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ABSTRACT

Let {£,} be a non-decreasing stochastically monotone Markov
chain whose transition probability Q(-,-) has Q(z,{z}) = 8(z) > 0 for
some function B(-) that is non-decreasing with B(z)f1 as z— + oo, and
each Q(z, -) is non-atomic otherwise. A typical realization of {¢,} is a
Markov renewal process {(X,,T,)}, where {;= X for T, consecutive
values of j, T, geometric on {1,2,...} with parameter AB(X,).
Conditions are given for X to be relatively stable and for T, to be
weakly convergent.

Key words: Markov chain, stochastic monotonicity, Markov
renewal process, relative stability, weak convergence.

AMS (MOS) subject classifications: 60G, 60K15.

1. INTRODUCTION

In this paper, R is the real line and ® the o-field of Borel subsets of R. Let {£,}7 be
a Markov chain with state space {R, %}, an initial distribution = and transition probability Q.
The 7 and @ determine completely and uniquely a probability measure P on the countable
product space {R*, R>}. When 7( ) = €,(-) (the Dirac measure concentrated at z) we shall

write P instead of P. The corresponding expectation operator is denoted then by E .

Throughout this paper it is assumed that the Q is subject to the following regularity

conditions:
(¢)  for each z € R the support of Q(z, - ) is in [z, 00):
(#1)  the chain {£_}7 is stochastically monotone (Daley, [3]); in other words; for any

zy < 2y, Q(z9 By) £ Q(24, B,) where B, = (—o0,y); (1.1)

0 T£y

(d41) Q(z,{y}) ={
Bz)>0 z=y
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Concerning the function 8(-) we assume that (z; < x,)
B(zy) < B(z,) and z’_’f{‘i_ ooﬂ(z) =1 (1.2)
From (1.1.¢) it follows that

<& <. (1.3)

Markov processes of this type are of considerable interest in reliability theory as models of the
amount of deterioration of a mechanical device subject to shocks and wear during its service

(Barlow and Proschan, [1]; Brown and Changanty, [2]).

Set

o= sup{]c; fk = 60}, Th = sup{k; Ek = f.,.n_ 1 +1}) TO =T

(1.4)
T, =Tp=Th_1n X0= §or anfrn_l+1’ W0=X0’ an Xn'-Xn—-l‘
From this one readily obtains that
P AT, >i} = {8} i=0,1,.. (1.5)

2. AUXILIARY RESULTS

Here we list some basic properties of the bivariate sequence {(X,,T,,)} needed in the
rest of this paper. Some simple calculations show that this sequence is a Markov renewal

process with the transition probability
P{X,€du,T, =i|X,_1}=P(X,_pdu){l - B)HAwW)} ! (as.) (2.1)
where i = 1,2,... and

0 y<z
Ple,B,) ={ Q= B,) - A(=) 22)
= A(z) y2e.

The P(z,B,) is the transition probability of the Markov chain {X }7. It is easy to verify
that

P(zq, By) < P(zy, B,) for all 2, < z,. (2.3)
From (2.1) we deduce

P{X, €du,T, =i} ={1-Bu)HBu)} ~P{X, € du} (2.4)

which clearly implies (see (1.5)) that
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P{T,=i| X} ={1-B(X YHBX )Y ! (as.)

(2.5)
=Py {To=i-1}.

In addition, since

P {X, €du,T; =i} = P(z,du){1 - Bu)H{B(w)} ~* (26)
it follows that
P{X, €du,T,=i|X,_1}= PXn-l{Xl €du,T| =j} (as.). (2.7)
Denote by P"(z, B,) the n-step transition probability of {X,}3) since

Xg<X,<... (2.8)

we have that P™*1(z, B,) < P™(z,B,). On the other hand, the stochastic monotonicity and
the Chapman-Kolmogorov equation yield:
P™z,B,) < (P(z,B))" (2.9)

From this, (2.8) and the Borel-Cantelli lemma it follows that X,— + o0 (a.s.) if P(z,B,) <1
for all y < oo.

It is clear from (2.5) that T’ is conditionally geometric with parameter 4(X,). In

addition, since

P{T,2i| X} = {B(X )} ! (as) (2.10)

it is apparent that {T',} is stochastically monotone and that Tﬂ‘_i;oo as n—oo. Finally, for

each n =0,1,... we have:

n
P{Ty=ig..o Ty =ip| Xgpoon X, | = [[ P{T;=1;1X;} (as)). (2.11)
i=1

In other words, conditioned on a realization of {X,} the sequence of sojourn times {T',}

becomes a family of independent r.v.’s such that the distribution of T, depends only on X .

Consider

u
P {X,€duyT, =i}= /P{Xn €du,T,=i| X, _, =2z}P" " (z,dz)
z

= {1-BHBwWY ~1P {X,, € du}



296 P. TODOROVIC

from which we deduce that

P AT, =i|X,}={1-B(X )HB(X)}Y ! (as.) (2.12)

where the right hand side is independent of z.

3. REMARKS ON THE STRUCTURE OF {W }

In this section we investigate asymptotic structure of the sequence {W }7 assuming

that the following condition holds for all y > 0:

li Pz{€1>1'+y}

ImeP (6,57 - 1-F(y) (3.1)
where F(-) is a proper d.f.
Remark 3.1: The condition (3.1) is similar to one introduced by Gnedenko [4].
Denote by
B,(y]2) = P{W, <y} n=12,... (32)
then clearly
®,(y|z)=P(z,B; 4 ) (3.3)

Some simple calculations yield:

3,(v|2) = E,{&(y| X, _ ). (3.4)

Taking into account (2.2) and condition (3.1), we have:

lim _®,(y|z)= F(y). (3.5)

T—r00

This, (3.4) and the Lebesgue bounded convergence theorem imply that

lim ®.(y|z)=F(y). (3.6)

In other words, (at least) W T‘li_',Y, where Y is a rw. with the d.f. F(y). The following

proposition generalizes this simple observation.
Proposition 3.1:  Assume that (3.1) holds and F(-) is continuous, then under P, for
alk=1,2,...
d.
(Wn+1,..., Wn+k)“*(Y1’---va) as n—oo (3.7

where {Y;}T is an i.i.d. sequence of r.v.’s with common d.f. F(-).
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Proof: The method of proof will be amply illustrated by the case n =2. Given

€ > 0, we obtain

Pa:{Wn +1 < ylen +2 < yz} (3.8)
oo ? + Y1
- / / Pz du)®, (3, | u)P™(z, dz)
T z
Xn + L1

=B [ P(Xdu)ey(, |0}

X
Since by assumption F(-) is continuous"the convergence in (3.5) is uniform. Consequently, for

any € > 0 there exists z, such that

| @1(yq | u) — F(yy) | <€ for all u >z and any y, € R.

From this and (3.8) we then have:

Px{Wn+1 S yl’Wn+2 Sy2} S Pn(x7B3:0)

Xn Ty
FEALy 5o [ 0P a0}
X

< Pz, By ) + (e + Fy2) BA® (0 | X (x5 43}
Consequently,
#_m'oon{Wn +1 < prn +2 S y2} < (6 + F(y2))F(yl)‘

In the same fashion, one can show that

n—oo

Since € > 0 is arbitrary, the assertion follows.

Remark 3.2: The last proposition indicates that, roughly speaking, the remote

oo ..
members of {W }7 are i.i.d. r.v.’s.

Next, we show that the sequence {W }T is endowed with a mixing property, which
means, loosely speaking, that its elements far apart are nearly independent. Denote by

Fo=0{Wq,...,W,} and by F" = o{W_,, W,  ;...} then we have:

Proposition 3.2: For eachn=1,2,...and k=1,2,...
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n k
r‘,’;’l"oopz(.nl{Xj < yj}.nl{wn+ m+i < zi})
1= 1=
(3.9)

n k
= Pz(.ﬂl{X i<yl FGE) @<y <o.<y,)
J= 1=1

Proof: By invoking the Markov property of {X n}°0° and the proposition 3.1, we

obtain

n k
Px(ﬂ {Xijj}Ol{Wn+m+,'SZ.'})

1=1 i

n—1 k
= [ P 52031 Xy = 0P} Wi g S 2DP(01d)
@y, 751 =1

n—1 k
- / P (N {X; <y} X, = s)‘H F(z;)P"(z,ds)
(=, yn] J=1 i=1

as m—oo which proves the assertion.

Corollary 3.1: {W LT and {Y ;}T are independent families. Set
[o2]
T = n gn,
n=0
It follows from the last proposition that ¥, and T are independent o-algebras for all

n=0,1,.... Therefore ¥ (7 is a trivial o-algebra (its elements are either sure or null
events). By letting n—oo we have that ¥ D 9 and that their intersection is a trivial o-

algebra. This clearly implies that the tail o-algebra T is a trivial one.

4. RELATIVE STABILITY OF {X}

The sequence {X} is said to be relatively stable if there exist constants {a,} such that
X,/a,—1 in probability (Gnedenko and Kolmogorov, [5]). If the convergence is (a.s.) the
sequence is called (a.s.) relatively stable (Resnik, [6]). The following proposition gives a

sufficient condition for (a.s.) relative stability of {X}.
Proposition 4.1: Assume that
sugEx{le} < o0 (4.1)
then X, /n—a, (a.s.) where a; = E{Y,}.

Proof: From (3.4), (4.1) and Fubini’s theorem we deduce that
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W = [oll -2y |2y (42)
o 0

-'—"E'z{/y[l—‘l’l(lek-l)ldy}
0

=E(Ex, _ (W,"}) < supE{W,"} < oco.
Consequently,

sup E_{W,?} < co.
z,k

Next, since

n
%Z i converges} € T
1
and 7 is a trivial o-algebra, to prove the proposition it suffices to show that

P { I‘rlan —a; | > €}—0 as n—oo. (4.3)

Consider

Var{% =-l§ 2 Var{W} + Z Z Cov(W,, W ,)).

i=1 j=i+1
It is clear from (4.1) and (4.2) that under P,

n
—1-2- kz Var{W}—0 as n—oo.
=1

On the other hand, due to propositions 3.1 and 3.2

;ciLnOOCov(Wk,Wk +n) =0 LianCov(W", W.tr)=0 (4.4)
for each n =0,1,.... Thus, given € > 0 there exists ny = ng(€) such that
l Cov(Wi)Wj) l <e€ | Cov(erWn + k) ‘ <e (4'5)

if min{i, j} > ng and k > ny. Now, take n > 2ng, then

ng 2n0

S 3 cawaw)i <1y, T Couw,w

i=1 j=i1+1 i=1 j=1i+1

n

n n—1
1Y D CoW,Wpl+| 3 D Cow(W,Wj|
1 i=n0+1 =1

IJ=1+1
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n 2n
< ZO i Coy(W,, W ;)| +e(n—2ng) +€(n —ng — 1)(n — ng) /2.
i=1 j=1+41
Consequently, for any € >0
lim Var{iX,} <e/2.
Finally, since E_{W, }—a, as n—co it follows that
Xn: E_{W,}/n—a; as n—oo.
Therefore, for n sufficiently largek -
PAIRK,—e | > <P Y Wim BTN >
This and (4.1) prove the assertion. "
Corollary 4.1: From proposition 4.1 we readily deduce that for each e >0
P {X,<(ay+€)n}—1 and P {X < (a; —€)n}—0 (4.6)

as n—oo. Consequently

1 if y2o
{_‘iLnooP"(m, Bny) = { . (4.7)
0 if y<a
Denote by
T(y) = inf{k; X\ > y} (4.8)
then for any x <y
P{T(y) Sn} = P,{X, >y} (4.9)
=1-P"(z,B).

Proposition 4.2: Under P

%T(y)—-»ot1 ~1 in probability as y— + oo.

Proof: Assume a; > 0, then we have to show
P{|§T(¥)~0o; ™| <e}—1as y—+oo
for any € > 0. Choose € € (0,a; ~ 1) then from (4.9) we deduce

P{I3TW) -0t <} = PAX -

1 .<. y} - Pz:{X
1 - €)y]

<
(o~ Lo Y
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-1 -1
- P[(al - f)y](z, By) _ P[(al + 5)!!](3:, By)

where, as usual, [z] stands for the integer part of z. Since

Y @
(o7t =)] " 1€y

> aq
it follows from (4.7) that
-1
gmooP[(al - c)y](z’ By) =1.

Similarly, when y—oo

y < y P ¢
(g7 4yl (o '+ey-1 ltey

< ay.

This and (4.7) imply
. pllay T+l -
{lzz»noop ! (:B, By) =0

which proves the proposition.

5. WEAK CONVERGENCE OF {T,}
In this section we show that a sequence of scale factors {d,} exists such that under P,
4T, %2
n n’—’ (5'1)

where the r.v. Z has an exponential distribution independent of z. But first, we need the

following auxiliary result.

Proposition 5.1: Assume that condition (4.1) holds, then

1- ,B(Xn) P.
T=B(na) =1 as n—oo (5.2)
where ay = E{Y,}.
Proof: Set
B~ (y) = inf{z; B(z) > v} (5.3)

then for any ¢ € (0,1)

1-5(X,)
Pl 1-pB(nay)

S 1 S =Pt < ﬂ'l(ﬂ(mﬁggl —+e)
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-1 €) —
PR CUNEORDN

Since
B~ Y(B(nay)(1 —¢€) +€) > nay
B (B(nay)(1 +¢€) ~€) < neyy
for all n = 1,2,..., the assertion now follows from proposition 4.1.

Proposition 5.2: Suppose that (4.1) holds, then
lim P {[1-B(nay)|T,>ul=e"" (5.4)

Proof: Denote by

Un=[1-BX )T, (5.5)

Then taking into account (2.10), we have:

P AU, > ub = Bo(Po{T > Ty | Xub) (5.6)

=5
—3(X
= E,({p(x, ) ),
Set
[1 - 3‘( w ]
Rl w) = {B(X ()}~ P,
Since the function
h(y) = ewp{—l-:lz;@lnﬂ(y)}
is non-decreasing on R, it follows that
Rn(u’ )< Rn+ 1(“7 °)
at least (a.s.). From this we readily obtain
lim R, (u,w)=e"" (5.7)

at least (a.s.) P,. Invoking now the monotone convergence theorem, we deduce from (5.6)
that

U, =Z. (5.8)

n

Finally, write

1- ﬂ(nal)U

[1=Bna)IT = 15z 3V
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then the proof of (5.4) follows (5.8), proposition 4.2 and a Slutsky’s theorem.

Remark 5.1: One can easily show that the sequence of r.v.’s {U, )% has the

following properties:

EA{U,}=1 Var{U,} = E_{B(X,)}

Ea:{Un+1 lUl""’Un} =1.

Remark 5.2: The result of the last proposition can be easily extended as follows:
Set
V,=[1-8(ney)}T,
then after some straight forward calculations (see Todorovic and Gani, [7]) one can show that
for each k = 1,2,...
d.
(Vn+1,...,Vn+k)-—»(Z1,...,Zk)

under P, where {Z,}, is an i.i.d. sequence of r.v.’s with common non-negative exponential

distribution of . The sequence also possesses a mixing property.
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