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ABSTRACT
The paper deals with a study of linear Volterra integral equations involving

Lebesgue-Stieltjes integrals in two independent variables. The authors prove an

existence theorem using the Banach fixed-point principle. An explicit example is

also considered.
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1. INTRODUCTION

While studying hyperbolic p.d.e. Uxy + cu g(x, y), one constructs a Riemann

function R(x, y, , rl) which in this case tums out to be J0 ( /"’C’ (X 2, ’) (y rl))
[3, Page 123, Ex. 4] where J0(z) denotes Bessel’s function of the first kind of order

zero. This fact leads one to hope that there may be situations wherein solutions of

hyperbolic equations may involve, in addition to J0(z) the other Bessel functions Jl(Z),

Ja(z), This paper aims to achieve this conclusion.

Below we consider a linear integral equation of order two of Volterra type

involving Lebesgue-Stieltjes integrals. Initial value problems for hyperbolic p.d.e, are
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particular situations of this type of integral equations.

It is well known that the elements of the iterative method are abstracted into a

Banach fixed point theorem, and as such, its application not only establishes the

existence of a unique solution, but also suggests a constructive approach to solutions

of IVPs. In this paper, we prove the existence of solutions for a class of

Volterra-Lebesgue-Stieltjes integral equations. The technique involves Banach fixed

point principle.

To illustrate our results, we have constructed a Volterra equation of order two

involving integrals w.r.t, ct(x) and 13(x) having only one discontinuity. (The

problem becomes complicated if more than one discontinuities exist). The interesting

part is that the given equation yields a solution u (x, y) which takes different

representation in different domains and that these representations involve the infinite

set of Bessel functions J0, J1, J2, and that the series representing solutions are

convergent.

2. NOTATION AND PRELIMINARIES

(i) Let K1 [al, bl] and K2 [a2, b2] belong to R and K K x K2

[a, b] in R2 with a (a, a2) and b (b1, b2). A function g: K--, R is said to be

of bounded variation if the corresponding interval function

G(I) g(d) g(d, C2) g(c 1, d2) + g(c) for I [c, d] is of bounded

variation (in the sense of Vitali), i.e. there exists M > 0 such that [G(Ii)] < M for

every finite collection of intervals I from K; see e.g. Chap. 111.4 in [ 1] or Chap. VII

in [2].

(ii) Let X be the space of g" KR such that g is of bounded variation,
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g(., a2) and g(a, .) are of bounded variation and g is fight-continuous at a and

every interior point of K. Then X is a Banach space under the norm

(1) II g II = g(a) + V(g(., a2)) + V(g(a,. )) + V(g),

where V denotes total variation. We write Vs, Vt and and Vx for the total

variations on [a1, s], [a, t] and [a, x], respectively.

(iii) Let c" K-- R and I" K2-’) R be two functions satisfying hypothesis

(H) ot and [5 are of bounded variation, right-continuous and have only

isolated discontinuities.

If u X and k" K --) R is continuous then the Lebesgue-Stieltjes integral

(2) (Tu)(x) = Y[a, x]
k(s,t) u(s, t) doffs) d(t)

is defined, the operator T maps X into itself, and we have

(3) Vx (Tu) _< j" [k(s, t)[ [u(s, t) dV(z)dVt(13) on K.
[a,x]

3. MAIN RESULT

We consider integral equation

(4) u(x) = g(x) + t, x
k(s, t) u(s, t) dct(s) d(t).

A solution is understood to be a function u X satisfying (4) on K.
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egrem. Let g X, k" K ---> R be continuous and c, 13 satisfy hypothesis

(H). Assume also that

(5) I [k(s, t)[ {dVs((I1) dVt(2) + dVs(2) dVt(l) + dVs(2) dVt(2)} < 1
K

Then (4) has a unique solution u, and u can be obtained by successive

approximation starting with g.
Proof. Consider the closed D from X, defined by

D = {u X" u(a1,.) g(a,.) and u(.,a2) g(.,a2)}.

Instead of the metric given by II. II we consider D with the equivalent metric given

by

-z(x) IIiull = sup Vx(u) e with z(x) = k(s,t)! dVs(Ct) dVt(),

where g > 0 will be chosen appropriately.

Let T T + g with T from (2). Evidently T maps D into itself, and

(3) implies

z(s,t)
VxCZ u- Ttv) _< il u- v

[a,xlk(s,t) e dVs(a) dVt(13).

Now, using the decompositions of a and [ and noticing that

dVs (o:) = a’l(s) ds and dVt (’) 3’ (t)ldt, we have the integral in

(6) _< ] h (s, t) exp (gH (s, t) ds dt + c e
[a, x]

(5), h (s,t) = k(s, t) a’l(s) ’l(t) and

z(x)
where c is the left-hand side of

H(x) | h (s, t) ds dt, hence
[a, x]

Hxx(X) = h (x) a.e., and g H(x) < z (x). Consequently
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(1/t + c) l! u v !1 , with l/It + c < 1 for Ix large enough, and therefore

Banach’s fixed point theorem yields the desired result. Q.E.D.

4. AN EXAMPLE

Let J [0, 1], g 1, k L > 0, a(t) [(t) t + tCx,1](t) with

y 0, x (0,1) and consider

u(x) = 1 + X | u ()do:(l)dc(2) in J x J
H(x)

where H (X) [0, x1] x [0, X2]. Since a has a jump at x, it is clear that u

will be discontinuous on {x} x J w J x {’}. We now have the following

observations.

1) _The. case .x. < x and y_< x. Here we have dc(t) = dt, hence the equation

above is equivalent to the hyperbolic problem Uxy )u, u(0; y) = u(x; 0) = 1, and

the solution is obtained by means of successive approximation, starting with u0 1,

(7) u(x, y) = Z ()x’y)I
k >_.o (k!)

z = I0 (2"qX,xy) on J x J.

Recall that for n e IN {0} the Bessel functions Jn(.) and the modified Bessel

functions In(.) are related by In(t) i"n Jn(it) with i2 =-1, where

hence

Z (-1)k
Jn(t) =

k! (n +k)!-
k0
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E 1 (’)
n+2t:

In(t) = ki(n+
k_>0

Also by means of successive approximation it is easy to verify that equation (with
reasonable f)

(8) It(X) = f(x) + 9 | u ()d on J J
,/H(x)

has resolvent

(9) j2R(x, )= Io for x and H(x),

i.e. the solution u of (8) is given by

(10) j2u(x) = fix) + , ) f()d on

2) Ite,gra!,s;with.re,spect to dot(.) For the measure I.t defined by a(.) we have

where go is Lebesgue measure and [ix is Dirac at x, hence

g (A) g0(A) + ’ZA(’) for measurable A belong to J. Therefore if f" J --is bounded measurable and fight/left-continuous at x, then respectively

X X

f(t)da(t) = IO f(t)dt + 3t f(’ + 0))[0, x] (;)"

3) The case x _> ’and..y <....X (.!eft=...continuo.us sol.u.ti0ns), Now we have

IH(x)U() = IH f2u(’1: 0,2) d2do(2) = d2 d(X(l) d2 u() d + y
(x)
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and u(:-0,t)= Io(2")by (7), hence foU(’-0,t)dt = ii(2]kzy)
and therefore (10) implies

with g(t) = 1 + y4LL I1(2/’). Now a simple calculation using in particular (10)

with f 1, yields

(11) u(x,y) = I0 (2 [Xxy) + y Ii(2/xy)

+ %, y i-t 11(2 qk(y -t)X’) I (2k’) dt.

We shall show later that this integral can be expressed as a series over all In.

4) ..e case. x>-.x and y < ; (fight-continu0us solution). Since u(x, y)

u(: + 0, y), letting x = ’1: + E and e ---> 0+ in

(12)
y

u(x) =1 +. H(x)U()d + Y0 u(z, t)dt,

we get
y

u(x, y) = g(y) + . y0 u(x, t) dt

with



184 Journal of Applied Mathematics and Stochastic Analysis Volume 3, Number 3, 1990

x y x y

g(y) = 1 + IoloU(S, t)dtds = 1 + .Iololo (2/.st) dtds

by (7), hence

" Y Io u(x, t) dt = . y exit (y- t) g(t) dt,

and therefore (12) yields (after simple partial integrations)

u(x)= e’Tx + .IH(x)U() d + ,IH (e’7(y-t)

(%Y)
1) Io(24-’) dt ds,

in particular,

(13) u(%y) = e’ + . IH eXy- t) io(24-[.) dt ds
(% y)

and for x > :

u(x, y) = u(, y) + . u(s, t) dt ds,

hence with (9)

(14) u(x, y) = u(% y) + Io (2].’(X’ ’s) (Y ii) u(:, t) dt ds

NOW,

=u(T, y)+ 2 [’ (x-’l:)]k+ 1

fk! (k + 1)!-==: (Y t)k u(’, t) dt.
k>0

(),c)k+ I I (y 0
t
k dt,u(:, y) = e

’y + ki (k+ i)!- ck with cck = e’
k>_O
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1
hence c = - (k ck_ yk), and this yields

k k-ik! y
+ e= .__ (--b,. o, ; )+

Therefore,

(15) u(x, y)= e
’/y +

k__.0
(k+ l")i’ eZ’TY
k

= 2 (’)" Ik (2/L’cY)
k>0

i!
i=0

From (14) we now get

u(x, y) = u(’c, y) +
i,j,k>_0

(x %)k+l ij (.y)i+j+k+l 1
k! (k + 1)! j! (i +j)! 3o (1 t)

k
t
+ dt.

Let
1

tre(l-t)kdt for m,k > 0. Then 13m, 0

m+l
m+l,k = k+i m,k+l hence

1
= and
m+l

(16)

and therefore
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(17) u(x, y) = Z (x x)k Ti (.y)i+ j+
k! j!(i+j+k)!

i,j ,k>_0

u(x, y) = Z T (x ’) k Im + k (2"4:"t3’)
m,k_>O ’/’

Notice that for x x only k = 0 remains and we get (15). Notice also that the last

term in (11) for the left-continuous solution can be calculated. Similarly, namely

with k,m from (16)

+y yL+t I(2"q(y "t) x) I(2/) t)dt

,k+j X
k j yk+j+ 2

= X,2’y x Z ki’ (k+l)! j! (j +i)!- 13j + 1,k"
j,k_>O

Hence, after simple rearrangements,

(18) U(x’Y> : Io(2q+xY> +’ Z. ("" Ik 1
k>O

is the left continuous solution. Its jump at x is

(19)

k

u (: + O, y) u (’, y) = T kt Ik + I(2]+x:Y-)
k_>O

while the jump of the fight-continuous solution is given by



On a Volterra Stieltjes Integral Equation: Vaz and De 187

(20)
k

u(’L y)- u0:-0, y)= /- Eyk (-)" Ik+ 1 (2’y),
k0

which is usually different for y O.

5. T!aecase x < "c an..d.......y. >_ 7!:.... Since the problem is symmetric, it is obvious

that we get left/right-continuous solutions by writing x for y and y for x in the

fight-hand sides of (17) and (18). Notice also that in all cases considered so far we

have no convergence problems, i.e. all series converge (even fast).

6...e case x... >- ’. and y >- ’.(left,contiuous solution),

Now we have

(21) u (x,y) = g (x, y) + X u (s, t) ds dt

with

(22)
X

g(x, y) = 1 + kYoU (s, z-O) ds + u(-O, t) dt + , u(’l:- O, z-O).

Using (18) and u (x, y) = I0(2q,x"y’) for x < x and y < x, we obtain

u (z-O, :-0) = Io(2a/"t:) and

(23) ) dsu (s, ’t:- O) ds =

k+l.:- 1(2]-,) (xk+ 1 k + 1)+ Y -(k + 1)! Ik + ’1:

k>_O

Using the corresponding formula for x < x and y:, we get that u (x 0) dt

is the fight-hand side of (23) with y for x, hence
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g (x, y) = 1 + ,q Io(2"4"’:) 2)V Z- (k + 1)!
k>_O

k+l

+ ? + I0(2X/XXS) ds + %q (k$:i)i: Ik + 1(2/’:) (x
k_>0

k+l+y ),

and therefore u (x, y) = g (x, y) + % | R (x, ) g() d gives an explicit formula
OH(x, y)

for u(x, y).

7 The.case.. x >_ .x a.nd y. >..t .(fight,continuous solution). We have again

(21) and (22) with z- 0 replaced by x + 0. To determine these unknown

limits, we let x --, x + 0 and y x + 0 in (21) to obtain u (z, x). This yields

u(z,x) = 1 + )YoU(S,X+0)ds + %?0u(x+0, t)dt

+ 7vyZu(’l:, X)+ f0u(s, t)ds dt.

Notice that these (Lebesgue) integrals are known, for example Io u (x + 0, t) dt

by (15), but if .y 1 we get an equation which is not solvable (except for trivial

cases); hence we need Xy2 : 1 and get u (:, :). Letting only y + : + in (21) we

get
X X ’

u (x,z) = u (z, x) + )q’, u (s, z) ds + 7 Ix So u (s, t) dt ds,

where u (:, ") and the second integral are already known. Hence we can determine
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u(., "c) on [’c, 1] like in section 4, and similarly we get u(’c, .), hence g (x, y) and

therefore u (x, y).

8. S,uccessive Approximation (case x > ,,and y < :). Consider

(24) un + l(X, y) = 1 + , un(s, t) dt da (s)

x y y

=1+ ,0 f0 un(s, t) dtds + .y0 un (x, t)dt[z, 1] (x)

with u0(x, y) = 1. Notice first that we have un(x, y) =
n (.xy)Z

k=O k!2
if we also

x < "c. By the consideration in section 4 one will expect that if (Un) is convergent

then the limit will be the fight continuous solution given by (17). Now (17)

suggests to write the un as

rl

(25) un(x’ Y) = k! Pk, nZ[x, 11 (x) + ,_, X[o, zl (x)
k=O k=O r::

2

Inserting this into (23) we get for x > x

n + 1 ()L’cY)k
K

nl (x ’)k f fUn + 1 = Z --t 2
+ L k! q;)k- 1, n(t) dt + X,y (Po, n(t) dt

k=0 k=l

henee comparison of coefficients for equal powers of x a: yields
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(26) o, n +1 (Y) =
n +

(.’1: y) ff=0 k.!2
+ )3t 0, n(t) dt

Y
(27) ,

n+ (Y) = 9 0- 1, n (t) dt for k = 1,...,n+l

with o,o 1. So we first obtain the O0,n by means of (26) and then the k,n by

means of (27). This yields (for x > x)

(28) ul (x,y) = 1 + ,xy + ),y,

,2y2 ( 2
x ]u2(x,y) = ul(x,y) + 2,i -. + y x +

and so on. Now it is obvious that the (tk, n) are convergent (as in n - oo) to Ck

and, for example, 0 satisfies the equation obtained by letting n ----> ,, in (26), i.e.
Y

0 (Y) = I0 (2/)-x Y) + )Y0 0 (t) dt,

the solution of which is exactly u (% y) given by (15), and therefore it is clear that

u(x,y) = E (x-x)
1

k_>0

is the function given by (17). A restriction on y, L will come again in case x >

andy >:.
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