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In this paper we consider the questions of existence and
uniqueness of solutions of certain semilinear and quazilinear evolution
equations on Banach space. We consider both deterministic and
stochastic systems. The approach is based on semigroup theory and
fixed point theorems. Our results allow the nonlinear perturbations in all
the semilinear problems to be bounded or unbounded with reference to
the base space, thereby increasing the scope for applications to partial
differential equations. Further, quasilinear stochastic evolution equations
seemingly have never been considered in the literature.
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1. SEMILINEAR EVOLUTION EQUATIONS (DETEBAIINIb-HC).

In this section we consider the questions of existence of solutions of certain semil]near

and quasl]near evolution equations on Banach space. First we wish to consider the semilinear

evolution equation,

()y + a(t)y =/(, y), t (o,,]

y(o) = 0.

This can be written as a nonlinear Volterra integral equation,

t

(t) = v(t)+ /U(t,r)y(r,(r))dr, t I
0

where U is the evolution operator corresponding to A.
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In fact a solution of the integral equation (1.2) is a mild solution of the Cauchy

problem (1.1).

Let H be a Hilbert space and V a reflexive Banach space with the embedding V

being continuous and dense. Identifying H with its dual, we have V -,H -,V* where V* is

the dual of V. For 1 < p, q < oo, satisfying (l/p)+ (l/q) = 1, and I a f’mite interval [0,a], let

Z- Lp(I,V) with dual given by Z*= Lq(I,V*). Since V is reflexive, these spaces are also

reflexive Bausch spaces. We shall need the following well-known result (see Tanabe [11]).

Lemma 1: Suppose the operator valued function A {A(t), t I} satisfies the

following conditions:

(A1) A Loo(I,(V,V*))f3Cv(I,(V,V*)) for some u (0,1).

(A2): There ezisf A >_ 0,/ > 0 such that

(A(,), )v*, v + II II II Ii , Io t v.

Then A generates an evolution operator U(t, r), 0 < " < t <_ a which is strongly continuous

on A -- {(t, r)’O < r < t < a} both in H and V* and there ezists a constant e > 0 such that

and hence

II u(t, )II ZCH) -< *’ II uct, )II ZCv’) -< *’
II vCt, ) II ZCH, V) <-- *lq(t’r) Ii U(t, ) II ZCV*,H) --< "/(i’)

(1.3)

II vct, ) II zcv*, v) <- l(t ). (1.4)

According to this lemma, it follows from the variation of constants formula that the

evolution equation (1.1) can be written as the integral equation (1.2) with v(t)=_ U(t,O)vo.
tienee a solution of the integral equation is a mild solution of the differential equation (1.1).

Note that there are other types of conditions for existence of the evolution operator U

(see [2], [9], [10], [11]).

We prove the following result without imposing the standard Lipschitz and linear

growth assumptions on f. However, we assume that f satisfies the CaratheSdory property in

the sense of (a2) given below.

Theorem : Suppose the operators A and f satisfy the following assumptions:

(al): The operator A satisfies the assumptions (A) and (A2) of Lemma I and there ezists a

family of reflezive Banach spaces V, O <_ a <_ l, with V =_ H, VI =_ V and duals
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(V)* = V- so that for 0 < a < 1,

V Va H V-a V*

(a2):

(a3):

with the embeddings being continuous, dense and compact.

---,f(t,) is continuous from V to V- and t--,f(t,) is strongly measurable from I
to V -a.
There exist h E Lq(I,R+), 0 < 7 < x and 1 < p< (I/a) satisfying (1]p)+(1/q)= 1,

such that

Then for every Vo V- the Canchy

V L(I, V’) G((O,a), V) for sufficientlv small a.

u c(z, v).

problem (1.2) has a solution

Further, for Yo Va, the solution

Proof: For the fixed Y0 define the operator G by

(G)(t) =_ U(t,O)yo + / g(t,s)f(s,(s))ds, t e I.

0

(1.5)

Let Z denote Lp(I,Va) and Z* its dual Lq(I,V -a) and F the nonlinear operator

(f)(t) =_ f(t,(t)). Under the assumptions (a2) and (a3) the operator f is continuous and

maps bounded sets of Z into bounded sets of Z* (see [1], Lemma 1, p. 4). By virtue of

assumption (al) it follows from Lemma 1 that, for 1 _</3 < a _< 1,

II uCt, r) II .vZ, v,) < lCt ,)("- )/ for some constant c = c(a,) > 0. Thus the linear

operator U, given by (Up)(t)=_ f U(t,s)(s)ds, maps Z* into Z and hence G maps Z into
0

itself and one can verify that, for Br, a ball of radius r in Lp(I, Va),

where k1 is a constant depending on c,a,p and II uo l! v-; and k2 is another constant

dependent on c, cq p and r. Hence, for every r > 0, there exists a constant ar such that for

a ar, GBr C_ Br. We show that GBr is conditionally compact subset of Br. Indeed, for

g FBr and e > 0 satisfying 0 < + e < (l/p),

II W(t,a)II v+Z, = II fv(t,’)(’)d’ll v+,
0

_< <
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for tEI where =su4]tgl]z., g EFBr}" Since, fore>0, the injection Va +2e Va is

compact, it follows from this that W(t, FBr) is a compact subset of Va. Hence, by virtue of

strong continuity of the evolution operator U and the Lebesgue dominated convergence

theorem, we have

lira 0

n(-)

uniformly in g FBr. Further, it follows from HSlder’s inequality that, for g FBr,

(.8)

t+h
(.9)

and hence

t+h

n(z-h) t

uniformly in g FBr. Similarly, for Y0 V- a, we have

(1.10)

0

Thus it follows from (1.8)- (1.11) that

(1.11)

f
0 (1.12)

hlo
n(I-,)

uniformly with respect to y GBr C_ Br C Lp(I, Va). One can also verify relations similar to

(1.8)- (1.11) for t-h >_ O, and hence we have

limhto / (11 v(t)-v(t- h)il vadt =0 (1.13)
C(Z+)

uniformly with respect to y GBr. Thus GBr is a conditionally compact subset of Br and

hence, by Schauder’s fixed point theorem, G has a fixed point in Br. The last part of the

conclusion follows from strong continuity of U(t, r).

Remark 3: According to our assumptions (a2) and (a3) f represents a

nonlinear differential operator admitting polynomial growth. To admit stronger nonlinearities,

one needs Orliczs-Sobolev spaces.
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(a1 ):

(a):

Next we present a result involving local Lipschitz property.

Theorem 4: Consider the evolution equation (1.2) and suppose

A satisfies the assumptions of Lemma 1.

f: I x H---,V*, and, for each r > O, and Yo E H, there ezists a constant gr such that

and

llf(t,)--f(t,o)llv. _< K II --r II H,

II fCt, )II v* <- K( + II II H),

for all t I =_ [0, a], and , rl Br(yo) - { H: II - Uo II H <- 1. nn there exists

ar fi (0, a] so that the problem (1.2) has a unique mild solution y C(Ir,H) where Ir
_

[0,ar].

Proof:
the operator G by

Let , e C(I, H) satisfying (0) = Yo and ,f(t) Br(YO) for all t e I. Define

t

(G)(t) = U(t,O)yo + /U(t,s)f(s,(s))ds, for t e I.

0

Since U(t, s) is strongly continuous on A {0 < s _< t _< a} in .t,(B), there exists a r e I such

that 11 u(t, O)yo yo II H --< (r/2) for 0 _< t _< r. Further, it follows from assumption (a2) and

the estimate (1.3) that

II
J
] U(t, s)f(s, (s))ds II H -< 2eKr(l + sup

o_<s<_t
0

II (s)It H) tCxl)

<_ 2K( +," + It yo II .)
Hence there exists r I such that

II f U(t,s)f(s,(s))ds II H <- (r/Z) for o _< t _< ,.
0

Thus, for ar =_ min{r,u}, and for t e Ir [O, ar], we have II (Gq)(t) yo II H -< r.

t(G)(t) is continuous H-valued function on I. Defining

Further,

X {x C(I: H):z(0) = 0 and (t) e B(yo) for t It},
we have G: Xr---*Xr, and, for , Xr, it follows from Lemma 1 that

II (G)(t) (G)(t) II <_ cKrf (I/(t-sS) II (,) ()II
0

(1.14)
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Iterating this n times, for n sufficiently large, one can verify that the n-fold composition Gn is

a contraction in Xr. Since Xr is a closed subset of C(Ir, H) and Gn is a contraction in Xr, it

follows from Bannch fixed point theorem that Gn, and hence, G has a unique fixed point in

Xr. This proves that the Cauchy problem (1.2) has a unique (local) mild solution.

Next, we consider a system governed by an integro-differential equation of the form,

(d/dt)z = Az(t) + f(z(t)) + / h(t- s)g(z(s))ds, t [0,b]
"-a

() = (), [- ,0],0 < ,b < o (1.15)

in a Banach space X where A is merely the infinitesimal generator of a semigroup in X.

(al):

(a3):

Theorem 5: Suppose the following conditions hold:

A is the infinitesimal generator of an analytic semigroup T(t), t >_ O, in X.

0_<a < 1; Xa=[D(Aa)] is the Banach space with respect to the graph topology

induced by the graph norm given by II II --- II AC II / I! II fo O(Za).
The functions f and g map Xa to X and there exists a constant C > 0 such that for
q =- f, g,

II q() q() II x <- c II II d

Ii q()!! x -< C(1 + II !1 ) for all , G.. Xa.

(a4): h E L1 ([0, a + hi, R).
Then, for every C([-a,O],Xa), the evolution equation (1.15) has a unique mild solution

C([ a, b], X

Proof: Define the operator G on C([- a, b], Xa) by
t

(Gz)(,) T(t),(O) + / T(f s)f(z(s))ds
0

0 -a

where T(t), t > O, is the semigroup corresponding to the generator -A. Using the assumptions

and the fats that C([- a, 0], Xa) and that, for analytic semigroups, there exists a constant

Co such that II AaT(t) II .(x) <- (C/t) for t > 0, one can verify that G maps C([ a, b], Xa)
to itself. Then, for any pair x, y C([- a,b], Xa) satisfying x(s) = y(s) = (s) for s [-a, 0],
define
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,(,y) =-{ II A"() A%() II x, 0 <_ <_ }

After some computations, involving (1.16) and the given assumptions, one arrives at the

following inequality,
t

pt(Gz, Gy)

_
L /(1/(t-s)a)ps(Z,y)ds, t E [0, b],

0
a -t- b

where L =_ CCa(1 + ), and - =_- f h(t) dt.
0

By repeated substitution of (1.17) into itself, after n steps we obtain

Pb(Gnx, Gny)
_

LnPb(Z, Y),

where Ln is a constant depending only on L, a, and b. For n sufficiently large, 0 _( Ln < 1;

and hence Gn is a contraction in C([O,b],Xa). Thus Gn, and hence G, has a unique fixed

point in C([ a, hi, Xa).

It is clear from the proof that this result also holds for operator valued functions

h E L1([0, a q- hi, (X)). For linear evolution equations, Daerato admits even more general

operator valued functions h (see [6]).

2. SEMH,INEAR AND QUASILINEAR EVOLUTION EQUATIONS (STOCHASTIC).

Consider the stochastic evolution equation

d + 4dt = ()dt + (z)dW, t z --[o,a]

(2.1)

Let X be a Hilbert space and F another Hilbert space which we assume to be

separable. Let (f,9:,9:t,t
_
O,P) be a complete probability space furnished with a complete

family of right continuous increasing a-algebras {t, t >_ 0 satisfying t C 7} for t >_ 0. The

process (W(t),t

_
0} is an F-valued t-adapted Brownian motion with P{W(0)= 0} = 1; and

z0 is an X-valued 0 measurable random variable.

For any Banach space K, let L:(f,K) denote the space of strongly measurable K-

valued square integrable random variables equipped with the norm topology

II II L2(fl, K ------ (E( II II 7))1/2, where E stands for integration with respect to the probability
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measure P. This is a Hilbert space if K is Hilbert. An t-adapted F-valued (F Hilbert)
Brownian motion is said to be cylindrical if its covariance operator Q, given by

E{e-i(w(t},l}} = e-(t/)(Ql, f),

is an identity operator in F.

In other words, E{- i(w(t),l}} = ezp- (t/2)II f II F"
For convenience we shall use L(fl, K) to denote the class of K-valued 0-measurable

square integrable random variables. Let M(I,K) denote the space of t-adapted stochastic

processes defined on I, taking values in K, having square integrable norms and continuous in t

on I in the mean square sense. This is a Banach space with respect to the norm topology

l] II M(I,K) --" (sup {E( II (t)]1 )})1/2, for e M(I,K).

If A is the infinitesimal generator of a C0-semigroup T(t), t >_ O, in X then the problem (2.1)
can be reformulated as a stochastic integral equation,

z(t) = T(t)zo + ] T(t s)y(z(s))ds + ] T(t s)(z(s))dW(s).
0 0

Theorem 6: Suppose the following assumptions hold:

(al):

(a2):

(a3):

(2.2)

--A is the infinitesimal generator of an analytic semigronp T(t), t >_ O, in the Hilbert

space X.

0 _< a < (1/2); X= [D(A)] is the Banach space with respect to the graph topology

induced by the graph norm given by II C II = II A II / II C II for e D(Aa).
The function f maps Xa to X and there exists a constant C > 0 such that,

(a4):

II f()- f()[I X <-- C II -- II
II f(ff)II x -< c(x + II ff II ,) fo,. all

maps Xa to (F, X) and there exists a constant C > 0 such that

II ()- ()II zc, x) -< c II- II. .d

II ()II zCs, x) -< C( + !1 II )-
Then, for every zo L(f,Xa) and W an F-valued t-adapted Brownian motion having a

nuclear covariance operator Q L+n (F), the integral equation (2.2) has a unique solution

x M(I, Xa).
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Proof: We use Banach fLxed point theorem for the proof. Define the operator G

by the expression on the right hand side of equation (2.2) and denote by Zl, Z2, and z3 the first,

second and the third terms respectively giving Gz z + z2 + z3. First we show that G maps

M(I, Xa) into M(I, Xa). Without loss of generality we assume that 0 p(A) (if not add a

term I to A giving A A +I so that 0 p(A)) thereby simplifying the graph norm to

II I1 =- I! A II for : E D(Aa). Since T(t), t >_ O, is a semigroup and I is a finite interval,

there exists a number M

_
1 so that sup II T(t)II (x)-< M. Thu, for e M(I,X) with

tEl
x(0) = xO, we have

sup E( ]] z(t) [I ) = sup E( [I T(t)Xo II ) -- ,,,, E( II AaT(i)Xo II )
tI tI tel

Since Aa is a closed operator and T(t), t >_0 is an analytic semigroup satisfying

II AaT(t) [[ (X) <- Cat- a for t > 0, it follows from (aa) that

E( ]1 z2(t)I[ 2a) = E ![ i T(t s)f(z(s))ds I1 2a
0

= Eil AaT(t- s)f(z(s))ds II x
ot t

0 0

O<<t

Hence

tel

Similarly, for the stochastic integral z3 based on the Brownian motion W, it follows from (a4)
that

Hence

t

0

Tr2(CaC)21(1 2a))<1-2a>(1 + sup EII z(s)II }O<s<t

where TrQ represents the trace of the operator Q.
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It follows from (2.3)- (2.5) that

,- II (a-)(O !1 < oo fo, e M(Z,X,).

To complete the proof that G maps M(I, Xa) to M(I, Xa) it remains to show that

z E C((0, a), L2(f, Xa)). Let t E (0, a), h > 0 and t + h 6 1 _-- [0, a]. For analytic semigroups,

there exists a constant 7/ > 0 such that

II (T(h)- I) II X < v#h’ II A II x for all E D(A);

and, for all / >_ 0 and (e X, T(t){: e D(A) for t> 0; (see Pazy [10], Theorem 6.13, p. 74).
Thus, for t > 0, one has

_< "rha# II A#T(t) II 2E II A"=0 II =
-< ((7#C#)/t#)2h2#E II =o II ="

By virtue of closedness of Aa and the fact that T(t) commutes with Aa on D(Aa) we have,

t

Aa(z2(t + h)- z2(t)) = /(T(h)-I)AaT(t-s)f(x(s))ds
0

+/
t+h

AaT(t + h- s)f(x(s))ds.

Choosing/ > 0, such that 0 <_ a + fl < (1/2), we have P- a.s.

II =2( + ) z()II. < c.+ / (l/(t s)e + )II f(-(,))II d,

t+h 0

+ Ca/ (1/( + h ))II f(z(s))II ds.

t

Hence, using (a3) and Schwartz inequality, one can find constants C1 and C2 depending on the

parameters a, C, a, fl, 7, Ca, and Ca + # such that

for t e (0, a). Similarly, for the stochastic integral z3, using (a4) one can find constants c3 and

e4 > 0, such that
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E II a( + h) a()II -< TrQ(CahB + C4h( 2a)) (1 + sup E II ()II ) (2.)

for t (0, a). Similar estimates hold for W [I z(t h)- z()II 2a for >_ h > 0. Thus letting

h--*0, the desired continuity follows from (2.7)-(2.9) and hence G maps M(I, Xa) to

M(I, Xa). Now we prove that, for sufficiently small a defining the interval I =-[0,a],G is a

contraction in M(I, Xa). Indeed, for z,y U(I, Xa) satisfying :(0) = y(O) = o P-a.s.,

using (an) and (a4) one can easily verify that

where

= E li (G)Ct)- (G)(t)II < Ka= E II (t)- y(t)II 2
Ot

tl till

Ka =_ (2(CC,)a/(1_ 2a)Xaa(1- it> + TrQa(l -at,>). (2.10)

Thus, for sufficiently small a, Ka < 1 and G is a contraction in M(I,X,) and hence, by

Banach fixed point theorem, G has a unique fixed point z . M(I, Xtr). Clearly, by virtue of

the growth conditions in (a3) and (a4) and the continuity and uniqueness, the solution can be

continued indefinitely by piecing together the solutions obtained for the intervals (0,a], (a,2a],

(2a,3a] and so on. Thus, for any finite interval I, the integral equation (2.2) has a unique

solution x M(I, Xa) which is the mild solution of the stochastic evolution equation (2.1).

Remark 7: This result can be easily localized and further, if -A(t) is the

generator of an evolution operator of "parabolic type", it can be extended to cover time

varying systems. In equation (2.1) one can also include an integral term (representing

memory) without further complication.

The result of Theorem 4 can be extended to stochastic problems as stated in the

following theorem.

Theorem 8: Consider the stochastic evolution equation,

dz + A(t)zdt = f(t,z)dt +#(t,z)dW, t E I . [0,al, a < oo,

z(0) = x0, (2.11)

and suppose A satisfies the assumptions of Lemma 1, and f maps I x H---)V -a and (r maps

I x H---)(H,V -a) for 0 < a < 1 satisfying the following conditions: there exists a constant

K > 0 such that

(f): II f(t,)II zV- < gZ( + I! ff II ), II f(t,5)- f(t,5)II zv- < gZ II - 5 II z

(#): II (t, ff)l! 2Z(H,V- g2(1 + II II ),

!1 #(t, ’) #(t, 5) II aL(H, V c,) < K
2 II.. C- II.. H’*
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Then, for every zo L(f,H) and Wiener process W with covariance operator +n (H),
the equation (2.11) has a mild solution z M(I,H) given by the solution of the integral

equation

0 0

Proof: The proof is based on Banach f’Lxed point theorem that sues the following

inequality similar to (1.14),

0

where 7 is a constant depending on a, c, K and q -- TrQ.
Remark g: In Theorem 6, if the diffusion operator r(t,z) is taken as zero one

can admit a G [0,1) as in Theorem 5. Similarly, note that, in Theorem 8, a cannot take the

value 1, that is, neither f nor r can be as singular as in Theorem 4 where range(f), range

(er) C_ V* = V- 1. These results show that in the stochastic case the nonlinear operators f and

r have to be much more regular compared to their deterministic counterparts.

Next we consider a general class of stochastic quasilinear evolution equations given by,

dz = A(t, ) dt + a(t)dW, e ! = [0, a],

(0) =

in a Hilbert space X considered as the state space where {W(t),t >_ 0} is an t-Brownian
motion taking values in a separable Hilbert space F. The generality comes from the

assumptions on the operator A(t,z). Here we assume that for each (t,) e I x X,A(t,) is the

generator of a C0-semigroup rather than an analytic semigroup. The deterministic version of

equation (2.14) which has broad applications in engineering and physical sciences was studied

by Kato [7,8]; Pazy [10].

For simplicity of presentation we introduce the notation (Z, M, w) to denote the class

of infinitesimal generators (A} of C0-semigroups {TA(t),t>_O} in any Banach space Z

satisfying I[ TA(t)[[ (Z) <- M ezp wt, for t >_ 0, where M >_ 1, and w e R are the stability

parameters. We use the following basic assumptions:

(A1): There exists a Hilbert space Y with the embedding Y -X being continuous and dense.

(A2): For each t e I and e X,A(t,) . ](X,M,w) and Y is A(t,) admissible in the sense
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that TA(r)Y C_ Y for r > 0, where TA(" is the semigroup corresponding to A(t,).
Further (t,) E (Y,/, ), where (t,) is the part of A(t,) with domain and range

in Y and 2r, the associated stability parameters.

(A3): For each t E I and X,D(A(t,)) D_ Y and A(t,) (Y,X).

(A4): For each X, t-A(t,) is continuous in the uniform operator topology of L(Y,X);
and there exists a constant K > 0, independent of t such that

These assumptions are somewhat stronger than those given for deterministic systems (see Kato

[7,8]). It appears that for stochastic systems this is unavoidable.

Theorem 10: Consider the quasilinear system (2.11) satisfying the hypotheses

(A1)- (A4) and suppose r L2(I,Z(F,Y)) and there exists a nuclear operator Q +n (F) so

that E(v, W(t) W(s))2=(t-s)(Qv,v) for each v F and t s. Then for eve
zo L(,Y) there exists an a* (O,a] such that he system (2.11) has a unique mild solution

u([o, x).

Proof: For convenience, we use Ma to denote the Banach space M([O,a],X), as

defined in the introduction preceding Theorem 6. Take any y Ma and consider the linear

evolution equation,

d = A(t,y(t))dt + a(t)dW(t), t . I =_ [0,a],

(0) = o. (2.15)

Define AY(t) A(t,y(t)), t I. Under the assumptions (A)- (A4) the operator Ay generates

an evolution operator UU(t,z), 0 < s < t < a, (see Kato [7], Theorem 4.1, p. 246; Pazy [10],
Theorem 4.3, p. 202). Then by virtue of the variation of constants formula, we may define the

mapping G by

= (Gu)(t) UY(t, 0)z0 + / Uu(t,s) (s)dW(s), (2.16)
0

for t I. From the almost sure strong continuity of UY(t,s) on the triangle 0 _< s _< t _< a and

the fact that, for each s-measurable random variable r/, UU(t,s)rl is t measurable and W(t)
is t-adapted it follows that (t) is t-adapted. Hence from similar computations as in the

preceding theorem, we have Gy . Ma. So it suffices to prove that, for sufficiently small a, the

operator G is a contraction in Ma. Let z,z . Ma satisfying z(O)= z(O)= zoP-a.s. First,

note that for 0 <_ s _< 7"_< t < a and Y,
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P- a.s. and hence integrating this over the integral Is, t] we obtain

Now letting Jx and J2 denote the first and the second terms of the following expression,

t

0

(2.18)

it follows from (2.14) and assumptions (A2)- (A4) that

t

II Jl(t) II x = II f UZ(t,s)(AZ(s) AZ(s))U:(s,O)zods II x
0t

_< !1 o II Y i II u(t. s)II fx)il AX(s) Zz(s) II .YX)II u=(s. o)II .t,(y)ds

0

_< c II o II , / II (.)- z()II xd
0

where C =- K M .1 e:p 7a with 7 -- maz{w, 0}. Hence

t

( II ’,(’)II ’)_< c’, (,,,.,,, II :o II )(Ef II-(.)- :(.)II a.}
0

(2.19)

By use of the nuclearity of the operator Q, one can easily verify that the stochastic term

satisfies the following estimate

t 0

<_ TrQ: II (.)II 2(F.y)E II u=(t.)- u=(t..) II z(r. x)
0

By virtue of assumption (A4) it follows from (2.17) that

t

E !1 u:(t, )- u:(t, )II fL(Y,X) < (CK)2(t- s) E II ()- ()II d.

where the constants C, K are as defined earlier. Hence
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t

0

t

for t G I. Defining

K1 C2 II o II 2Loo( y) and K2 _= TrQ(CK)2 /
0

from (2.16)- (2.20) that

II Gz Ii <- II n..
Hence there exists a constant a*, as stated in the theorem, for which G is a contraction in

M., thereby proving the theorem.
a

Remark 11: In system (2.14) we can easily include a nonlinear drift term

without further complication provided it is more regular than the principal part. However, if

one wishes to admit nonlinear diffusion tr(t,z), it is required that tr be uniformly bounded on

I x X. Under the given assumptions on the quasilinear term it seems it is unavoidable.

The result of Theorem 10 can be extended to the case where F is a separable Banach

space, Q E n
+ (F*, F), and X is a Banach space having a separable dual.

For semilinear stochastic systems see DaPrato, Iannelli, Tubaro [6]. Some results on

deterministic and stochastic initial boundary value problems based on the theory of monotone

and accretive operators and semigroup theory can be found in [2], [31, [41.
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