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ABSTKACT

In this paper, the existence of periodic solutions of impulsive
differential systems is considered. Since the solutions of such a system
are peicewise continuous, it is necessary to introduce piecewise
continuous Lyapunov functions. By means of such functions, together
with the comparison principle, some sufficient conditions for the
existence of periodic solutions of impulsive differential systems are
established.
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!:, .Introduction
It is now recognized that the concept of Lyapunov functions and the theory of

differential inequalities provide a very general comparison principle under relatively
unrestrictive assumptions which can be utilized to study various qualitative and quan-
titative properties of nonlinear differential equations. In this set-up, the Lyapunov
function technique serves as a vehicle to transform a given complicated differential

system into a relatively simpler scalar differential equation. The original idea of the

comparison method is to determine the stability properties of a vector differential

equation from the stability properties of a scalar equation through the choice of a

suitable Lyapunov function which satisfies a certain differential inequality. For an

excellent exposition of this method we refer the reader to [3]. In this paper, we apply
the comparison principle to the problem of existence of periodic solutions of impulsive
differential systems. Since the solutions of impulsive differential systems are piece-
wise continuous functions, it is necessary to introduce certain analogues of Lyapunov
functions which possess discontinuities of the first kind. By means of such functions,
together with the comparison principle, we apply the Brouwer fixed point theorem to

the map X(to) ---, X(to + T) and obtain some sufficient conditions for the existence of

periodic solutions of nonlinear impulsive differential systems. Stability properties of

impulsive differential systems were also considered in [2] and [4].

2,_..Pr.eliminaries
We shall consider the impulsive differential system with fixed moments of impulse

effects

= t #
Axl,=, = I(x), k = 1,2,...,

under the assumptions

(i) f" R+ R" R" is continuous on (k_,,tk] Rn, lim
(t,u)-(t,x)

f(t, y) = f(t’, z)

(ii) 0 < t < t < < t,..., t c as k c and there exists a positive integer
N such that t+=+T, for all k = l, 2, .,

exists and f(t, z) is T-periodic with respect to its first argument;
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(iii) I R’* -+ R is continuous on R’* and I+v(x) = I(x) for all z R and

k= 1,2,

A solution x(t, to, zo) of (2.1) with x(t+o, o, xo) = Zo existing on some interval

[o, o + c) and undergoing impulses at the points {}, o < t < to + c, is described
as follows"

(, o, o), o _< _< ,
(, ,+), < < ,

(.) (, o,o) =

where x’ = x + I,(zt,) and
For simplicity, we assume that for any initial value (o, zo) R+ x R’ the solution

z() = z(, o,:r.o) of (2.1)is unique. Conditions which guarantee this may be found,
for example, in [2]. We shall use the following notation"

K = {or C[R+,R+], a(t) is strictly increasing and or(0)= 0};

]:o = (V R+ x R’* --+ R+, V(t,x) is continuous on (t_,t] R’* and

lim V(t, y) = V(t’ x) exists}.(,v)--(t,x)
t>t

DEFINITION 2.1 Let V ];o. Then for (t,x) (t_,t) x R’, the upper right

derivative of V(t, z) with respect to the impulsive differential system (2.1) is defined
&$

D+Y(t, x)= limsup .-l[y(t + h, x + hf(t x)) V(t x)]
hh---.O+

DEF’ro 2.2 Let V Vo. Then V(, ) is said to be convex if for each positive

number 0, the set E = {x R V(t, z) _< 0} is convex in R" for each fixed t.

In applying the comparison technique, we shall make use of the scalar impulsive
differential equation

(2.3)
,,’= (t,,,), t t,
u(t) = Ju(u(t)), k = 1,2,...
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where g R+ xR+ --. R is continuous on (t_x, t:] xR+, k = 1,2,...,

g(t+, u) exists and J" R+ --, R+ is nondecreasing.

lim g(t, v) =
(,)-(,)

DEFINITION 2.3 Let r(t) = r(t, to, Uo) be & solution of (2.3) on [to, to + a). Then
r(t) is said to be the maximal solution of (2.3) if for ny solution u(t) = u(t,o, Uo)
of (2.3) existing on [to, to + c), the inequality

(2.4) _< ,-(t), t e [to, to +

holds. A minimal solution of (2.3) may be defined similarly by reversing the inequal-
ity in (2.4).

..3: M.a.i.n ..r.esul.ts
Let us begin by stating the following comparison result.

LEMMA 3.1 Assume that

(i) m [to, to+a) R, 0 < a <_ x, is continuous fort t, k = 1, 2,..., lim re(t) =

m(t) and lira re(t) = m(t) exists for all t fi [to, to + a). Furthermore, the

following inequalities hold:

D+m(t) <_ g(t,m(t)), t # t,

m(t) < J(m(t)), t e [to, to +
m(t+o ) <_

where g, J are as defined in (2.3);

(ii) r(t) = r(t, to, Uo) is the maximal solution of the impulsive differential equation

(2.3) existing on [to, to + )such that r(to)= uo.

Then we have m(t) < r(t), t fi [to, to +
The proof of Lemma 3.1 is similar to that of Theorem 1.4.4 in [2]. We omit it here.

THEOREM 3.1 Assume that
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(i) V ])o, V(t, z) is convex, locally Lipschitzian in x, periodic in t with period
T. Moreover, there exists b K such that b(u) as u --, e and

(ii) there exists to >_ 0 such that the equation (2.3) has a unique solution u()
existing on [to, to+T] such that U(to) >_ u(to+T) and u(t) _> M for t e [to, to+T],
where

M > sup{Y(t,O);t e [0,T]};

(iii) D+V(t,z) <_ g(t, V(t,z)), (t,x) e R+ x R", V(t,x) >_ M, t t;

(iv) V(t’, x + Ia(x)) <_ J(V(ta,x)), (t,x) R+ x a", V(t,x) >_ M.

Then the differential system (2.1) has a T-periodic solution.

PROOF" Define the following set E by

E = { e R"’V(o, ) < (o)}.

Let xo e E and x(t) = x(t, to, xo) be a solution of (2.1)existing on [to, to + c), a > 0.

Set re(t) = Y(t, x(t)), t [to, to + ). Then m(to) <_ u(to). We claim that

(3.1) .(t) _< ,(t), t e [to, to + ) [to, to + T].

If this is not true, then there exist p, q fi [to, to + a) f [to, to + T], iv < q such that

(3.2) re(p) = u(p), re(q)> u(q) and m(t) >_ u(t), t e [p,q].

It then follows from conditions (ii), (iii), (iv) and (3.2) that

(3 3) D+m(t) <_ g(t, re(t)), t e [p, q] t t,
< J(m(t)), t [p, q], k = 1,2,

Since re(p) = u(p), Lemma 3,1 implies that

re(t) <_ u(t), t e [p, q],

which is a contradiction. We shall show next a > T. If, on the contrary, a _< T, then

we must have

sup Il x(t ) --- x as t -, c
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This, together with condition (i) and (3.1) implies that

u(t)--,oo as ta,

which is absurd. Since V(t, z) is T-periodic, it then follows from (3.1) and condition

(ii) that

(3.4) V(to, z(to + T, to, zo)) = V(to + T, z(to + T, to, zo)) = re(to + T) <_ u(to),

which implies that the operator

Q zo --, z(to + T, to, zo)

maps the set E into itself. Clearly E is nonempty, bounded, closed and convex in R.
By the theorem of Brouwer the operator Q E E has a fixed point in E, (cf. [1]
for details). Thus the proof is complete.

COROLLARY 3.1 Assume that

(i) V lo, V(t, x) is convex, locally Lipschitzian in x, periodic in t with period T
and Y(t, O) _= 0 for t e [0, T]. Moreover, there exists b e K such that b(u) ---, c

as u ---, c and

b(ll x 11) -< V(t,), (t,) e + =;

(ii) for some M > O, D+V(t,z) <_ A(t)V(t,z), (t,z) [O,T] R", t # t, V(t,z) >_
M where ,k C[R+, R+] and A(t)is periodic in t with period T;

(iii) V(t’,x + I(x)) <_ dV(t,z), (t,z) e R+ x R", V(t,t) >_ M, where d > 0;

(iv) there exists to >_ 0 such that

to<tk<to+T

Then the differential system (2.1) has a T-periodic solution.

PROOF" Consider the impulsive differential equation

(3.5) = (t)u, t # t,
= du(t), k=1,2,
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It is sufficient to show that (3.) has a unique solution u(t) existing on [to, to + T] such
tha u(to) >_ u(to + T) and u(t) > M for some constant M > 0 for t 6 [to, to + T].
Choose uo > 0 and let u(to) = uo. We may assume that t > o for k = 1,2,
Clearly (3.5) has a unique solution

(3.6) u(g, to, uo) = uoef’o (s)as for t [go, ]-

From (3.6), we obtain

(3.7)

Then (3.5) has a unique solution

(3.s)
for

Suppose that for i _> 1

(3.9)

Then (3.5) admits a unique solution

(3.10)
for t e Its,

Let

Then u(t)is a unique solution of (3.5) such that

(3.11) u(to) = uo and U(to + T) = uo ( 1
to<t<to+T

,X(s)ds
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Let M = min uo .__r] di. It then follows from condition (iv) that

u(to+T)<_u(to) and u(t)>_M for t[to,0+T].

Thus the proof of Corollary 3.1 is complete.
If A(t) 0 for 6 [0, T] and d 1 for k = 1,2,..., then we have the following

result.

COROLLARY 3.2 Assume that

(i) V 0, V(t, x) is convex, locally Lipschitzian in x, periodic in with period T
and V(t, 0) 0 for t E [0, T]. Moreover, there exists b E k such that b(u) ---, c

 (11 II) < e R+

(ii) for some M > O,D+V(t,x) <_ O, (t,x) e [0,T] x R, t # , V(t,z) >_ M;

(iii) V(t+,x + I(x)) <_ V(t,z), (t,z) e R+ x R, V(t,x) >_ M.

Then the differential system (2.1) has a T-periodic solution.

REMARK" It is easy to see from the proof of Corollary 3.1 that we can choose

the constant M to be greater than 1 in both Corollary 3.1 and 3.2.

As an application, we consider the following examples.

EXAMPLE 1" Consider the differential system

t#-, n=l 2x’ = z(1 + y) sin y cos + --g,

(3.12) y’ (--2ax+y) sint+2axcost--’i"’ t n=l 2," ’’
Ay[= = 2,Az{=. =-hz, -y, n = 1,

where a > 0 is a constant. Clearly, the right hand side of (3.12) is 2r-periodic in t.
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Let V(t, x, y) = 2ax 4- y. Then, for t -,
sinD+V(t, z, y) = 4az z(1 + y) sin t y cos t +

<_ 4V(t, x, y) sin t, provided V(t, x, y) >_ 1.

, (o-, ,) = o( )
For any to -, we have

( 1

to<

._2

.=e <1.

It is easy to check that the rest of the conditions in Corollary 3.1 are satisfied. Thus

(3.12) has a nontrivial 2r-periodic solution.

EXAMPLE 2" Consider the impulsive differential system
1z’=-z(2+sin2zl-2y+Tcost, t, n=1,2,...

1 sint, t# n=l 2y’=2x-y-y(2+cos2x)-] ,...

zl,= -z,- Ylt= -Y, n = 1,2,

The right hand side of (3.13) is 2zr-periodic in t. Let V(t, x, y) = x + y=. Then for

t# ="

(, ,) = [_( +) + os 1 + [ ( +o) n ]D+

0, provided V(t,x,y) 1,

and

(v,,) = (- )2 2
+ ( -) < v(v,,).

It then follows from Corollary 3.2 that (3.13) admits a 2r-periodic solution.

The authors are very grateful to the referee and the editor for several corrections.
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