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ABSTRACT

The aim of the paper is to give two theorems about
existence and uniqueness of continuous solutions for hyperbolic
nonlinear differential problems with nonlocal conditions in
bounded and unbounded domains. The results obtained in this
paper can be applied in the theory of elasticity with better ef-
fect than analogous known results with classical initial condi-
tions.
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1. INTRODUCTION.

In this paper, we prove two theorems on existence and uniqueness of solutions of differen-

tial problems with nonlinear hyperbolic equations and with nonlocal conditions. The differential prob-

lems considered here are of the following forms:

(1) ,,,(, t)=F(, t, ,(, t), ,,.(, t)), (, t)eD,
p

(e) (, 0)+E,(, T)(, T,)=(), e[0, ],
i=1

(3) (0, t) = (t), e [0, q,
p

() (0) +E ,(0, T)( T,) =(0) and

(11) .=.(. t)=(=, t, .(=. t)..(, t)). (=.
P

(e) (, 0)+E(, T)(, T)=(:), C[0, .],
i=1

(3) (0, 0=(t), e[o, ),
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p

(4x) (o)+E h (o, =
i----.1

where D:=[0,a]x[0,T], a:=[0,a][0,oo), T (i=1, ..., p) are finite numbers such that

0< T< T2 <... < Tp T and F, , , h (i= 1, ..., p) are given functions satisfying some sumptions.

For arbitrary domain ACR2 denote by ’2[A, R] the set of all continuous functions

w:AR such that the derivatives wt, w and wt are continuous in A.

We seek unique solutions of problems (1)- (4) and (1)- (4) in the cls ’U[D, R] and

,2[, R], respectively.

The results obtained in this paper are direct generalizations of Theorems 1 and 3 given by

Chi, Poorkarimi, Wiener and Shah in [3] and include the results of those theorems, if the functions h

(i=1, ..., p) from condition (2) considered in the paper are identically equal zero then problems (1)-(4)
and (1)-(4) from this paper are reduced to problems (1), (2) and (1), (7), respectively, from [3].

Theorems 1 and 2 from the paper can be applied in the theory of elticity with better

effect than analogous known theorems with clsical initial conditions. Namely, the following sum:

p

u(x, O)+Ehi(x Ti)u(x Ti) for xfi[0, a]

is more precise to meurement of a state of a vibrating system then the only one meurement

o) [0,

of the state of the vibrating system.

The results of this paper are also some generalizations of those given by Ladde,

Lakshmikantham, and Vatsala [5] (see [5], Sections 5.3 and 5.4), and by Krzyzanski [4] (see [4], Section

77.2).
Nonlinear differential problems of parabolic type with nonloeal inequalities of type (2) and

a physical interpretation of these inequalities were considered by the author in [1]. Condition (2) was

introduced the first time for linear parabolic problems by Chabrowski in [2].

2. TttEOIEMS.

Theorem 1. Assume that

(i) CGGa([0, a], R), CGGa([0, 7], R), hieCt(D, R) (i=1, ..., p).

There is a constant 0<K<3 such that

Ibm(x, t)l<_g and l[h,(, t)]l<_g for(, t)eD (i---1, ..., p).

(iii) F C(DxR2, R) and there is a positive constant L such that F satisfies the following
Lipschitz condition
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(6)

for z, , q, I ER uniformly with respect to (x, l) D.

(iv) G is a positive constant such that C>L(a+ 1)

Then problem (1)--(4) has a unique solution belonin9 to C’[D, R].

Proof. It is evident that if the function u6 Ct’2[D, R] satisfies problem (1)- (4), then

it also satisfies the integral differential equation

(7) .(, t)=()-(0)+(t)-E(, T).(, T)+En(0, T).(0, T)
i=1 i=1

/ffF(, , u(, r/), ue(,
oo

Conversely, if the function u.Ca(D, N) and satisfies equation (7), then it has continuous derivative

u=ut in D, satisfies equation (1) and, moreover, conditions (2) (4). Therefore, we will seek the

solution of equation (7). For this purlse we introduce the operator

p p

(8) (Aw)(x, t):=(x)--f(O)+(t)-Ehi(. Ti)w(x Ti)+Ehi(O Ti) w(O, Ti)
i=1 i=1

art

+ffF(, rl, w(, rl), we(, ))dod
oo

on the space Ca(D, I).
We use a weighted norm in Or(D, N) (compare [3]) given by the formula

(9) II I1= max -c’(I w(, t)l/l (, t)l).
(x, t)D

Since Ct([0, a], R), CeCt([0, 7], R), hiCt(D, R) (i=1, ..., p) and F.C(DxR2, R),
operator (8) maps Ct(D, R) into Ca(D, R).

Now, we will show that A is a contraction on Ca(D, R). To this end consider the

difference

(Aw)(., t)---(A)(x, l)

=ff[F(, rl, w(, rl), we(, /))-F(,r/, (,0), foe(,rl))]drld
0o
p p

--,hi(z, Ti)[w(z, Ti)-fo(z, Ti)]+Ehi(0, Ti)[w(O, Ti)-(0, Ti)]
i=1 i=1

for w, zCt(D, R) and apply the Lipschitz condition (6). Then
zt

(10) (Aw)(x, l)--(Afo)(z, t)]<_Lff(I w(, rt)---(, O)l+l we(, r)---e(,, rl)l)drld
oo

p p

+El h,(x, T,)II w(x, Ti)---fo(x T)I+EI h(0, T,)II w(O, Ti)--fo(O, T)!
i=1 i=1

for w, oe6’(D, ).
Next, consider the following difference
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[(Aw)(z, /)] --[(At)(x, O]

=f[(, ,, w(, ,), w(, ,))-(, ,, ,(, ,1, (,
o

P P

E [(, r)l [w(, T)-(, 7,)1-E ,(, Ts)[w(,, T)-- o(, T)]
i=1 a: i=1

for w, ECa(D, R) and apply the Lipschitz condition (6). Then

(11) I[(Aw)(x, t)] -[(A)(z, t)]

<_;f(I w(x, o)-(x, o)l/l w=(, o)-=(x, )1) do
o

+El[ hs(x, Ts)] lw(x, Ti)---fi(x, T)I+EI hs(x,T)llw(x, Ti)---fo,(z, T)I
i=1 ar i=1

for w, eca(o, a).
Finally, by (5) and (9), we have

(12) e-’[( I/i(z, T)I w(:, T)-,(, T)I+I (0, T)I ,(0, T)-,r(0, T)I
i=1

+1[ (, T)] II o(, T)-o(, T)I /1 ns(, T)I w=(, T)-W=(, Ts)l)]

<3Kp II w-a, II for w, , Ca(D, ).

(13)

Simultaneously, from [3],

/;e-Ct.(I w(, 0)--fo(, 0)1 / w(, r)--(,
0o

+Le-c’(! w(z, o)---(z, o)1+1 w.(, o)-%(z, o) )d0
0

Therefore, by (10)- (13) and (9),

((+i) )II Aw-AII C +3Kp II w--ll for w, @e(D, ).

/,(a+ I)If we define q= C +3Kp then, by assumption (iv),

II Aw---Afo II<q[I w---wll for w, ECa(D, R)

with 0< q<l. This shows that operator A is a contraction. Consequently, the proof of Theorem 1 is
complete.

Theorem 2. Assume that

(0

(ii)

ECa([O, a], R), eCa([O, oo), R), hiECa(O, R)(i=1, ..., p).

There is a constant 0<K<3 such that
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(14) h,(z, t)l_< K and l[ h,(z, 0] [<_K.for (, t)n (i=1, p).

(iii) FE C(flxR2, R) and there is a positive constant L such that F satisfies the following
Lipschitz condition

(15)

(iv)

for z, , q, 1 R uniformly with respect to (, t) . f.

C is a postive constant such that C>I-,3Kp.
There are positive constants K (i= 1, 2, 3) such that

()l<_g,c’, ’()l<_g,* fo [0, ],

(t)l_<g2,c’ fo t[0, ) and

Then problem (11)- (41) has a unique solution uGl’2[fl, R] satisfying the following condition

Proof. Analogously as in the proof of Theorem 1, we reduce problem (11) (41) to

the integral differential equation (7) and introduce operator (8) on the space Ca(O, R) with the norm

(1) IIw i1= s=p e-’(I w(, 01+1 w,(, t)l).
(,

First, we will show that operator (8) maps Ca(O, R) into Ca(n, R). Here observe that

(17)

and

(Aw)(z, t)=q(z)--dp(O)+b(t)--E hi(z Ti)w(z, Ti)+E hi(O, Ti)w(O Ti)
i=1 i=1

art

+ff[F(, 7, w(, 7), we(, I))--F(, 7, O, O)]dod
O0

art

+ffF(, o, O, O)dod for wq. 6aCn, R)
O0

(18)

Hence, from (17), (18) and (15),

(19) I(Aw)(z, t)l+l[(Aw)(z, t)] I<_n(, t)+n(, t)]or O(n, a),

where
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(20) H(x, t)=l (x) + (0) + ’(x) +
art art

/Lff(I w(, o)l /1 we(, o)[)dod +ff] F(, O, O, 0)ld0d
00 00

0 0

(21)

By, (21), (14) and (16),

(22) e-C’H(x, t)3Kpll w II for wa(, ).

Simultaneously, from [3],

(23) e-C’Hl(z, t)<g+g2+K3(+1) +L(a+l)C II w II for we CX(f, a).

Consequently, by (19)- (21), (23), (22)and (16),

1[ aw I[<Klq-K2q-K3(’l’l)q-(Ij(aq-1) 3Kp) 11 for w.Ca(f, R)c + !1 ,,.,

This proves that operator (8) maps Ct(f, R) into Ca(O, R). For the proof of contraction, we repeat

the corresponding computations from Theorem 1. The proof of Theorem 2 is therefore complete.
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