [(𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

− 𝑝𝛼𝛽𝜂𝐸 (𝑉)]

+ 𝐵


2 (𝛼) [(𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

− 𝑝𝛼𝛽𝜂𝐸 (𝑉)] }

+ 𝜆𝑄𝐸 (𝐼 (𝐼 − 1)) { (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

+ 𝐵1 (𝛼) 𝐵2 (𝛼)

× [𝑝𝛼𝛽𝜂𝐸 (𝑉)

− (𝛼𝛽 + 𝛽𝜂

+ 𝜂𝛼)] } }

(72)

𝐷

(1) = ] {−𝜆𝐸 (𝐼) (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼) + 𝐵1 (𝛼) 𝐵2 (𝛼)

× {𝛼𝛽𝜂 + 𝜆𝐸 (𝐼) (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

− 𝑝𝛼𝛽𝜂𝐸 (𝑉)} }

(73)

𝐷

(1)

= ]{2[𝜆𝐸 (𝐼)]2 {(1 −
𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼

𝜆𝐸 (𝐼)
) + 𝐵1 (𝛼) 𝐵2 (𝛼)

× [ (−1 − 𝑝𝐸 (𝑉)) (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

−
1

2
𝛼𝛽𝜂𝐸 (𝑉

2
)] + 𝐵



1 (𝛼)

× [−
𝛼𝛽𝜂

𝜆𝐸 (𝐼)
− (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

+𝛼𝛽𝜂𝑝𝐸 (𝑉) ] + 𝐵


2 (𝛼)

× [−
𝛼𝛽𝜂

𝜆𝐸 (𝐼)
− (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

+ 𝛼𝛽𝜂𝑝𝐸 (𝑉) ] } + 𝜆𝐸 (𝐼 (𝐼 − 1))

× {− (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼) + 𝐵1 (𝛼) 𝐵2 (𝛼)

× [(𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼) − 𝛼𝛽𝜂𝑝𝐸 (𝑉)] } }

− 2𝜆𝐸 (𝐼) { − 𝜆𝐸 (𝐼) (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼) + 𝐵1 (𝛼) 𝐵2 (𝛼)

× {𝛼𝛽𝜂 + 𝜆𝐸 (𝐼) (𝛼𝛽 + 𝛽𝜂 + 𝜂𝛼)

− 𝑝𝛼𝛽𝜂𝐸 (𝑉)} } ,

(74)

where 𝐸(𝑉2) is the second moment of the vacation time and
𝑄 has been found in (65). Then, if we substitute the values of
𝑁

(1),𝑁(1),𝐷(1) and𝐷(1) from (70), (71), (72) and (73)

into (69), we obtain 𝐿𝑞 in a closed form.
Mean waiting time of a customer could be found

𝑊𝑞 =
𝐿𝑞

𝜆
(75)

by using Little’s formula.

5. Particular Cases

Case 1 (no setup time). When the server has no option to take
setup time, we let the mean setup time 1/] = 0; we have

𝑊𝑞 (𝑧)

=
𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 [𝜆 (𝐶 (𝑧) − 1)] [1 − 𝐵1 [𝑓1 (𝑧)]]𝑄

𝐷𝑟

+ (𝑓2 (𝑧) 𝑓3 (𝑧) 𝑧 [𝜆 ((𝐶 (𝑧)) − 1)] [𝐵1 [𝑓1 (𝑧)]]

× [1 − 𝐵2 [𝑓1 (𝑧)]]𝑄) × (𝐷𝑟)
−1

+ 𝑝 ( [𝑓1 (𝑧) 𝑓2 (𝑧) 𝑓3 (𝑧) 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]

× [𝑉 (𝜆 − 𝜆𝐶 (𝑧)) − 1]𝑄) × (𝐷𝑟)
−1
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+ 𝜆𝛼𝑧
𝑓2 (𝑧) (𝐶 (𝑧) − 1) [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄

𝐷𝑟

+ 𝜆𝛼𝜂𝑧
(𝐶 (𝑧) − 1) [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄

𝐷𝑟

(76)
𝑄

= {1 − 𝜆𝐸 (𝐼) [
1

𝜂𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)

+
1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝜂
−
1

𝛽
−
1

𝛼
+ 𝑝𝐸 (𝑉)]} ,

(77)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [
1

𝜂𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)

+
1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝜂
−
1

𝛽
−
1

𝛼
+ 𝑝𝐸 (𝑉)] .

(78)

These results agree with the results obtained in [21] in
which the model repair and delay time are assumed to follow
general distribution.

Case 2 (no delay time andno setup time). In this case, 1/𝜂 = 0
and 1/] = 0; we have

𝑊𝑞 (𝑧) = (𝑓2 (𝑧) 𝑧 [𝜆 (𝐶 (𝑧) − 1)] [1 − 𝐵1 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − [(1 − 𝑝) − 𝑝𝑉 (𝜆 − 𝜆𝐶 (𝑧))]

×𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]))
−1

+ (𝑓2 (𝑧) 𝑧 [𝜆 ((𝐶 (𝑧)) − 1)] [𝐵1 [𝑓1 (𝑧)]]

× [1 − 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − [(1 − 𝑝) − 𝑝𝑉 (𝜆 − 𝜆𝐶 (𝑧))]

×𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1[𝑓1(𝑧)]𝐵2[𝑓1(𝑧)]))
−1

+ 𝑝 ([𝑓1 (𝑧) 𝑓2 (𝑧) 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]

× [𝑉 (𝜆 − 𝜆𝐶 (𝑧)) − 1]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − [(1 − 𝑝) − 𝑝𝑉 (𝜆 − 𝜆𝐶 (𝑧))]

× 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1[𝑓1(𝑧)]𝐵2[𝑓1(𝑧)]))
−1

+ (𝛼𝜆𝑧 (𝐶 (𝑧) − 1) [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − [(1 − 𝑝) − 𝑝𝑉 (𝜆 − 𝜆𝐶 (𝑧))]

×𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

−𝛼𝛽𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]))
−1

(79)

𝑄 = {1 − 𝜆𝐸 (𝐼) [
1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝛽

−
1

𝛼
+ 𝑝𝐸 (𝑉) ]} ,

(80)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [
1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)

−
1

𝛽
−
1

𝛼
+ 𝑝𝐸 (𝑉) ] ,

(81)

and this model coincides with the model discussed in [23] in
whichmodel they have considered compulsory vacation with
𝑝 = 1.

Case 3 (no delay time, no setup time, and no vacation). In
this case, 1/𝜂 = 0, 1/] = 0, and 𝑝 = 0; we have

𝑊𝑞 (𝑧) = (𝑓2 (𝑧) 𝑧 [𝜆 (𝐶 (𝑧) − 1)] [1 − 𝐵1 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]))
−1

+ (𝑓2 (𝑧) 𝑧 [𝜆 ((𝐶 (𝑧)) − 1)] [𝐵1 [𝑓1 (𝑧)]]

× [1 − 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧)

× {𝑧 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]))
−1
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+ (𝛼𝜆𝑧 (𝐶 (𝑧) − 1) [1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]]𝑄)

× (𝑓1 (𝑧) 𝑓2 (𝑧) {𝑧 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]}

− 𝛼𝛽𝑧 (1 − 𝐵1 [𝑓1 (𝑧)] 𝐵2 [𝑓1 (𝑧)]))
−1

𝑄 = {1 − 𝜆𝐸 (𝐼) [
1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)

−
1

𝛽
−
1

𝛼
]} ,

(82)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [
1

𝛽𝐵1 (𝛼) 𝐵2 (𝛼)
+

1

𝛼𝐵1 (𝛼) 𝐵2 (𝛼)
−
1

𝛽
−
1

𝛼
] .

(83)

Case 4 (no break down and no setup time). In this case, 𝛼 = 0
and 1/] = 0; we have

𝑄 = 1 − 𝜆𝐸 (𝐼) [𝐸 (𝑆1) + 𝐸 (𝑆2) + 𝑝𝐸 (𝑉)] , (84)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [𝐸 (𝑆1) + 𝐸 (𝑆2) + 𝑝𝐸 (𝑉)] . (85)

Case 5 (no break down, no setup time, and no vacation). In
this case, 𝛼 = 0, 1/] = 0, and 𝑝 = 0; we have

𝑄 = 1 − 𝜆𝐸 (𝐼) [𝐸 (𝑆1) + 𝐸 (𝑆2)] , (86)

and the utilization factor 𝜌 of the system is given by

𝜌 = 𝜆𝐸 (𝐼) [𝐸 (𝑆1) + 𝐸 (𝑆2)] . (87)

6. Concluding Remarks

We have proposed a single server with a two-stage hetero-
geneous service unreliable server with setup time, delayed
repair, and Bernoulli scheduled vacation. At the end of each
busy period, the server takes a setup time before giving proper
service to the customers.There is a delay before the server gets
repaired which has been incorporated whenever the server
meets breakdown. The probability generating function of
transient solutions is obtained explicitly, and along with this,
the steady state has also been analyzed. Further performance
measures like average number of customers in the queue
and the average waiting time of a customer in the queue are
obtained.
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