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ABSTRACT

In this paper, we combine the fixed point theory, fixed point index
theory and cone theory to investigate the nonnegative solutions of two-point
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1. Introduction
In [1] (see also [2] Section 5.3), several existence theorems were established for
the BVP of nonlinear second order differential equation in Banach space:
{ —z" = f(t,z,2'), 0<t<1; (1)
az(0) — bz'(0) = z9, cz(1) +dz'(1) = z;.
Now, in this paper, we shall combine the fixed point theory, fixed point index theory

and cone theory to extend some results of [1] to the BVP of nonlinear second order

integrodifferential equation of mixed type in Banach space:

{ —z" = f(t,z,2',Tz,Sz), 0<t<1; @)
az(0) — bz'(0) = z, cz(l) + dz'(1) = =y,

where

Ta(t) = /0 k(t, s)a(s)ds, Sa(t) = /0 h(2, $)o(s)ds. 3)

We get more results about the existence of nontrivial nonnegative solutions and
multiple nonnegative solutions. As application, we obtain some results for the

following BVP of third order integrodifferential equation:

{ —-z" = f(t,z,2',2", Sz), 0ty (4)
z(0) =6, az'(0)—bz"(0) ==z, cz'(1)+dz"(1)=2z;.
Finally, we give several examples for both infinite and finite systems of ordinary

nonlinear integrodifferential equations.

2. Several Lemmas
Let E be a real Banach space and P beaconein E which defines a
partial orderingin E by z <y iff y—z € P. P is said to be normal if

there exists a positive constant N such that 6 <z <y implies |z| < N|yl,
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where 6 denotes the zero element of E, and N is called the normal constant
of P. P issaid to be solid if its interior int(P) is not empty. In this case,
we write ¢ <y if y—az € int(P). For details on cone theory, see [3]. In the
following, I =[0,1].

LEMMA 1. Let P beasolidconein E,up€ E,0<t;<t; <1 and
F={ze€C[I,E]:z(t) >up for tc <t<t}. Then F Iis a convex open set
in CI[I,E].

PRrROOF: The convexity of F is obvious, so, we need only to prove that F' is
open. Choose v € int(P) andlet zy € F. For any fixed t' € [to,t1], there
exists a small r(¢') > 0 such that zo(t') > uo + r(t')v. Since =zo(t) is

continuous, there is a small interval I(t') = (¢' —',¢' +r') such that
zo(t) > uo +r(t')v for te I(t).

Now, {I(t'): t' € [to,t1]} forms an open covering of [to,t1], so, Heine-Borel
theorem implies that a finite set {I(¢;): ¢ =2,3,...,m} already covers [to,11].

Hence

:L‘o(t) > ug+rov for te [to,tl], (5)

where rg = min{r(¢2),...,7(tm)} > 0. Since v € int(P), thereexists r; >0
such that

v+22>6 forany z€E, |2 <. (6)

Let z € C[I,E] satisfying ||z — o] < riro. Then, for any t € [to,%1], we
have by (5) and (6),

z(t) = zo(t) + z(t) — zo(t) > uo + rofv — g ' (z(t) — z0(t))] = uo,



50 DAJUN GUO

i.e. z € F, and the proof is complete.

a

COROLLARY 1. Let P beasolidconein E,uy€ E, 0<ty<t; <1 and
F={zeCYLLE]: z(t) >»ug for tc <t<t}. Then F isa convex open
set in C'I,E].

REMARK 1: The norm in space C(™[I,E] will be defined by

[z)lm = max{||z]lo, |='llo, - -, =™ llo}, (7
where
2l = maxle™ @)l (n=0,1,...,m). (8)

In particular, when m =1 we have

lzll; = max{||zllo, [|2"llo} = max{maxjz(t)]|, max|l«"($)]]}. (9)

LEMMA 2. Let H be a bounded set of C'[I,E]. Suppose that H' = {z':

¢ € H} is equicontinuous. Then

a(H) = max{sup a(H(t)), sup a(H'(t))} (10)
tel tel
and
a(H) = max{a(H(D), a(H(D)}, (1)

where a denotes the Kuratowski measure of noncompactness, H(t) =

{z(t): z € H}, H'(t)={2'(t): = € H}, HI)={z(t): =z € H,t € I} and
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H(I)=
{z'(t): z € H,teI}.

PRrROOF: (10) is known, see [2] Theorem 1.4.3. To prove (11), we first show that
o(H'(D) < a(H). (12)
For any € >0, H can be expressed as H = i:_L_}lS,- such that
diam(S;) < a(H) +¢, i=1,2,...,m. (13)

Since H' is equicontinuous, there exists a partition {t;} (j =0,1,...,n) of

I such that
lz'(t) = z'(s)]| <e, z€H, tse€ I =[tj—1,t] (1=1,2,...,n). (14)

Let T;j={z'(t): z€S;,tel;}, then H'(I)= .CJ] ‘81 T;j. For any z'(t),
]= 1=
y'(s) e Ti; (=z,y €S, t,s € 1), we have by (13) and (14),

' () = ' ()l < Nl2'(#) = 2" ()l + l2"(s) =y ()l < e + = — s

<e+ diam(S;) < a(H) + 2¢,

and therefore diam(T;;) < a(H)+2¢ (¢ = 1,...,m; j = 1,...,n). Hence
a(H'(I)) < a(H) + 2¢, which implies (12) since & is arbitrary.
On the other hand, it is known (see [2] Lemma 1.4.4)

a(H(D) < o(H). (15)

Observing

a(H()) <a(H(D), o(H'(t) <a(H'(D), tel,
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(11) follows from (10), (12) and (15). Our lemma is proved.

a

REMARK 2: (a) If we only assume that H is a bounded set in C*[I,E], then
(see [2] Lemma 1.4.4)

o(H) > a(H(D), o(H) 2 sa(H'(D). (16)

(b) We will also use the following conclusion (see [2] Remark 1.4.1): Let B bea
bounded set of E and S be a bounded set of real numbers. Then, for
SB = {tz: z € B,t € S}, we have

a(SB) = (jtelg l¢]) a(B). (17)

(c) By the same method, we can prove the following extension of Lemma 2: Let H
be a bounded set of C(™[I,E] (m > 1). Suppose that H(™ = {z(™) :z ¢ H}

is equicontinuous. Then

a(H) = max{sup a(H(t)), sup a(H'(t)),...,sup a(H™ (1))} (18)
tel terl tel
and
a(H) = max{a(H(I)),a(H'(])),...,a(HM™(I))}. (19)

In order to investigate BVP (2), we first consider the integral operator

As(t) = [ 61,97 (s,2(9),0'(5), Tae), Sx(e))ds 30, (20)

where f€C[IXPXExPxP,P|,ye C*I,E], y(t)>6 for t€I and

J N at +b)(c(1 —s)+d), t<s;

Glt, ) = { TN as +b)(c(1 =) +d), t>s,

(21)
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here a>0,52>0,c20,d>0 and J =ac+ad+bc>0. Moreover, T and
S are defined by (3), where k € C[D,R4], h € C[Dy,R4], D = {(t,s) € R? :
a<s<t<1} and Dy = {(t,s) € R?: 0<t, s <1}. In the following, let
Br={z€P:|z|<R}, Fr={z€E:|z| <R}(R>0) and

ko = k(t,s), ho= h(t,s). 22
0= (EEMbe) o= max h(t, <) (22)

Furthermore, let P(I)= {z € C'[I,E]|z(t) >0 for t€ I}. Then, P(I) isa
cone in C![I,E]. Usually, P(I) isnot normal evenif P isa normal cone in

E.

LEMMA 3. Let f be uniformly continuouson IX Br X Frx Bgr X Br for any

R > 0. Suppose that there exist constants L; >0 (:=1,2,3,4) with

Li+2Ly +koLz+hoLy<p (23)

such that
Ol(f(t, X, Y, y Z, I/V)) _<_ LICM(X) + Lga(Y) + L3a(Z) + L4OI(U/') (24)

for any bonded X,Z,W CP,YCE and t€ I, where

p=min{l,¢'} (25)

and

_ { max{J ~!(bc + bd), J"1(ad + bd), J(4ac)~'}, if ac# 0;

26
max{J 1 (bc + bd), J~!(ad + bd)}, if ac=0. (26)
Then operator A (see (20)) is a strict set contraction from P(I) into P(I),

ie. A is bounded and continuous and there exists 0 < r < 1 such that

a(A(Q)) £ ra(Q) for any bounded Q C P(I).
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PROOF: By direct differentiation of (20), we have for = € P(I),

(Aa:(t))' = /0 Gi(t,s)f(s,2(s),2'(s), Tz(s), Sz(s))ds + y'(¢), (27)

where
, 3 Jla(c(1-s)+d), t<s;
Gilt ) = { J~1(=c)(as + b), t> s, (28)
and
(42(t)" = £ (t,2(2), 2 (1), Ta(t), Sz(1)) +y"(2). (29)

It is easy to see that the uniform continuity of f on I x Bgr X Fr X Br X Bp
implies the boundednessof f on IxXxBrxFrxBgpXxBpg, so,(20)and (27)imply
that A is a bounded and continuous operator from P(I) into P(I). Now,
let @ C P(I) bebounded. By virtue of (29), {||(Ax(t))"|| tz€Q,tel} isa
bounded set of E, so (A(Q))' is equicontinuous, and hence Lemma 2 implies

(see (10))
«(A(Q)) = max{sup a(AQ(1)), sup a((4Q)'(1))}- (30)
On the other hand, it is easy to know from (21), (26) and (28) that
0<G(t,s) < T Has+b)(c(l-s)+d)<q, ts€l (31)
and

|Gi(t,8)| <1, t,sel, t#s. (32)
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Consequently, for t € I, we have by (20), (17) and (31),

a(4Q(H) < al{ [ 614,5)7(5,2(),2(5), Ta(s), S2(s))ds : = € Q)
< a(G0{G(t,9)f(5,2(5), (), To(5), 55(5)) : = € Q, s € T})
= a({G(t,5)f(5,2(s),2(5), To(5), $5(5)) : = € @, s € T})
< qa({f(s,2(), (), Ta(s), 52(5)) : 2 € Q, s € T})
< qa(f(1,Q1), @'(D), TQ(D), QD). (33

Since f is uniformly continuouson I x Bgr X Fr x Bg x Bg forany R > 0,

we have (see [2], Lemma 1.4.1)

a(f(1,Q(D),Q'(I), TQU), SQ(I))) = sup a(f(,QD), Q' (1), TQ(I), SQ(I))).
(34)
It follows from (33), (34) and (24) that

a(AQ(1)) < ¢{L1a(Q(D)) + L2a(Q'(D)) + L3 (TQ(D)) + Lsa(SQ())}, tel.

(35)
By (16) and (17), we have

a(Q'(D) <2¢(Q), a(QD) < (Q) (36)

and

a({/o k(t,s)z(s)ds: z € Q, t € I})
< a(co{tk(t,s)z(s): = € Q,s €[0,t], t € I})

o(TQ(I))

]

a({tk(t,s)z(s): z€Q, s€0,t], t € I})

< koa(Q(D)) < koa(Q). (37)
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Similarly,
a(SQ(I)) < hoa(Q). (38)
Hence, (35)-(38) imply
a(AQ(t)) < q(Ly + 2L + koL3 + hoLy)a(Q), tel. (39)

In the same way by using (27) and (32) instead of (20) and (31), we get

a((AQ)'()) < (L1 +2L2 + koLs + hoLs)a(Q), te€ (40)

It follows from (39), (40), (23) and (30) that «(A(Q)) < ra(Q), where
r o= max{q(L1 4+ 2L, + koL3 + hoL4), Li+ 2Ly + koL3 + h0L4} < 1, and our

lemma is proved.

(H1)

(Ha)

(Hs)

3. Main Theorems

Let us list some conditions for convenience

zo > 0, 1 > 0; f is uniformly continuous on I X Br X Fr X Br X Bpr
forany R >0 andthereexist L; >0 (i=1,2,3,4) such that (23) and
(24) hold.

lim —M—I({ﬁl < £, where M(R) = sup{|f(t,z,y,2,w)|| : (¢2,9,2,w) €
R—+o0
Ix Bp x FR x B x Bg}, m =max{l,kg,ho} and p is defined by (25)
and (26).
there exist up >0 and 0 <ty <t; <1 suchthat f(¢,z,y,2,w) >

rouo for t€ [to,t1], T 2 ug, y€ E, 220, w >0, where

ro = J{(ato + b)(c(1 — t1) + d)(t: — to)} . (41)
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(Hy) cone P is solid and there exist ug > 8 and 0<ty <t <1 such
that f(t,z,y,2,w) > rug for t € [to,t1), 2> up, y€ E, 226, w > 6,
where r>ry and ry is defined by (41).

(Hs) there exists Ry > mf such that

M<P_(1-T_@.),

Ro m Ro (42)

where

B =J""(a+b+c+dymax{||zoll, [lza]]}. (43)

THEOREM 1. Let (H;) and (H:) be satisfied. Then BVP (2) has at least one

nonnegative solution in C*[I,E|, i.e. solution in C?*[I,E]n P(I).

PROOF: It is well known, the C?[I,E] solution of (2) is equivalent to the C![I, E]

solution of the following integral equation

z(t) = /; G(t,s)f(s,2(s),z'(s), Tz(s), Sz(s))ds + y(t), (44)

where G(t,s) is the Green function given by (21) and y(t) denotes the unique
solution of BVP

{x”=9, 0<t<1; (45)
az(0) — bz'(0) = zo, cz(1) +dz'(1) = z4,
which is given by

y(t) = J7H{(c(1 = t) + d)zo + (at + b)z1}. (46)

Evidently, y € C?[I,E]N P(I). Let operator A be defined by (20). Then

condition (H;) and Lemma 3 imply that A is a strict set contraction from
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P(I) into P(I). By (H2), thereexist >0 and R¢ >0 such that

M(R) P
> .
7 <m+17 for R>mR, (47)
Choose R such that
R>Ry, — 4l (48)
 m+q R

andlet U= {ze P(I): ||lz[; <R}. For z€U, wehave
Izl < R, lzllo <R, |Tzllo £ koR, [Szllo < hoR,

so, it follows from (20), (27), (31), (32), (47) and (48) that

lAzllo < gM(mR) + [lyllo < —= —-mR + [yl

m+

m_ .yl
<
< ( >t = JR<R (49)

and

" < ' P
I(Az)llo < M(mB) + [ly'llo < —=— -mE +lvllx
m llylls
<
—(m+17+ 7 JR <R, (50)
hence ||Az||; < R. Thus, we have shown
AU) cU. (51)

Since U = {z € P(1): |lz|ly £ R} is a nonempty bounded closed convex set
of C![I,E], Darbo theorem (see [4]) implies that A has a fixed point in U,

which is a solution of (44), and our theorem is proved.
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THEOREM 2. Let (H;),(Hz2) and (Hs3) be satisfied. Then BVP (2) has at

least one nontrivial nonnegative solution z € C%[I,E] which satisfies

.’B(t) Z Ug, t € [to,tl]. (52)

PROOF: As in the proof of Theorem 1, we can choose R > |luq|| such that (51)
holds. Now,let F = {z € P(I): |z £R and =z(t) 2 wuo for tE€ [to,t1]}.
Obviously, F isabounded closed convex set of C![I,E], and F isnonempty
since u € F, where u(t) = uo.

For z € F, we have by (H3):

tel = Az(t) > /(; G(t,s)f(s,z(s),2'(s), Tz(s), Sz(s))ds > 6;

t € [to,t1] = Az(t) > /t 1 G(t,s)f(s,z(s),z'(s), Tz(s), Sz(s))ds

i t
> ( t G(t,s)ds)rouo > ( t J ™ (ate + b)(c(1 = t1) + d)ds)rouo =(15zg)

Consequently, Az € F, and hence A(F) C F. Finally, again Darbo theorem
implies that A has a fixed point in F, and the proof is complete.
O

THEOREM 3. Let cone P be normal and solid. Suppose that (Hy),(Hz),(Hy)
and (Hs) are satisfied and

[luoll = , (54)

m

where N is the normal constant of P. Then BVP (2) has at least three non-

negative solutions %; € C*[I,E] (i=1,2,3) such that

R
1zl < 73', Zo(t) > ug for tE€ [to,t]. (55)
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PROOF: By Lemma 3, A is a strict set contraction from P(I) into P(I). It

is easy to see from (46) and (43) that

Iyl = max{||yllo, lly"llo} < B (56)

Let Uy ={z € PI): |z|h1 < %ﬁ} For z € U;, wehave |z|; < B"—f- . So,
(42) and (56) imply

42l < aM(Rs) + lyllo < 2 (Ro ~ mB) + 6 < = (Ro ~m) + = 2,

' 1 R
(A2 lo < M(Ro) +l1y'llo < = (Ro —~mB) + B < = (Ro —mB) + f = — .
m m m
Consequently, ||Az|; < &2, and hence
A(T,) C Us. (57)

As in the proof of Theorem 1, we can choose R > 2||lug|| such that (51) holds,
where U = {z € P(I): ||z|li < R}. Let Uy ={z € P(I): |z|1 <R, z(t) > uo
for t € [to,t1]}. By Corollary 1, Uz is abounded open convex set of P(I). U,

is nonempty since v € Up, where v(t) = 2uo. Moreover, we have
U1 CU, U2CU, Uanz =¢. (58)
In fact, (54) and N >1 imply

R > 2||ue|| >

— ]

m

2RoN S 2R,
m

so Uy cU If z€U;, then z(t) > ug for t € [to,t1], and therefore
N|z|ly > |luoll = B | which implies zEU,. So, U; and U, have no

common elements, and (58) is proved. For z € Uz, we have |z|; < R and
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z(t) > uo for tE€ [to,t1]. (51)implies ||Az|; < R, and, similar to (53), (Hy)

implies:
t r
t € [to, t1] => Az(t) > ( J ™Y aty + b)(c(1 — t1) + d)ds)rug = — uo > uo.
to 0
Hence Az € U;, and so
A(T,) C U,. (59)

It follows from (51), (57)-(59) that the fixed point indices of strict set contraction

(see [4])
i(A,U,P(I)) =1, i(4,Us,P(I)=1 (k=1,2)

and

i(4,U\(U.UT,), P(I)) =i(A,U,P(I)) —i(A,U, P(I)) —i(A,Us, P(I))

=-1.

Consequently, A has three fixed points Z, € Uy, Z; € Uy, Z3 € U\(U; UT,),

and (55) is obviously satisfied. The proof is complete.

a

REMARK 3: In case z9 =z; =6, wehave B =0. So, (Hs) and (54) are

satisfied if

— M(R)
Rli.nio R

< % ) (60)

As an application, we consider the following BVP for third order integrodif-

ferential equation:

{ —z'"" = f(t,z,2', 2", Sz), 0<t<1; (61)

z(0) =6, az'(0)-0b2"(0)==z9, cz'(1)+dz"(1)=z,.
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Let u=2z', then
t

z(t) = z(0) + /:u(s)ds = /0 u(s)ds,

so, (61) is reduced to the following BVP:

{ —u" = f(t,Tyu,u,u', S1u), 0<t<1; (62)

au(0) — bu'(0) = z, cu(l) + du'(1) = z4,

where

t 1 1
Tyu(t) = /0 u(s)ds, Siu(t) = /0 hit, s)u(s)ds, hu(t,s) = / h(t,r)dr.

Since (62) is a BVP of type (2), we can apply above results to (61). For example,
by Theorem 1, we get the following

THEOREM 4. Let (H;) and (H;) be satisfied with the change of k¢ =1,
fECIXxPxPxExPP] and M(R)=sup{||f(t, 2,y,2,w)||: (¢,z,y,2,w) €
I x Br X Bgr X Fr x Br}. Then BVP (61) has at least one nonnegative solution
z € C3[I,E] suchthat z'(t)>8 for tel.

4. Examples
This section gives several examples for both infinite and finite systems of

ordinary nonlinear integrodifferential equations based on the above theorems.

EXAMPLE 1: Consider the BVP of infinite system for second order nonlinear inte-

grodifferential equations

—ah = 3L (224 (2))? + 3Tapr [y (L + €7 ")z2n(s)ds)/?
+ %1- (t+ xgn_l)l/:”(fol sin?(t — 3s)xn(s)ds)1/2é’n(1 +t(zh41)?)

z,(0) =2, (0) =0, z,()+z,(1)=0 (0<t<; n=1,23,...).
(63)
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CoNcLUSION: BVP (63) has at least two nonnegative C? solutions 7;(t) =

(Zi1(t)y.- -, Zin(t),--.) (:1=1,2) such that
Fi()=0 (n=1,2,3,...) (64)

and

9
Zon(t) 2 for %—Stsg (n=1,2,3,...) and Z3,(t1)—=0 as n—o o

S|

for any t € [0,1]. (65)

PRrOOF: We need only to prove that BVP (63) has a nonnegative solution Z3(t)
which satisfies (65) since Z;(t) = (0,...,0,...) 1is evidently the trivial solution of
(63). Let E=cy={z=(z1,..-,Tny-..): Tp — 0} withnorm ||z|| = sup |z,|
and P = "

{z = (z1,..-yZn,-..) €Eco: 2o, >0, n =123,...}. Then, P 1is a nor-
mal cone of E and (63) can be regarded as a BVP of the form (2), where
a=b=c=d=1,

o=z, =0, k(t,s) =1+e€'"°, h(t,s) =sin®(t - 3s), £ = (21,...,Tn,-..),

Y = (Y1, sYns---)y, 2 = (21y.04y2ny...), W = (W1,...,Wn,...) and f =

(.fl""afn,---), in which

16t
fn(t,x7 y,z,w) = \3/7-1, (1‘31 + y?z + 3wn+122")1/3

2

+n+1

(t+ 220-1)Pwl/ 201 + ty2,,), (0<t<1;n=1,23,...)
(66)
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By (66), we have

|fn(t 2,9, 2, w)] < 5= \/— (el + ol + 3llell - 121

42
+n+

(67)

and so

1
1t 2,9, 2, w)l| < 16(11zl|+1lI* +3l2]- I1yI)*/° + 5 A+ 121D w2 a1+ 1y 1),

(68)
which implies
M(R) < 16(R® + R* + 3R?)'/® + -;-(1 + R)®RY?*n(1 + R?),
and consequently
i, T =0 (59)

This shows that condition (Hz) is satisfied.

Obviously, f€C[IXPx Ex P x P,P] and f is uniformly continuous
on I x Bgpx Fgpx Br xBgr for any R > 0. We now verify that the set
f(t,X,Y,Z,W) is relatively compact in E = ¢y for any bounded X,Z,W C
P, YCE and t el Infact let {c™} c X, {y§™} cV, {z™} c
Z, {w™}CcW and
o™ = Fn(t, 2™ y(m) 2(m) 4p(m)y By (67), we have

16t

("’)II2 + Iy ™I + 3= - [

+ —— (t+ [z ™ 2en(1 + |y, (n,m=1,2,3,...).
n+1 (70)

Hence {vﬁl’")} is bounded, so, by the diagonal method, we can select a subsequence

T (t+ I )*2lwl*/2en(1 + ¢llyll*), (0<St<Ln=1,2,3,.

),
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{mr} of {m} such that
kli‘n:ovgm") =v, (n=12.3,...).
It is easy to see from (70) that v = (v1,...,Vn,...) Ecop and
o) — v} = sup o™ —va| =0 (k — o).

Thus, f(t,X,Y,Z,W) isrelatively compact, and therefore (H;) is satisfied for
Ly=L;=L3;=Ly=0.

Now, let wuo = (1,3,...,%,...) and to =3 ,t1 = 2. Then u €
co, ugp > 6. When to <t <t;,z>uy, y€cp 2260, w>80 (ie. z, 2>

12,20, w, >0 for n=1,2,3,...), we have, by virtue of (66),

16¢ 16 81
> 23> 25 T
fn(taxay’z’w) = \3/5 ) 2 3n > 16n

This shows that (Hj) is satisfied since, by (41), ro = 3 . Hence, the existence

of solution Z,(t) satisfying (65) follows from Theorem 2.

a

EXAMPLE 2: Consider the BVP of the finite system for nonlinear integrodifferential

equations

-z =30t Ve, In[l+z,_y+ fot(e“’ + 3t283)z541(8)ds]

+sin®(z), = 2 + Tnt1) + 2(@L)23() cos(t = 8)Tni1(s)ds) 3,
z,(0)—2z,(0) =0, 3z,(1)+z,(1)=0 (0<t<;n=1,2,...,m),
(71)

where z9 =z, and z,4; =1;.

CoNCLUSION: BVP (71) has at least three nonnegative C? solutions Z;(t) =
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(Zi1(t)y ..., Zim(t)) (¢=1,2,3) such that

Fia(t)=0, n=1,2,...,m (72)

Zaa(t) 21 for <t< Z—, n=12,...,m. (73)
PROOF: Let E = m-dimensional space E, = {z = (z1,...,Zm)} with norm
lz|| = sup |z,] and P = {z = (z1,..-,Zm) : zn 2 0, n = 1,2,...,m}.
Then, ; is a normal and solid cone in E and BVP (71) can be regarded
as a BVP of the form (2), where a = 1,b = 2,¢ = 3,d =1, 29 = 21 =
8, k(t,s) =e*+3t2s3, h(t,s) = cos(t—s), = (T1,--,Zm)y Y= (Y1s---rYm)s 2 =

(z15++y2m), w = (w1,...,wm) and f=(f1,...,fm), in which

fn(tyzy y’zyw) =30t \/z, en(l + Zp-1+ Zn+1) + sinz(yn — Yn-1+ xn+1)

1
+ g(yn)z/s(wn+l)l/3a n= 1123"'am' (74)

Evidently, f€ C[IxPx Ex P x P,P] and (H;) is satisfied since f, are

continuous and E is finite dimensional. We have

|sin(yn = Yn—1 + Tn+1)| < min{l, |yn — Yn-1 + Tnt1l}

< min{la |yn| + lyn-—ll + ‘mn+1|}v

so, (74) implies

17t 2,2, w)ll < 30t V/Jell £n(1 + |lzl| + 1z1) + min{1, (2llyll + |=1)*}

1
+5 Il - Jw|*/®, Vi€l zeP,yeE, zeP,wep,
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and therefore
. 2 1
M(R) £30 VR {n(1 + 2R) + min{1,9R*} + 8 R.

Hence

— M(R) _1 — M(R) _1
ik G ik el? A
REI-lI-loo R —6° Rli..;.o R =6 (75)
On the other hand, it is easy to see that, in this case,
5
q=g, p=1 m=e+3. (76)

Thus, (75) and (76) imply that (H;) and (60) are satisfied. Now, we check
(H4) Let Ug = (1,1,...,1) and to = %, 1 =

N

Obviously, uo > 6 and,
for te [to,tl],
T2>u, y€EE 220, w>9 (le iStS%, Thn 21, 2,20, wa, 20, n=

1,2,...,m), (74)implies

fa(t,z,y,2,w) > 30t /2, In(l + zp—q) > 1; h2 (n=1,2,...,m). (77)

On the other hand, we have by (41)

320 15
To——@-<-2—en2. (78)

Hence, (77) and (78) imply that (H4) is satisfied with r = 1 ¢n 2. Finally,

our conclusion follows from Theorem 3 and Remark 3.

a

EXAMPLE 3: Consider the BVP of infinite system for third order nonlinear inte-
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grodifferential equation

2 1/3
-z = ———-——-n(;_*_l) f”n{n(l -2t —g! )23

+m [(z2n +sint)® + (zh,1)? fol e~ cos(t — s)zn(s)ds] /4,

z.(0)=0, 2z,(0)—-zn(0)=13%, =z (D+22)(1)=2L (0<t<1;n=123,...).
(79)
CONCLUSION: BVP (79) has at least one nonnegative C3 solution z(t) = (Z1(t),...,Za(t),
such that z/,(t) >0 (n =1,2,3,...) and Z,(t) =0 as n — oo for any
t € [0,1].

PROOF: Let E =¢ and P = {z = (z1,...,%ny-.-) ECo: ZTo 20, n =
1,2,3,...} asin Example 1. Then, (79) can be regarded as a BVP of the form
(61), where

a=d=2, b=c=1, xo=(1,%,...,;ll-,...)€c0, 1 =(1,%,...,3,...) €
Co,

h(t,s) = e~ cos(t—s), T = (T1y---rTnyee-)y Y= (Y1y- ey Ynyev-)y 2= (215000 s2n,...),

w=(w1,...,Wn,y...), f=(f1y--+yfny--.), in which

t2 1/3
fa(t,z,y,2,w) = Y fﬂn/+1(1 — 2t —y,)?/®

+sint)? + 2 w4, (n=1,2,3,...)

+ _..1_____ [(a:
t+Dyn " (80)

Now, (80) implies
12y, 200l < Sl (L4 D)2 + (el + 17 + 1202 - oo/,
so

M(R) < 5 RY¥3(1+ R +[(R+1)° + R,
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and therefore

— M(R) _1
el Sk AP
pim T S 3

(81)
This shows that (H2) 1is satisfied since it is easy to calculate that p=m = 1.

On the other hand, similar to Example 1, we can check that f(¢,X,Y,Z, W)
is relatively compact in E = ¢y for any bounded X, YW C P, ZC E and
tel, so (H,) is also satisfied.

Finally, our conclusion follows from Theorem 4.
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