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ABSTRACT

Using distributions theory technique we introduce parabolic
potentials for the heat equation with one time-dependent coefficient
(not everywhere positive and continuous) at the highest space-deriv-
ative, discuss their properties, and apply obtained results to three illus-
trative problems. Presented technique allows to deal with some equation
of the degenerate/mixed type.
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1. INTRODUCTION

In this paper we shall study the properties of ”parabolic” potentials associated with the

boundary value problems in a semi-infinite domain of the following type:

(1) L= -a(t)g%—:f(x,t),x>0,t>0;
(2) u(x,0) = p(x), x2>0;
(3) u(0,t) =r(t), t > 0; (¢(0) =(0)).
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Throughout the paper the coefficient a(t)e L,[0, T], is not necessarily positive

(which implies that (1) may be of degenerate/mixed type), is defined everywhere in [0,T]
and satisfies one of the following conditions:

(i) «(t) =0, with equality allowed only at isolated points that do not cluster
anywhere in [0, T] ;

(i) o, (t) defined by the formula

t
al(t)=Jo a(z)dz, (0, (0)=0)

is positive for all t> 0, which allows a(t) to be even negative in some intervals.
Obviously, any function satisfying (i) is a function of the (ii) type.

It should be noted that in neither case (for different reasons) (1) is reducible to a
standard heat operator u, - u,,. The realization of this comes from the relatively
obvious substitution of variables [1]:

t

T = J;a(z)dz,

which in case of (i) implies existence of inverse function t(t) with a finite derivative t';

= 1/o(t) atthe points where o t)# 0. In (ii) case inversion is not possible at all. To
get around this obstacle, we derive the fundamental solution, potentials and their
properties, and solution of (1)-(3) directly from (1) in its original form.

The boundary S of the domain consists of two parts denoted throughout by S, =
{x20,t=0}and S, = {x=0,t 2 0} And, finally, M denotes the class of

bounded in any strip (- % < x <) x [0, T] functions, vanishing at t <0.
Under condition (ii) the fundamental solution of (1) can be found by applying Fourier
transform in x in the form [1]:

H(t)

2 nal(t)

@ E(xt)=E(x a(t)= exp(~x74a (1)),
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(were H(t) is Heaviside function), provided that o;(t) > 0.

Function (4) has the properties similar to those of standard fundamental solution of
heat operator [2], such as

+ oo

) J. E ,(x,t)dx = 1; E (x,t)—>3(x) with t—0 .
Denoting f, u, etc. the functions in (1)-(3) extendedas = 0 for x <0, t<0, the
initial-boundary value problem can be put into generalized form

-

_a(t)[-g—:-]s cos (7,5,

2

6 L f(x,t)+[ﬁ]slcos(ﬁ, &) 9,

1 2

- 3 @], cos (3,8,)8,) = F(x,1),

where [u]g isajumpof u on S=S;US,, n is an external normal to S, e,, e, are

unit vectors along t, x -axis respectively and distributions in the form ud,, - (U3 )'x
are single and double layers in terms of [2].
Since the operator L, contains a non-constant coefficient, it is not immediately clear

whether solution of (6) can be found in the form u =Ey * F, as in the case of a constant

coefficient. However, we still have the following

LEMMA . Under the condition (i) the distributional solution of (6) is unique and can
be represented as a convolution of the fundamental solution Eg ("dual” to E,) with the

right-hand side of (6), that is u=Eg*F, where,as in [1],

(0 Eg(x-§t-1) = E(x=§, B(t-1)),

and
t

B (t-1) =] a(z)dz=0,(1)=a, (1) B (1) = e (1)

T
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In other words, we treat o.;(t) as if it were time variable in a standard case. Obviously,

[31 is continuous and, due to (i) ]31(t -1)>0for t-t>0.

Proof. Let condition (i) hold. Then EB (x-& t-1) from (7) is a distributional

solution of

oE

LaEB(x-&,t—t) =%%-a(t)3;2-=8(x—z‘,,t—1) in x,t,

and
L;Eﬁ(x—i,t—t) =—%—0&(T)E§§E-=5(x-§,t—t) in§1.

Verification can be easily done by the Fourier transform technique. Then, using

integration by parts we find that u =Eg* Lyu, and by the direct differentiation u =
LyEg*u), which leads to:

La(EB* u) = (LaEB) *u = EB*Laﬁ ,
and the uniqueness of the distributional solution follows immediately, since

Lau=0:EB*Lau=LaEB*u=8*u=u=0. ]

Later we also find that in case of f and r in (1)-(3) being zero, the condition (i)
here can be relaxed into (ii).

As a result of Lemma, we obtain the following integral representation for the solution
of 6) (x>0,t>0):

-

u(§,0) Eglx - g, t)dg

t oo
® ux =] & FEOEM-L-DdEr]
0 0 *

' d PN
+ @O0 x5 1= Do 1= [ o FOIEyx =D,
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Formula (8) (see also [2]) motivates the following definition of parabolic potentials
associated with the boundary value problem (1)-(3):

a) volume potential
9 V(x,t)=EB * f =J‘0td1: :f(?';,'t)EB(x-é,t-—t) d§;
b) single-layer potential concentratedon S; ={x20, t=0}
10 v (xt)=Eg» ((b881)=J:¢(§)EB(X-§,t)d§;
c¢) single-layer potential concentratedon S, ={x=0,t 20}
an v®(xt)=Eg* (aussz)=j;a(c)u(c)EB(x,t—z)d«.-;
d) double-layer potential concentrated on S,

t
(12) W(x, t)= —-é-a;(ocrﬁs ) *Eq =f al(t)r(T) -a%(Eﬁ(x—é,t—’t))‘g._.od"-
2 0

2. VOLUME POTENTIAL

Volume potential V(x,t) given by (9) - is a part of a boundary value problem
solution that corresponds to the source-function f(x,t).

THEOREM 1. Let a(t)e L;[0, T] and satisfy condition (i). Then: (a) for fe
M, V(x,t) € M; (b) for x=0,t20 V(x,t) is a distributional solution of (1),

satisfying zero initial condition as t — O ; (c) if extension fe C? forall x and t20
(which in particular implies that f(0, t) = f,(0, t) = 0) and all its derivatives up to the
second order belong to M, then V,,(x,t) is continuous in { x20,t201}, V; exists

for all x and t ,is continuous in x, and its smoothness in t is determined by that of

a(t) itself; thus, if in addition o(t) € C(R}), then V(x,t) satisfies (1) in the classical

sense.
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Proof.  Introducing in (9) a new variable y (B,(t-t)>0 for t-1>0)

x—§=2y,/ Bl(t-'t) )

for x=20,t20 we express V(x,t) in the form

(13 V(x,t)=—V%Jotdt‘[iJBI(t-1) f(x-29 /B (=01 )7 gy,

and its time-derivative (t > 0):

(14) %\?’- = f(x,t)

t e [Bit-0 2

Using properties of integrals with parameters, it follows from (13)-(14) that V(x,t) €

C2(x20,t>0)NC{(x20,t=>0) for f and o satisfying conditions (c). At the same
time V, being a distributional solution of L,V =f and sufficiently smooth , is its

classical solution (Du Bois Reimond theorem).

Then, since fe M and Eg (asEy satisfies (9),

t +oo0
Vool sufi [ ar | Egag s et
0 Y=

It follows immediately that V € M and satisfies zero initial condition. The rest of (b)
can be obtained as in Lemma, since

f=8*xf=LE *f=L(E,*xf)=L V. n

o p o B a
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3. SINGLE-LAYER POTENTIALS

(A) Single-layer potential ~ V(O)(x,t), given by (10), is a part of a solution
corresponding to the initial condition (2).

THEOREM 2.  Let now the condition (ii) hold. Then: (a)for pe M, V@ e M;
(b) V(O is a distributional solution of the equation Lyu = @3y, and satisfies the initial
condition V(O(x,t) — @(x) as t — 0* for x > 0; (c) if extension @ € C2 (which

implies that ¢(0) = ¢'(0) = 0) and its derivatives up to the second order belong to M,
then V(9,(x, t) is continuousin { x20,t20} and V@, exists is continuous in x,

and its smoothness in t is determined by that of o(t) itself; (d) if in addition o €
CR,), then VO(x,t) e C2(x20,t>0) " C(x 20, t>0) and, since the support of the
distribution @3g,; is S, it follows that V(O)(x,t) is a classical solution of the problem

(1)-(2) (with £=0).

Proof 1is similar to that of Theorem 1 with the substitution of variables in the form:

x- & = 2(0,())12y . n

(B) Single-layer potential V(1 (x,t), given by (11), is a part of a solution,
corresponding to the boundary values u' (0, t).

THEOREM 3. Let again condition (i) hold. Then: (a) for pe M, V)(x,t) e
M; (b) V((x,t) is a distributional solution of the equation Lyu = padg,, x20, t2

0; satisfies zero initial condition as t — 0+; (c) if in addition € C(R;) and pWe M,
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then V)(x,t)e C=in xand Clin t for x >0, t= 0 and is a classical solution of (1)

with f=¢@=0; (d) V((x,t) is continuous at x =0 forall t>0.
Proof. Let us introduce a new variable in (11):
(15) y=1/4[31(t-'c).
Since y'; 2 0 (=0 only at isolated points), (15) gives an implicit function T = 1(t, y)

with 1/(4 B;(t)) Sy <+ and T =0 for y=1/(4 B;(t)). Then, since o,(t) =

B;(t), (11) can be rewritten in the form:

as) vP(x,t )—— Wttt y)) y

1/4a )

2
=32 -~
exydy.

(a) immediately follows from (16) since

(1

| vk, 0) | € =l (e, ((@,(0)=0).

\j_

Part (b) can be proved in the way similar to that of Theorem 1, and since
A7) (VOEHY= 12 712 u(0) (o ()12 0t) exp(-x2/day (1) + VO(x,t; 'y

(where V()(x,t; w'p) is the potential (16) with density [1(T(t,y))]'; ), part (c) of this
theorem is an immediate consequence of (16) and (17). For x >0 V@ (x,t) satisfies

equation LyV() =0 since the support of the distribution podg, is S, i.e. pads, is

equalto O forxeS,.
Statement (d) is obtained by comparison of the convergent integral

(1) -3/2

(0,t)=— dy

L _[“ u-)
ﬁ 1/4al(t)
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with V()(x,t), given by (16), for x close to 0. This, and formulae 3.383(3), 8.359(3)
from [3], leads to the estimate:

| V00~ VP00l szl x| a-a] x| 12",

where 0 <x* <x and @ is the probability integral. |

4. DOUBLE-LAYER POTENTIAL

Double-layer potential W(x,t), given by (12), is a part of a solution corresponding to
the boundary condition (3).

THEOREM 4. Let o satisfy condition (i). Then: (a) for re M, W(x,t)
M; (b) W(x,t) is a distributional solution of the equation Lgu = - (ardg,)’y and
satisfies zero initial conditionas t—0%; (c) for x>0, t=20 if a,re C(R,) and
re M, then W(x,t) € C*> in x and Clin t, and it is a classical solution of (1)-(2)
with f=¢ =0; (d) given that r(t) e C!}(R,) W satisfies the following "jump

formulae'":

(18) xgxgow<x,t)=i%r(t).

Proof. Parts (a)-(c) of this theorem are proved in the same way as those in Theorem
3. We introduce a new variable (15) and express W in the form:

had 2
X -1/2 -xy

(19) W (xt)= j () y 2 e gy,
AL Lo, (9

(where T=1(t,y), as in Theorem 3) and its time-derivative:
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d

@0 ST = = 0) (o, ) o) expl x4, (0) + W (5,510,

1l

where W(x, t; ;') is the potential (19) with density [r( ©(t,y) )]',. Now part (b) can be
proved applying the same technique as in Theorem 2, and (a), (c) follow from (19)-(20)
as in Theorem 3.

Let us consider part (d) in more detail. First we let r(t) =r(t) forall 0<t<t, and

denote the double layer potential in this case by W, . Then, it follows from (19) and [3]
(3.381, 8.359), that for x =0

@y W,=—=

1/2 < y r(t) ( ( X ))
dy=t=——|1-® )
7 (t) i 2Valt)

(£ depending on the sign of x), and, since ®(0) =0,

hm W(x,t) —r(t).

x-—ao

Then, we consider the difference Wy- W for x >0, performing integration in two
steps (over (0,t- A) and (t- A, t) intervals), and separately studying cases where point
t is "regular" (i.e., o(t) > 0) and "irregular” (i.e., o(t)=0). Let

W(x,t)-—WO(x,t) = I1 + I2

where

[ = —= t-A(r(t)--r(1:))----OLE—)--—exp(-———-—’i—)d’l:
L7 4w J, B?/Z(t—'c) 4B, (t— )

t
X

a(t) x’
L= o= J.t_A(r(t)—r(r))—-———Bm(t T)exp(-4ﬁl(t_1))d'r

and, as in (21), for both types of t

X X
- @ 0
|1, | sllrll[o(wa(t)_a(t_m) (2«/a(t))] ~
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with x — O and fixed but arbitrary A>0.
I, should be estimated separately for different types of t. Thus, for t "regular”, that

is a(t) >0, A can be chosen sufficiently small so that (<t ) > 0 over the entire
interval [t- A ,t]. Then, from B,(t-tT)=a(T*)(t-T) in [t-A,t] and the
substitution of variables y = (t - T)"! , we obtain:

lallxiirl (° -3 ( 2 )
I L m———— - d
L | = o? dd AT W@ - oty )Y
A

MU o ( X )

2\/— 4( at) — ot —A))
where 0 < o, = tegﬁnA t]loc(’c*)l — oft) with A = 0. Asaresult, Iz"’ 0 with

either x or A — 0. For t "irregular”, the fact that a(t) =0, requires a different
approach. Using (15), we can show that

X
1| £ = 1-®
BY 2 e ()= r(”'( (wa(t)—a(t—A)))
<= I(t)-r(t)| <e
2TE[t At

for arbitrarily small € > 0. These estimates imply that Wy - W — 0 with x = 0,

hence the formula (18). |

5. EXAMPLES

(a) Let's consider the problem (1)-(3) and a(t) satisfying (i). Then we introduce
odd extension of all functions into the region x < 0. Then since the jumps at x =0 are
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[ulgao =- 2 1(t) and [u'y]x.0 =0, from (8) we obtain the integral representation for the
solution of initial-boundary value problem (1)-(3) for x20,t2>0:

t oo
u(x, ) =j a| 1@ Ex-§t-D-Ex+E -t
0 0

o t
0
+jo WO By~ &, 0~ Ex + & 1) dE+ Zjooc('c) 0 E-& -0
Function u(x,t) satisfies the equation (1) and initial and boundary conditions (2)-(3),

given that the functions a, 1, @, f satisfy restrictions discussed in Theorems 1-4.

(b) As in a), considering the problem (1)-(3) for 0 < x < b with additional
condition u( b, t ) = h(t), we find solution u(x,t) in the form (with a(t) still
satisfying (i)):

(22) u(x,t) = V(x,t) + VO(x,b) + Wi(x,t) + Wy(x,t),

where double-layer potentials W, (the same as in (12)) and W, have density functions 2

r(t) and p(t) respectively. W, is concentrated on the x =1 part of the boundary and is
given by the formula:

W (%)= J-a(t)u(r)a&[E (=& t-D = Ey(x +& t= D], _, dt

Using (18) for W, we find that u (22) satisfies the conditions (2)-(3) (note that
W,(0, t) = 0). Applying then the boundary condition u(b, t) =h(t) to (22) and using the
"jump formula" for W, we obtain:

(0

h(£)=V (b, 1)+ VO, T) 4 W,(b,0) = 70 (D)
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t
— | @ p@) @, (=) exp(-b4B (t—0)) d .
NS A 1 1

The density u(t) has to be found from the linear Volterra integral equation of the second

kind:
t

23) u(t):J' k(t,t)u(t)dt+F(t) = K[pl,
0

with continuous F(t) (Theorems 1-4) and a kernel

k(t,1)= «/" —— 1) (B (t-0) " exp(~b7/4P (t-D)) .

The unique solvability of the equation (23) can be obtained by methods discussed in
[3], or it can be proved that some power Km of the operator K is a contraction on
C[0,T]. So, equation (23) has a unique solution, which can be found by the method of
successive approximations, and formula (22) gives its integral representation .

(¢) Considering (1)-(2) with o(t) satisfying (ii), f=0 and ¢ being an odd
extension into x <0, we can find the solution in the form

w0 = Ex 8 = | 0®) B —E 0-Eyx+& 1) &
1 0

T e® (x &)’ (x+E)
—Io 2,,/1ta(t [ ‘{—40‘1(0]-6)(1{ 4a (t)ﬂdg

Verification is straightforward. As an example of o(t) satisfying (ii) 1/2 +cos(t) may

do. Under the condition (ii) equation (1), not being of parabolic type, still can be solved
in the form of a convolution of its fundamental solution with a single layer (Theorem 2).
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