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ABSTRACT

Using distributions theory technique we introduce parabolc
potentials for the heat equation with one time-dependent coefficient
(not everywhere positive and continuous) at the highest space-deriv-
ative, dscuss their properties, and apply obtained results to three illus-
trative problems. Presented technique allows to deal with some equation
of the degenerate/mixed type.
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1. INTRODUCTION

In this paper we shall study the properties of "parabolic" potentials associated with the

boundary value problems in a semi-infinite domain of the following type:

(i) 0u a(t) (92u = f(x,t) x > 0, t > 0;Lau -- --- x2

u(x,0) = (x), x > 0;

(3) u(0,t) = (t), t >_ 0; (v(0) = (0)).
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Throughout the paper th coefficient z( t ) L[O, T], is not necessarily positive

(which implies that (I) may bc ofdegenerate/mixed type), is dcfmcd cvcrywhcl in [O,T]
and satisfies ono of the following conditions:

(i) co( t ) >_ O, with equality allowed only at isolated points that do not cluster

anywhere in [0, T]

(ii) cc( t ) defined by the formula

(t)=J0 c:(z)dz, (coI(0)=0)(Z

is positive for all t > O, which allows co( t ) to bc cvcn negative in some intervals.

Obviously, any function satisfying (i) is a function of the (ii) type.
It should bc noted that in neither case (for different reasons) (1) is reducible to a

standard heat operator u Uxx. Thc realization of this comes from the rclativcly

obvious substitution of variables [ 1]"

q: = 10 (x(z)dz,

which in case of (i) implies existence of inverse function t( x ) with a finite derivative t’x

1/co( t ) at the points where 0t( t ) # 0. In (ii) case inversion is not possible at all. To

get around this obstacle, we derive the fundamental solution, potentials and their

properties, and solution of (1)-(3) directly from (1) in its original form.

The boundary S of the domain consists of two parts denoted throughout by S
{ x >_ 0, t = 0 } and S { x = 0, t >_ 0 }. And, finally, M denotes the class of

bounded in any strip (- 0- < x < 0-) x [0, T] functions, vanishing at t < 0.

Under condition (ii) the fundamental solution of (1) can be found by applying Fourier

transform in x in the form [1]"

(4) E (x,t) =E(x, (zl(t)) = H(,t),, exp(_x2/4(Zl(t)),
ct 2 4:i ( t )
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(were H(t) is Hcaviside function), provided that al( t ) > 0.

Function (4) has the properties similar to those of standard fundamental solution of

heat operator [2], such as

(5) Ec(x,t)dx-- 1; E(x,t)--8(x) with t---0+.

Denoting f, u, etc. the functions in (1)-(3) extended as m 0 for x < 0, t < 0, the

initial-boundary value problem can be put into genemlizeA form

(6) Lfi = (x,t)+[fi]scos(fi, fil)s-o(t)I1 cos(fi, fi2)szs
2

ch--.(a(t) [fi]szCOS(fi,Z)sz) -- F(x,t),

where [u] s is a jump of u on S = S S2, n is an external normal to S, e, % are

unit vectors along t, x -axis respectively and distributions in the form I.t5s, ( g5s ) x

are single and double layers in terms of [2].

Since the operator Lc contains a non-constant coefficient, it is not immediately clear

whether solution of (6) can be found in the form u = Ea * F, as in the case of a constant

coefficient. However, we still have the following

LEMMA. Under the condition (i) the distributional solution of (6) is unique and can

be represented as a convolution of the fundamental solution E[ ("dual" to Ec0 with the

right-hand side of (6), that is u E * F, where, as in [1],

(7) E( x-, t-x) = E ( x-, 1( t--X ) ),

and

1 (t-x) =] c(z)dz=((t)-((:); I (t) = l(t).
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In other words, wc treat (1( t ) as if it were time variable in a standard case. Obviously,

[i is continuous and, duc to (i) [i(t :) > 0 for t- x > O.

Proof. Let condition (i) hold. Then E[ (x , t- x) from (7) is a distributional

solution of

LE(x-%,t-)=----a(t) =8(x-{,t-x) in x,t
x2

and
OE O2ELEB(x-,t-) =--.-0c(x) 32

=8(x-,t-x) in,x.

Verification can be easily done by the Fourier transform technique. Then, using

integration by parts we f’md that u = E * Lau, and by the direct differentiation u

Lct(E * u), which leads to:

L( EIB * t ) = (Lo EB) * & = EB * Lo&,

and the uniqueness of the distributional solution follows immediately, since

Lau = 0 =, E*Lctu =LctEl*U = 8*u = u = 0.

Later we also find that in case of f and r in (1)-(3) being zero, the condition (i)

here can be relaxed into (ii).
As a result of Lemma, we obtain the following integral representation for the solution

of (6) (x > 0, t > 0):

(8)
t

0 0 0

+ ; CO(X)u(0,X )-(E(x-,t-x))I= 0
0

u
d’l:- a(x) "b’(O,x) E(x, t-x) dx.

0
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Formula (8) (see also [2]) motivates the following def’mition of parabolic potentials

associated with the boundary value problem (1)-(3):

a) volume potential

(9) V(x,t)--EI*-- dq: f(,q:)El(x-,t-q:)d;
0 0

b) single-layer potential concentrated on $ -- { x

_
0, t -- 0 }

(10) V() ( x, t ) =E ( 5s ) = f ( ) E( x , t ) d
0

c) single-layer potential concentrated on $2 = { x = 0, t >_ 0 }

(11) V(l(x,t):E*(gsa)= ()g(x)El(x,t-:)dx;
0

d) double-layer potential concentrated on $2

(12) W(x, t)--
0

2. VOLUME POTENTIAL

Volume potential V(x,t) given by (9) is a part of a boundary value problem

solution that corresponds to the source-function fix,t).

THEOREM 1. Let x( t ) e L[0, T] and satisfy condition (i). Then: (a) for f e

M, V(x,t) a M; (b) for x > O, t >_ 0 V(x,t) is a distributional solution of (1),

satisfying zero initial condition as t --> 0+ (c) if extension f a C2 for all x and t >_ 0

(which in particular implies that f(O, t) fx(O, t) = O) and all its derivatives up to the

second order belong to M, then Vxx(X, t) is continuous in { x _> 0, t _> 0 }, Vt exists

for all x and t is continuous in x, and its smoothness in t is determined by that of

ct(t) itself; thus, if in addition ct(t) C(’R+), then V(x,t)satisfies (1)in the classical

sense.
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Proof Introducing in (9) a new variable y (l(t ) > 0 for t q: > 0)

x-=2y4 t’x)

for x >_ O, t _> 0 we express V(x,t) in the form

(13)

x

V(x,t)=- o

2

and its time-derivative (t > 0):

V
(14) --- = f(x,t)

x

Y -y2dy"

Using properties of integrals with parameters, it follows from (13)-(14) that V(x,t)

C2( x _> 0, t > 0) c Cl(x 0, t >_ 0) for f and a satisfying conditions (c). At the same

time V, being a distributional solution of LaV = f and sufficiently smooth, is its

classical solution (Du Bois Reimond theorem).

Then, since f M and E (as Ea) satisfies (5),

It follows immediately that V M and satisfies zero initial condition. The rest of (b)

can be obtained as in Lemma, since

aE * = L (Et*)= L Vf= 5*=L a
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3. SINGLE-LAYERTENTIALS

(A) Single-layer potential V(0)(x,t), given by (10), is a part of a solution
corresponding to th initial condition (2).

THEOREM 2. Let now the condition (ii) hold. Then: (a) for q) e M, V(0) e M;

(b) V(0) is a distributional solution of the equation Lctu = q)Ss and satisfies the inidal

condition V(0)(x,t) ----> q)(x) as t 0+ for x > 0; (c) if extension q) e Cz (which

imphes that q)(0) q)’(0) = 0) and its derivatives up to the second order belong to M,
then V()xx(X, t) is continuous in { x 0, t >_ 0 } and V() t exists is continuous in x,

and its smoothness in t is determined by that of co(t) itself; (d) if in addition

C(R+), then V(0)(x,t) e C2(x > 0, t > 0) c3 C(x _> 0, t _> 0) and, since the support of the

distribution q)Ss1 is S1, it follows that V(0)(x,t) is a classical solution of the problem

(1)-(2) (with f = 0).

Proof is similar to that of Theorem 1 with the substitution of variables in the form:

x 2(a(t))/2 y.

(B) Single-layer potential V(I) (x,t), given by (11), is a part of a solution,

corresponding to the boundary values u’x(O, t).

THEOREM 3. Let again condition (i) hold. Then: (a) for t e M, V(1)(x,t) e

M; (b) V(1)(x,t) is a distributional solution of the equation Lau = gcdSs2, x _> O, t >_

0; satisfies zero initial condition as t ---> 0+; (c) if in addition ote C(R+) and I.t’e M,
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then V()(x,t) e C* in x and C1 in t for x > 0, t 0 and is a classical solution of (1)

with f = q) = 0; (d) V()(x,t) is continuous at x = 0 for all t >_ 0.

Proof Let us introduce a new variable in (1 i):

(151 y= 1/413(t-).

Since y’ >_ 0 (= 0 only at isolated points), (15) gives an implicit function c = c(t, y)

with 1/(4 l(t)) y < / oo and q: 0 for y = 1/(4 13(t)). Then, since oct(t)=

l(t)’ (1 I) can bc rewritten in the form:

2
-3/2 -x yi

g((t, y)) y e dy.(16/ V(1)( X, t)----’
/4z (0

(a) immediately follows from (16) since

1 112,V()( x, t ) -< - II II (c x( t ) ) ( (cz ( 0 )= 0 ).

Part (b) can be proved in the way similar to that of Theorem 1, and since

(17) ( V(1)(x,t))’t= 1/2 -1/2 I,(01 (COl(t))’1/2 a(t)exp(-x2/4OCl(t)) + V(1)(x,t;

(where V(1)(x,t; I.t’t) is the potential (16) with density [I.t(’u(t,y))]’ ), part (c) of this

theorem is an immediate consequence of (16) and (17). For x > 0 V(1) (x,t) satisfies

equation LctV(1) 0 since the support of the distribution gabs2 is $2, i.e. gccSs2 is

equal to 0 for x e S2
Statement (d) is obtained by comparison of the convergent integral

vCl)( O, t) = 4"" 1/4c (0
l.t(" ) y-3/2 dy
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with V()(x,t), given by (16), for x close to 0. This, and formulae 3.383(3), 8.359(3)
from [3], leads to the estimate:

1v(X)(x,t)- v(X)(O,t)] II II x (1-( x* [/2(zt(t))u2) ),

whcm 0 < x* x and is the probability integral.

4. DOUBLE-LAYERPOTENTIAL

Double-layer potential W(x,t), given by (12), is a part of a solution corresponding to

the boundary condition (3).

THEOREM 4. Let x satisfy condition (i). Then: (a) for r e M, W(x,t)

M; (b) W(x,t) is a distributional solution of the equation Lau (IxrSs2)’x and

satisfies zero initial condition as t -, 0+ (c) for x > 0, t _> 0 if x, r a C(R+) and

r’ M, then W(x,t) a CO in x and C1 in t, and it is a classical solution of (1)-(2)

with f = p = 0 (d) given that r(t) CI(R+) W satisfies the following "jump

formulae""

(18) lim W (x,t)=+_
1

x+/-0 r(t).

Proof. Parts (a)-(c)of this theorem are proved in the same way as those in Theorem

3. We introduce a new variable (15) and express W in the form:

X -1/2 -x y
(19) W ( x, t)= 2/x r(x) y e dy,

l/4x (t)

(where x = x(t, y), as in Theorem 3) and its time-derivative:
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W x -3/2 _x2/4(czl(20) t = r(0) (a(t)) (t) exp((t)) + W ( x, t; rt’),

where W(x, t; rt’) is the potential (19) with density [r(x(t,y) )]’t. Now part (b) can be

proved applying the same teclmique as in Theorem 2, and (a), (c) follow from (19)-(20)
as in Theorem 3.

.Let us consider part (d) in more detail. First we let if’e) fit) for all 0 g x <_ t, and

denote the double layer potential in this case by W0 Then, it follows from (19) and [3]

(3.38 i, 8.359), that for x # 0

x -1/2 -x y x
(21) Wo==_r_r(t) y e dy=+--- 1- ?::

1/40t (t)

(_ depending on the sign of x), and, since (0) 0,

1
W0(x,t)=+r(t)

Then, we consider the difference W0 W for x > 0, performing integration in two

steps (over (0, t- A) and (t- A, t) intervals), and separately studying cases where point

t is "regular" (i.e., ct(0 > 0) and "irregular" (i.e., x(t) 0 ). Let

where

W (x,t)-W0(x,t) = 11 + 12

1 4"q" 0

( r( t )- r( x ) )
l3t,2(t_ x)

exp (2. Xi dx,

t

(r(t)-r(’c)) ../2. ex d

i tt x) d’ll(t ’ q:)

and, as in (21), for both types of t
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with x ---> 0 and fixed but arbitrary A > 0.

I2 should be estimated separately for different types of t. Thus, for t "regular", that

is a( t ) > 0, A can be chosen sufficiently small so that 0( x ) > 0 over the entire

interval It A t]. Then, from l(t- ’g) = ( : * ) (t- ’g) in It- A, t] and the

substitution of variables y = (t- x)-t we obtain:

-3/2 X
y exp- .(a(ti,., a(..,,A)) dy

IIolllxlllr’ll q- exp
x

2 _’rL 3/2 4( (t’L(t-’A))

where a(z* ) --’> 0t(t) with A ---> 0. As a result, I2 0 with

either x or A ---> 0. For t "irregular", the fact that a( t ) 0, requires a different

approach. Using (15), we can show that

1 It(t)-- r(x )i 1 --. 2/a(i,,) ’a("’

1 Ir(t)-r(x) <s

for arbitrarily small e > 0. These estimates imply that W0 W ---> 0 with x 0,

hence the formula (18).

5. EXAMPLES

(a) Let’s consider the problem (1)-(3) and a( t ) satisfying (i). Then we introduce

odd extension of all functions into the region x < O. Then since the jumps at x 0 are
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[U]x=O = 2 r(t) and [u’x]x=o = O, from (8) w obtain the intcgral representation for the

solution of initial-boundary value problem (1)-(3) for x >_ O, t >_ O:

u (x, t)= dx f(, x)(E(x ,t- x)- E(x + ,t- x))d
0 0

+j" ,)(El(X-,, O-El(X + ,, t))d+ 2 ct(z)r(x)(Et(-,, t-z))[,=o dx.
0 0

Function u(x,t) satisfies the equation (1) and initial and boundary conditions (2)-(3),

given that the functions c, r, q, f satisfy restrictions discussed in Theorems 1-4.

(b) As in a), considering the problem (1)-(3) for 0 < x < b with additional

condition u( b, t ) h( t ), we find solution u(x,t) in the form (with z( t ) still

satisfying (i)):

(22) u(x,t) V(x,t) + V(0)(x,t) + Wl(X,t) + W2(x,t),

where double-layer potentials W1 (the same as in (12)) andW2 have density functions 2

r(t) and It(t) respectively. W2 is concenwateM on the x 1 part of the boundary and is

given by the formula:

0

Using (18) for W1 we f’md that u (22) satisfies the conditions (2)-(3) (note that

W2(0, t) 0). Applying then the boundary condition u(b, t) h(t) to (22) and using the

"jump formula" for W2 we obtain:

1
h (t) = V (b, t) + V()(b, T) + W(b, t) . l.t (t)
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-3/2 2+ 2" a() t(x)(B(t)) exp(-b/4B(t--x)) dz.

The dnsity t(t) has to b found from th linear Voltrra integral equation of the second

kind:

(23) g(t)=ok(t,x)g(x)d:+F(t) K[g],

with continuous F(t) (Theorems 1-4) and a kernel

I
I
(t-x))-3/2exp(-b2/43k ( t,

Th unique solvability of the equation (23) can b obtained by mthods discussed in

[3], or it can b proved that some power Km of the operator K is a conaction on

C[0,T]. So, equation (23) has a uniqu solution, which can b found by th method of

successiv approximations, and formula (22) gives its integral rprsemation.

(c) Considering (1)-(2) with ct( t ) satisfying (ii), f 0 and tp being an odd

extension into x < O, we can find the solution in the form

u(x,t) = E*5s = p() (El(x , t) El(x + , t ))
0

Verification is straightforward. As an example of ct( t ) satisfying (ii) 1/2 + cos(t) may

do. Under the condition (i.i) equation (1), not being of parabolic type, still can be solved

in the form of a convolution of its fundamental solution with a single layer (Theorem 2).
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