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ABSTRACT

The author studies the queueing process in a single-server bulk queue-
ing system. Upon completion of a previous service, the server can take a group
of random size from customers that are available. Or, the server can wait until
the queue attains a desired level.

The author establishes an ergodicity criterion for both the queueing
process with continuous time parameter and the imbedded process. Under this
criterion, the author obtains explicit formulas for the stationary distributions
of both processes by using semi-regenerative techniques.
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1. INTRODUION

In a large class of bulk queueing models, the server takes groups of a fixed size for service

if enough group members are available; otherwise, it waits until the queue reaches a desired

(fixed) level. Several versions of such systems are considered in Dshalalow/Russel [4] and DshMa-

low/Tadj [5]. We call such systems queues with fixed accumulation level. Practically more attrac-

tive and versatile, but analytically more complicated, is a system with a random accumulation

level. In such a system, the server capacity is a random number generated by the completion of

previous service and this number is the desired group size to be taken for service. The server will

therefore rest until the queue accumulates that many customers if that group size is unavailable

by the time the server becomes free.
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For instance, for shipment of certain goods not only are transportation units of different

capacity used, but arriving units can also be partially occupied. Units can take some of the load

and move that quantity farther, or wait until the load reaches a specified level. Although such

situations are most common in air and surface transportation, postal delivery, inventory-transpor-

tation systems and assembly lines, there are other real systems of the same nature that can be

modeled by queues with random accumulation levels. For example, a computer user needs a specif-

ic task to be performed on several parallel or networked computers or processors. The job can

only be started when all necessary computer components become free. So in this case the job to be

done will be regarded as a server and computers will play the role of the customers. Again each

particular job needs a different (random) number of computers. Thus the situation can be de-

scribed in terms of a model with a random accumulation level.

In the present paper, the author introduces a class of stochastic models with a random ac-

cumulation level and studies the queueing process with discrete and continuous time parameter.

In both cases the author establishes the ergodicity criterion and derives explicit formulas for the

limiting distribution of the processes.

2. DESCRIPTION OF THE SYSTEM AND NOTATION

Let Q(t) denote the number of customers in a single-server queueing system at time >_ 0

and let Qn = Q(tn + 0), n = 1,2,..., where tn is the moment of time when the server completes the

processing of the nth group of customers. At time n+O the server can carry a group of

customers of size cn + 1 and it takes that many for service if available. If not available, that is if

Qn < Cn + 1’ the server prefers to rest as long as necessary for the queue to accumulate to the level

of cn + 1" Only then does it begin to process a group of the appropriate size, with the pure service

time lasting an + . We assume that each of the sequences {Cn} and {n} are families of independ-

ent identically distributed random variables, independent of each other and of the input stream.

The probability distribution of c is given by gk = P{c = k}, k = 1,...,r. The random

variable rI has an arbitrary probability distribution function B, with B(x)= 0 for x < 0, and

with a finite mean b. We denote

=
oo OXB( dx) (0) >_ O= f o

The input stream is formed by an orderly stationary Poisson point process {rn) with

intensity ,; and the capacity of the waiting room is assumed to be unlimited.
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3. IMBEDDED PROCESS

Let N(-) denote the counting measure associated with the point process {rn}. Denote

vn = N((rn). Then the terms of the sequence {Qn} satisfy the following recursive relation:

(3.1) Qn + =
Qn + (Cn + l On) + Vn + l Cn + l Qn < Cn+l

Q.- c. + + v., Q. >_ c. + x"

Clearly the process {,, (PX)eE Q(t); t >_ 0} ---. E = {0,1,...} possesses a locally strong Markov

property at tn (see Definition A.1 in Appendix), where tn is a stopping time relative to the

canonic filtering r(Q(y);y _< t), n = 1,2, Thus the imbedded process {Qn} is a homogeneous

Markov chain with the transition probability matrix A = (Pij; i,j E). Due to (3.1) the upper

block (Pij; 0,1,...,r- 1, j @ E) of A consists of purely positive elements, and the lower block

of A is an upper triangular matrix (with all positive entries on the main diagonal and above it

and all zero elements below the main diagonal). Clearly the Markov chain {Qn} is irreducible and

aperiodic. According to Abolnikov and Dukhovny [2], A is a At, r-matrix and the ergodicity of

{Qn} is given by the following criterion.

3.1 Lemma (Abolnikov/Dukhovny [2]). Let {Qn} be an irreducible aperiodic Markov

chain with the transition probability matrix A in the form of a Ar, r-matrix (3.1). {Qn} is

recurrent-positive if and only if
lira d Ai(z) < cx, = O1 ,r-1(3.2)

z--,l:zeB(O, 1) d’ ’""
and

lim d Ar z) < r,(3.3)
z.-.,l:z.B(0,1) d-

where Ai(z is the generating function of ith row of the transition probability matrix A and

B(zo,p) denotes an open ball in C centered at zo with radius p.

3.2 Proposition. The generating function Ai(z of ith row of the transition probability ma-

trix A satisfies the following formula:
(3.4)
where

(3.5) Ci(z) =

Ai(z = (- z)z Gi(l), fi E,

r zEs=lgszs+Es=i+lgs
r gszs,g(z)= Es=l

i<r

i>r.

lUS.

Proof. Formulas (3.4) and (3.5) follow from (3.1) by use of standard probability alcu-

Now we turn to Lemma 3.1. While condition (3.2) is obviously satisfied, formula (3.3)
applied to (3.4) and (3.5) leads to the following.
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3.3 Theorem. The imbedded Markov chain { Qn} is irreducible and aperiodic. It is recur-

rent positive if and only if
(3.6) p<,

where p = Ab and = E[Cl] is the mean server capacity.

4. INVAPdANT PROBABILITY MEASURE

Given the equilibrium condition (3.6), the invariant probability measure P = (Pi ;i E E)
of the operator A exists and equals the stationary distribution of the Markov chain {Qn}" The

following statement obviously holds true.

4.1 Lemma. Let P(z) denote the generating function of the invariant probability measure

P of a transition probability matriz A of a homogeneous Markov chain {Qn}, and let Ai(z denote

the generating function of ith row of A. Then

(4.1) P(z) = E i,E Zi(z)Pi

Using lemma 4.1 and the ideas of the last two sections, we obtain the following main

result.

4.2 Theorem. Given the ergodicity condition in theorem 3.3, the generating function P(z)

of the stationary distribution of the imbedded queueing process {Qn} satisfies the following

formula:

(4.2)
where G is defined in (3.5).

P(z)
#(A Az) E o Piz’=

Although formula (4.2) contains r unknown probabilities, Po,"’,Pr-1, they can be deter-

mined from an additional condition which yields relatively simple equations. The latter can be

solved numerically.

tions:

4.3 Theorem. The probabilities Po,"’,Pr-1 satisfy the following system of linear equa-

E =-
o Pi zi[ Gi(1-i)13(A- Az) 1)] 0, k = 0,..., ks- 1, s = 1,..., S

(4.4) E r- r gs(s- i) = if- pi=o Pi =i+1
where a isfies forml (a.g) and {; = 1,...,S} i he e 4 roo 4 he ncio
zr- (A-Az)k= gzr inside the unit ball B(0,1) with their multiplicities ks, such that

s ks r- 1 The system of equations (4.3)-(4.4) has a unique solution, Po,"" Pr "s:l
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Proof. Formula (4.2) can be rewritten in the form

E 0<X>

The rest of the proof is similar to that of theorem 4.2 [1].

4.4 Definition and Notation.

Let i = Ev[tl] This gives the expected length of the service cycle given that the initial

queue length was equal to i. Let/ = (fli; E E)T. Then the scalar product P/ gives the value of

the mean service cycle of the system in the stationary mode. We wish to call the ratio of the

mean service cycle Pfl and the mean inter-arrival time the capacity of the system. Thus the

capacity of the system is defined as AP.

Earlier we denoted the mean server capacity by . Observe that for the classical M/G/1
queue the capacity of the system is Ab + P0 = 1, which coincides with server capacity. Below we

show we have this remarkable property in our case also, when the system is in the equilibrium.

4.5 Proposition. Given the equilibrium condition, the capacity of the system AP3 and

server capacity -ff are equal.

Proof. Evaluating fli we have

I{0, r 1 (s i)g,
where ID is the indicator function of a set D. The statement follows from the last equation and

formula (4.4).

5. ANALYSIS OF THE CONTINUOUS TIME PARAMETER PROCESS

From the discussion in section 3 and from definition A.1, it follows that {f,ff, (PX)xeZ,
Q(t); t>_ 0} (Z, S(E)) is a semi-regenerative process with conditional regenerations at points

tn, n = 0,1,..., to = 0. {f2,ff, (PX)xeE (Qn, tn): n = 0,1,...} (E x R +, IB(E x R +)) is the

associated Markov renewal process. Let Y(t) denote the corresponding semi-Markov kernel. With a

very mild restriction to the probability distribution function B, we can have that the elements of

Y(t) are not step functions and thus we can have (Qn, tn) aperiodic. By proposition 4.5 the mean

inter-renewal time Pfl of the Markov renewal process equals y/A < oo). Therefore, following de-

finition A.3, the Markov renewal process is ergodic given the condition p < .
Let K(t) be the semi-regenerative kernel (see definition A.4). The following proposition

holds true. [We will agree throughout the paper that the value of any sum is zero whenever the

lower index is greater than the upper index.]
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5.1 Proposition. The semi.regenerative kernel satisfies the following formulas:

while (ru; u R + ) denotes the Poisson semi.group and ex, is a k.Erlang probability density

function with parameter

Proof. The statement follows from probability arguments.

Now we are ready to apply the Main Convergence Theorem to the semi-regenerative

kernel in the form of corollary A.6.

5.2 Theorem. Given the equilibrium condition p < "ff for the imbedded process {Qn}, the

stationary distribution r = (rx;z E) of the queueing process {Q(t)} exists; it is independent of
any initial distribution and is expressed in terms of the generafing function rr(z) of r in the

following formula:
(5.3) r(z)y(1 z) = P(z)[1
where P(z) is the generating function of P and G is defined in (3.5).

Proof. Recall that the Markov renewal process (Qn, tn) is ergodic if p < y. By corollary

h.6 the semi-regenerative process {Q(t)} has a unique stationary distribution r provided p < .
From (5.1) and (5.2) we can see that the semi-regenerative kernel is Riemann integrable over R+.
Thus following corollary A.6 we need to find the integrated semi-regenerative kernel H (which is

done with routine calculus) and then generating functions hi(z) of all rows of H. We have

(5.4) A(1-z)hJ(z)=[1-(A-Az)](zj’js= xg,+ ,r j+gsz)
+ Es=j+r lgs(zj-za) O_<j< r

(5.5) A(1 z)hj(z) = zJ[1 (A Az)], r <_ j.

Formula (5.3) now follows from proposition 4.5, formula (A.6) and expressions (5.4) and (5.5). 121

5.3 Examples.

(i) It follows from (5.3) that
p0[1

71-0- g

(ii) Let 1 denote the expected length of an idle period in the equilibrium. Then by direct

probability arguments we have
i=o =i+

Er_ r

oPi s=i+lgs
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By formula (4.4) the expression for is simplified to

(5.6) = r--1 r

oPi s=i+lgs

(iii) Similarly we obtain the probability density function of an idle period in the equilibri-

um: r-- 1

f(t) = =...0 Pi E r i(t)gs= i.+..! ex, s-
i oPi s=i+lg,

where e, k is a k-Erlang density function.

(iv) Let denote the expected value of a busy period in the equilibrium. Then the proba-

bility of reaching the server idle in the steady state can be given by the following expression:

Then, from the last equation and (5.6) we get a formula for the expected length of a busy period

in the steady state:

(5.7) = 9(1 )
P

APPENDIX

A.1 Definition. Let T be a stopping time for a stochastic process {f,, x(P)xeE, Z(t);
t _> 0} (E, B(E)). {Z(t)} is said to have the locally strong Markov property at T if for each

bounded random variable if: f Er and for each Baire function f: ErR, r = 1,2,..., it holds

true that

Ez[I o o tT IrT] = EY’T[I o ] PZ-a.s. on {T < oo},
where 0u is the shift operator.

A.2 Definition. A stochastic process {f2,,(PZ)z,E, Z(t); t> 0} (E, $(E)) with

E NI is called semi-regenerative if

a) there is a point process {tn} on R+ such that tn---,oo (noo) and such that each n is a

stopping time relative to the canonic filtering a(Zu;y < t),

b) the process (Z(t)) has the locally strong Markov property at tn, n = 1,2,...,

c) {Z(tn + 0), tn n = 0,1,...} is a Markov renewal process.

A.3 Definition. Let (Xn, tn) be an irreducible aperiodic Markov renewal process with a

discrete state space E. Denote /z = EXit1] as the mean sojourn time of the Markov renewal

process in state {z} and let / = (x;z E E)T. Suppose that the imbedded Markov chain (Xn) is

ergodic and that P is its stationary distribution. We call P/ the mean inter-renewal time. We

call the Markov renewal process recurrent-positive if its mean inter-renewal time is finite. An

irreducible aperiodic and recurrent-positive Markov renewal process is called ergodic.
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A.4 Definition. Let {f,hr, (PX)a:eE, Z(t); >_ 0} - (E, !B(E)) be a semi-regenerative pro-

cess relative to the sequence {fn} of stopping times. Introduce the probability

gjk(t = PJ{Z(t) = k, t1 > t}, j,k e E.

We will call the functional matrix K(t) = (Kjk(t); j,keE) the semi-regenerative kernel.

A.5 Threm (The Main Convergence Theorem, cf. inlar [3], p. 347). Let

{n,, (P )xeE, Z(t); t 0} (E, S(E)) be a semi-regenerative stochastic process relative to the

sequence {in} of stopping times and let K(t) be the corresponding semi.regenerative keel.

Suppose that the associated Markov renewal process is ergodic and that the semi-regenerative

kernel is Riemann integrable over R +. Then the stationary distbution r = (rx; x E) of the

process (Z(t)) exists and it is determined from the formula:

0

A.6 roHy. Denote H= (hjk j,k E)= f o K(t)dt as the integrated semi-regene-

rative kernel, h(z) the generating function of jib row of matrix H and ,(z) as the generating

function of vector z. Then the following formula holds true.

= E hj(z)Pj

PH Finally,Proof. From (A.5) we get an equivalent formula in matrix form, r =.
formula (A.6) is the rult of elementary algebraic transformations.
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