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ABSTILkCT

This paper is divided into four parts. Part 1 contains a survey of
three neural networks found in the literature and which motivate this
work. In Part 2 we model a neural network with a very general integral
form of memory, prove a boundedness result, and obtain a first result on
asymptotic stability of equilibrium points. The system is very general
and we do not solve the stability problem. In the third section we show
that the neural networks are very robust. The fourth section concerns
simplification of the systems from the second part. Several asymptotic
stability results are obtained for the simplified systems.
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1. INTRODUCION

In this paper we consider neural networks with time delay and give conditions to

ensure that solutions converge to the equilibrium points of corresponding systems without

delays. The proofs are based on construction of Lyapunov functionals having derivatives which

satisfy very strong relations. The work may be considered as extensions of results of Hopfield

([5], [6]), Han, Sayeh, and Zhang [4], and Marcus and Westervelt ([11], [12]).

The first model to be considered is that of ttopfield ([5; p. 2555], [6; p.3089]) and it

may be described as follows. Hopfield states that most neurons are capable of generating a.

train of action potentials (propagating pulses of electrochemical activity) when the average

potential across their membrane is held well above the normal resting value. For such neurons,

u is taken to be the mean potential of a neuron from the total effect of its excitatory and

inhibitory inputs. It is assumed that neuron is connected to neuron j; Hopfield takes

V = gi(ui) (the input-output relation) as the short term average of the firing rate of cell i. tie

states that u will lag behind the instantaneous outputs Vj of the other cells because of the
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input capacitance C of the cell membranes, the transmembrane resistance R, and the finite

impedance Ti" 1 between the output Vj and the cell body of cell i. These time lags are ignored

by Hopfield, but are of fundamental interest to us for this work.

ttis system is

Ci(dui/dt) = TijVj ui/R + Ii, u = g[" (Vi). (1)

All of these functions are evaluated at time I. ere, the input-output relation V gi(ui) is a

sigmoidal function with gi(O)= 0, g()> 0, gi(ui)l ui. (We have written

(d/d)(gi()) = g() add we will sometimes denote = should clearly

indicate the meaning.) The quantity Tjgj(uj) represents the electrical current input to cell i

due to the present potential of cell j, and Tij is the synapse efficacy. He sumes linear

summing. Both + and signs can occur in Tij. The constant I represents any other fed

input to neuron i; Hopfield, well other investigators, frequently takes I to be zero.

Unless a neuron is self connected, Tii = 0; Marcus and Westervelt [12], well others, treat

systems with self connections. If there are no self connections, then it is impossible for the

matrix (Tj) to be positive or negative definite, condition we later require. But we later

point out that, mathematically, we may always regard a neuron being self connected owing

to its own current potential. Hopfield [6; p. 3089] regards definiteness of (Tj) patholocal.

If neuron is connected to neuron j, then neuron j is connected to neuron and it is

frequently sumed, particularly by Hopfield, that Tij = Tji; but this is not always done and

Hopfield discusses experiments in which that condition does not hold. There may even be skew

symmetric ces [6; p.3090].

An electrical simulation model is also given by Hopfield [6; p. 3089].

The derivation of (1) by Hopfield is cle, soundly motivated, and highly interesting,

but perhaps his most interesting contribution is the construction of a Lyapunov function

V

whose derivative along a solution of (1) satisfies (for Tij = Tji

Or
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(here again g’= dg/dui, while u[ = dui/dt), a useful and remarkable relation. At this point

ttopfield [6; p. 3090] states (but does not prove) that E is bounded along a solution, so every

solution converges to a point at which dui/dt = 0 for every i. It is to be noted that E is not

radially unbounded, so an independent proof of boundedness of solutions must be given. Such

a proof is simple and will later be supplied.

Now E is a very interesting Lyapunov function. A later calculation shows that

OElOu = Ciug(ui)

so that (1) is actually

Ciu = -(OE/Oui)/g(ui) (I)*

and that brings us to the second model of interest. Equation (1)* is almost a gradient system.

This can also be inferred from the work of Cohen and Grossberg [2] which deals with a more

general system than (1) and which they note [2; p. 818] is related to a gradient system.

Han, Sayeh, and Zhang [4] go a step further (as do many other investigators) and

design a neural network based on an exact gradient system

X’ = gradV(X), "= d/dt,

where V(X) is a given Lyapunov function having minima at certain fLxed points, called stored

vectors, and OV/Oz is continuous. Then the derivative of V along (4) is

dV/dt = grad V(X) grad V(X)) = Ii grad V(X) il

where !1. II the Euclidian length.

They also consider a concrete example of (4) in the form

= 1,...,N, and

M N

sml 3=1

: _Zs. 2 .2
=1 j=l

where z is the ith component of X,a: is the ith component of the sth stored vector, and M is

the number of stored vectors. It is claimed that all solutions converge to the minima of V.

Questions of delay are not considered, but (4) is very well adapted to delays, as we will see.
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The third model on which we wish to focus is that of Marcus and Westervelt ([11],
[12]) who start with a streamlined version of (1) into which they introduce a delay and write

N
= + (8)

j=l

where f has a maximum slope of/ at zero, f is sigmoidal, < > 0 positive

constant. The authors give a linear stability analysis of (8) both for r > 0 and r = 0,

concluding that there are sustained oscillations in some cases. A nonlinear stability analysis is

also given which yields a critical value of r at which oscillations cease.

But in actual neural networks of both biological and electrical type, the response tends

to be based on an accumulation of charges (Hopfield’s "short term average"), say through a

capacitor, and the result is a delay term in the form of an integral, not a pointwise delay.

Indeed, if a Stieltjes integral is used, then the integral can represent various pointwise delays,

as is noted by Langenhop [9], for example. Our work here concentrates on integral delays.

Remarks on literature. We have focused on the two papers of Hopfield, the paper by

Han, Sayeh, and Zhang [4], and the papers of Marcus and Westervelt ([11], [12]) because they

provide central motivation for work. But the literature concerning the Hopfield model is

enormous. Miller [13] has written a two volume loose-leaf survey work on neural networks

with exhaustive bibliography and survey of investigators.

2. BOUNDEDNESS, STABILITY, AND DELAYS

Let us return now to the derivation of (1). Elementary circuit theory states that when

I(t) is the current, then the charge on the capacitor is given by f I(s)ds. ttag [3; p. 169]
0

discusses this process with the capacitor discharging when the charge reaches a certain level.

For the neural network (1) the effect of the capacitor can be modeled by replacing Tijgj(uj)
by

t

aij(t- s)gj(uj(s))ds

(which can also be written as f aij(s)gj(uj(t-s))ds where
0

form for aij(t) would be

aij(t

f aij(s)ds Tij/Ci.
0

3Tij(t h)2/h3C
0 for t>h.

for 0 <_ t < h,

(9)

A typical
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Thus, aij(O = 3Tij/hCi, ai1(h = 0, and f aij(s)ds = Tij/Ci. Here, h is the r of the Marcus
0

and Westervelt problem, or the "short term" of the short term average mentioned by ttopfield

[6; p. 2555]. If h = cx, then an appropriate example is aij(t) = Tiie-t/ci.

Thus, our model is

3

(io)

where

Ai 1/RiCi, Ii is constant, / aij(t) dt = Mij <_ M,
o (i 1

for some M > 0, ai:(t is piecewise continuous.

Obviously, C is not taken to be the capacitance in this system. It should be noted that for

proper choice of aij(t), (9) can represent terms f gj(uj(s))ds and gj(uj(t-h)) at the same
t-h

Otot
time (cf. aangenhop [9]). Moreover, if aij() = Tie ’/Ci, c constant, then (10) can be

reduced to a higher dimensional system of ordinary differential equations. This idea is

developed in Section 4.

It is readily proved that for each set of bounded and piecewise continuous initial

functions ui(s) on -cx < s _< 0, there is a solution ui(t on some interval 0 < t < a; and if the

solution remains bounded, then c = cx (see [1] for methods of proof).

It is to be noted that if u = (u,..., Un)is an equilibrium point for (1), then it is also

for (10). Hopfield [6; p. 3089] has made a careful study of those equilibrium points. Our long

term goal is to show that solutions of (10) approach the equilibrium points of (1). To that

end, we follow the lead of Hopfield [6; p. 3090] where he constructs the Lyapunov function E

given in (2). We will try to extend that Lyapunov function to (10).

Before doing so we first focus on Hopfield’s argument [6; p. 3090]. He states that E is

bounded, that dE/dr < O, and that dE/dr = 0 implies that dVi/dt = 0 for all so that all

solutions approach points where dE/dt = 0. His conclusion is most certainly correct, but he

needs to first show that solutions are bounded; this is an easy matter, as we shall see.

Basically, Hopfield is invoking an old result of Yoshizawa ([14] or (1; p. 232]) or, as the system

is autonomous, a result of Krasovskii [8; p. 67] which may be stated as follows.

Theorem (Yoshizawa)- Let F:[O, cx))xRn---,Rn be continuous and bounded for z

bounded and suppose that all solutions of z’= F(t,z) are bounded. If there is a continuous

function E:[0,cx)Rn--,(-cx,cx)) which is locally Lipschitz in and bounded below for :
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bounded, if there is a continuous function W: Rn---,[O, cx:) which is positive definite with respect

to a closed set f, and if E’ <_ -W(z), then eve solution approaches f as to.

The crucial requirement is that solutions be bounded, not that E be bounded (except
x2 x2for bounded), as the following example shows. Let z’= ze and E = e so that

E’ = 2x2e- 2x2; E is bounded, but all nontrivial solutions tend to 4, cx. Of course, this does

not happen in the Hopfield case.

The following proof applies equally well to ttopfield’s equation and to that of Marcus

and Westervelt, but it does not apply to the Marcus and Westervelt linearized system. The

type of boundedness proved here is commonly called uniform boundedness and uniform

ultimate boundedness for bound S at t = 0 (cf. [1; p.248]).

I,emma l" There is a B > O, and for each B1> 0 there is a B2>0 and a T > O such

that if the initial functions all satisfy (s) <_ Bx on (-c,0], then the solutions of (10) will

satisfy u(t) _< B2 for all t > O, while u(t) <_ n if t > T.

Proof: Since the gi(ui) < 1, the I are constants, and f laij(t) ldt <_ M, the
o

solution ui(t) satisfies

where h(t) < M + I and I = mazlI/Cil. Certainly, h(t) depends on the initial function,

but M does not. Thus, by the variation of parameters formula,
t

,i [ ,i(t ,)u(t)! _< lu(0) le / M e ds,

0
from which the result follows.

System (1) seems to us to be precisely the one which describes the ttopfield problem

and is worthy of careful study. It is, however, quite nontrivial and may be the focus of

stability analysis for some time to come. We begin by showing that a study is feasible by

giving a basic result patterned after a one dimensional theorem of Levin [10] concerning an

unrelated question. In this result, our initial functions are points in Rn at t = 0, but are zero

for t < 0. Such are also Hopfield’s initial conditions. The initial functions have the effect of

changing (10) to

+ +
" 0
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While we stated earlier that (10) can include the Marcus and Westervelt system, that

is not true under the conditions of the following result.

Theorem 1: Let I = 0 for all i, ui(s = 0 for s < O, ui(O E Rn, (11) hold, and

ui(t) satisfy (10) on [0, oo). Suppose also that aij(t = aji(t and that the matrices (-aij(t))
(a’ij(t)) and (-a(t)) are positive semi-definite. Then for

u

0

t t

0 0

t t t

+ 1/2/aj(t--s)/gj(uj(v))dv/gi(ui(v))dv ds

0 s s

we have

v’(t) = (13)

t t

0 0

Moreover, u(t) approaches an equilibrium point of (1).

Proof: We have

t

V’ E Aittigi(tti) + E E{gi(i)f aij(’ --8)gJ(tJ(s))d8}

t

0 0

t t t

0 s s

t
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t

+ gd(uj(t)) / gi(ui(s))ds]
0

t t

0 s

t

+ /
8

Integration by parts of the last term yields.
t

aid(t-s)gj(ud(t)) gi(ui(v))dvl: =o
8

0

I. o
8

t

Note that if A (aid) and if G is the vector with components gi(ui), then AT = A implies that

t t

0 0

t t

0 0

This yields (13). Each term of (13) is nonpositive, all solutions are bounded so dui/dt is

bounded. Thus, by Yoshizawa’s argument [14], uiO and so dui/dt---,O. Hence, u(t)
approaches an equilibrium point of (10) and these are the same as those of (1). This completes

the proof.

Remark: Theorem 1 is viewed as a first result. Nevertheless, the definiteness

conditions on (aij(t)) (aj(t)) and (a(t)) may not be as severe as they first seem. These

require self connections. Since -ui/R appears in (1) we can think of each neuron as being

self connected. To see this, in (1) determine Ti* such that [ui/Ri]- Ti*igi(ui) has the sign of

ui, so that (1) can be written as
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Ci(duildt = ijVj-([ui/Ri]- Tigi(ui))+ I (1)**
3

where ij = Ti if i j, and ii = Tii-Ti" Then design the delay system so that (10)
becomes

and (13) becomes

(13)*

since [ui/Ri]-Ti*igi(ui) and gi(ui) both have the sign of ui. The matrices (aij(t)) (aj(t))
and (a(t)) will have nonzero diagonal elements.

In Section 4 we will simplify (10) and obtain results independent of the definiteness of

these matrices.

3. ROBUSTNESS AND DELAYS

Equations (1)* and (5) show that (1)and (5) are very robust in the sense that

comparatively large perturbations can be added and solutions will still converge to the

equilibrium points of the unperturbed equation. Recently, Kosko [7] has discussed robustness

of this type for a variety of neural networks when the perturbations are stochastic.

Lyapunov’s direct method is well suited to proving robustness under real

perturbations. Intuitively we have the following situation. Given a positive definite Lyapunov

function V(u) for a differential equation u’ = F(u), the derivative of V along a solution is

V’ = grad V. F grad V Flos O

where 0 is the angle between the tangent vector F(u) to the solution and grad V which is the

outward normal to the surface V = constant. A gradient system has cos 0- -1, the optimal
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value. This means that the solution u(t) enters the region V(u)<_ constant along the inward

normal. Hence, if we perturb the differential equation to u’= F(u)+ G(u), so long as G(u) is

not too large relative to F(u), the vector F(u)+G(u) will still point inside the region

V(u) <_ constant.

Now (5) is actually a gradient system so the perturbation result for it is better than

the one for (1)* which is merely almost a gradient system. Perturbation results are crucial for

any real system since the mathematical equation will seldom represent the physical reality

exactly.

Let fl and h be positive constants and A an n n matrix of piecewise continuous

functions with [[ A ][ < 1 where II A ]] = ma [aij(t)[ and consider
l<<n
ot <h

t

= grad V(X)+ / A(t- s) grad V(X(s))ds.X’
t-h

(14)

Several other forms could be chosen, but this will demonstrate the strong stability. Note that

(4) and (14) have the same equilibrium points (under our subsequent assumption (16)). To

solve (14) it is required that there be given a piecewise continuous initial function

9:[- h,O]’’*Rn. There is then a continuous solution X(t,o) on some interval 0 _< t < c with

X(t,)--(t) for -h _< t _< 0; X(t,) satisfies (14) on (0,c). See methods of [1] for existence

details.

Theorem 2.: Let V(X)>_ O. Then there is a > 0 (see (16)) such that .for each

piecewise continuous ,:[-h,O]-,Rn any solution X(t,) of (14) is defined on [0,oo); if it is

bounded, then it converges to an equilibrium point of (4).

Proof: Define a Lyapunov functional along a solution of (14) by

so that

0 t

-h t+v
t

W’(t) < grad V(X) 2 + grad V(X) / II A(t- s)II grad V(X(s)) ds

0 t-h

+7/ [I grad V(X(t)) grad V(X(t + v) Z]dv
-h

5 [- l +.h+Th]lgrad V(X) I

(tb)
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t

-(7 -)/ gtad V(X(s)) :dz.
t-h

Let

7>andl>vh+h (16)

Then there is a # > 0 with

W’(t) <_ #( grad v(x) + / A(t sDrad V(X(sl) ds).
t-h

But f Ir(s) lds < f Ir(s) 12ds / or f ir(s) lZds < h f Ir(s) 12ds so we
t-h t-h t-h t-h

have

w’(t) <_ -( x’(t) , fo some k > 0.

It is known that the only way in which a solution X(t) of (14) can fail to be defined

for all t > 0 is for there to exist a T >0 such that lim sup IX(t) = +x. Thus, if
It---, 20-"

T- 1 < t < T then from (17) we have

O <_ W(t) <_ W(T-1)- k/ X’(s) )2ds < W(T-1) k ( /
T-1 T-1

X’(s) ds?
<_ -k(IX(t)- X(T- 1)!)2,

a contradiction to limsup x(t) = + c. Thus, each solution X(t, o) can be defined for all
t 20--

t>0.

Suppose that X(t, 9) is bounded. Then grad V(X) is continuous and A(t) is bounded

so X’(t,o) is bounded. The argument of Yoshizawa [14] is fully applicable and X(t,)
approaches the set in which grad V(X) = 0, the equilibrium points of (4). This completes

the proof.

There are several simple conditions which will ensure that solutions of (14) are

bounded. Certainly, (17) with W >_ 0 will not do it as may be seen from the scalar equation
x2 x2 V 2x2z’ 2:e z2 with V = e We have grad V = -2:e and = 4z2e = -(grad

V(z))2; but all solutions except z = 0 are unbounded.

We could ensure boundedness by asking one of the following:
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Since W’(t) <_ O, if for each continuous : h,0]nn and for

C = {:[- h, 0]---*Rn}, we have lira infW((t)) > W()(0), then all solutions
II II-oo

of (14) are bounded. e c

(b) If there is a continuous function G:[0,oo)---,[0,oo) with G(r)= in/ [grad

V(X) and f G(r)dr = oo, then all solutions of (14) are bounded.
0

The validity of (a) should be clear. To prove (b) we note that there is a k > 0 with

W’(t) --- X’(t) grad V(X()) --so that

o < w(t) < w(o)- k a(IX(s) l)lX’(s)lds
0

t

< w(0)- / a(I x(s) I) x(s) I’ ds

0

t

< w(o) -- / a( X(s) X() ’ds

0

x(t)
= W(O)- / G(s)ds

IX(O)l

so that X(t) is bounded.

Remark: The conclusion of this theorem can not be strengthened to stating that

bounded solutions approach the minima of V(X), as was desired in [4] where maxima and

saddle points were to be avoided. In the scalar equation

with

the minimum is at z = 1, but if z0 < O, then x(t)0; gradient systems of the same type are

easily constructed.

We turn now to the model of Hopfield which is more challenging when introducing a

delay because (3) is slightly more complicated than (5). Moreover, since (1) is not quite a
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gradient system, the perturbation will be not quite as large as in (14).

To verify (3), use the symmetry of (Tij) in (2) to obtain

OE/Oui E Tijg(ui)Vj+ (l/Ri)uig(ui)- Iig(ui)
3

SO

Ciu = (OE/Oui)/g(ui).

To obtain a delay system for (1) we let A(t) be an n x 1 matrix of piecewise continuous

functions and let A be the ith component of A with Ai(t)] <1 for 0<t_<h and all i.

Consider the system

Ciu = -[(OE/Oui)/g(ui) (18)

t
q- Ot / Ai(t s)(OE(u(s))/Oui)/,"Ji’(si)ds,

t-h

where the c are constants. Note that equilibrium points of (1) are preserved.

We now prove a simple lemma parallel to that of Lemma 1.

preferred form for showing limit sets, for boundedness we write (18) as

While (18) is the

which we can represent by

dui/dt = iui + (ai/RiCi) i Ai(t s)ui(s)ds + f(t)

or in vector notation as

= Au + / D(t- s)u(s)ds + F(t)
t-h

(19)

where A is a diagonal matrix of constants i = 1/RiCi, D is a diagonal matrix of elements
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iAi(t s)/RiCi, and there is a constant P which is independent of the initial function with

[r(t) _< P. Let

A = rain Ai, -6 mazlci/RiCil. (20)

Lemma e: There is an cr > 0 (defined by (20) and (21)) such that if cl ,,
then all solutions of (18) are bounded in the same sense as in Lemma 1.

Then

Proof: Define a functional

0 t

W(t) u(t) / / / 71u(v) dv ds, 7 > O.

-h t+s
t

w’(t) < A u(t) + / D(t-s)! u(s) ds + P
t-h

t

+Thlul-/ lu(s)lds
t-h

t

_< -(A-Th) lul--(7-)/ [u(s) lds+ P
t-h

< r/V + P, for some r/> O,

provided that

7 > and > 7h. (21)

The conclusion now follows from the differential inequality.

Theorem S: There is an c > 0 (see (22)) such that if all cl c th eve
solution of (18) is bounded and converges to the set of equilibrium points of (1).

so that

Proof: Define a Lyapunov functional along a solution of (18) by
0 t

-h t+s

V’ E -(OE/Oui)2/g(ui)Ci

+ (ai/Ci)(OE/Oui) f [Ai(t- s)(OE(u(s)l/Ouil/g(ui(sl)]ds
t-h
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t

+ h[la/auil/a(ui)Ci]- f [i a(u())/all())cja
t-h

< { -[(OE/Oui)2/gCui)] + aih(Oe/Oui) + [6h(OE/Oui)2/gi(ui)

Thus, we require that

and 1 > cih + 6h (22)

where = maz og’i(ui). It then follows readily from Yoshizawa’s argument [14] that these
-o< ui<
l<i<n

(bounded) solutions converge to equilibrium points of (1) when (20)-(22) hold. This

completes the proof.

4. A FULLY DELAYED GtLkDIENT SYSTEM

In the Hopfield model, if the train of action potentials is also dependent on the average

potential of the neuron itself, a simplified form of (10) would be

u = f [ai(t- s)(OE(u(s))lOui)/g(ui(s))lds

and the analog of (4) is
t

x(t) f ai(t- s)(OV(z(s))/Oxi)ds.

(23)

(24)

Thus, in (10) we are taking aij(t --ai(t for 1 _< j < n. Numerous papers in mathematical

biology have dealt with such intractable memory systems and have noted that if

with

ai(t 7ie -air (25)

and a positive constants, (26)
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then the memory can be eliminated at the expense of doubling the order of the system. In

implementing the case in which (25) holds, in effect, we add a neuron to the Hopfield model, as

is indicated by the increased dimension.

Equation (25) does yield a very reasonable memory system. Theorem 6 will reduce

(25), but will restrict initial functions, as did Theorem 1.

Theorem 4: Let (25), (26) hold and let V be bounded below.

solution of (24) is bounded and approaches the set of equilibrium points of (4).

Then every

Proof: We have

t

= f "rJ(OV(())/O)a’
so a differentiation yields

Zi’’ + OtiZ 7i(gV(z)/Ozi

and

or

(1/Ti)[z(t)- z(O) +2/z(s)2ds] = 2IV(z)- V(z(0))].
0

As V is bounded from below, all solutions are bounded and the argument of Yoshizawa will

show that z(t)0 so that solutions approach the equilibrium points of (4).

Theorem 5: Let (25), (26) hold and suppose that < all

and all u E R. Then all solutions of (23) approach equilibrium points of (1).

Proof: We have

,,
u + oziu =

SO

u]u]’g(ui) + oig(ui)(u)2 (OE/Oui)u7i.

Now
t t

/ "’ =(ui) gi(u)/2lo-/uiuigi(ui 2 [u(s)2g,(ui)/2lds
0 0

and so
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(l/Ti)[u:Ct)2gCui(t))- u:CO)2gCui(O))

+ i [2aig(ui)- gT(ui)lu](s)2dsl = 2[E(t)- E(0)].
0

If solutions are bounded, then 2aig(ui)- gT(ui) >_ 6 > 0 and so

0

and Yoshizawa’s argument implies that u](t)O as t--oo.

To see that solutions are bounded, write (23) as

t

--00 3

t

h(t) (l/Ri) / e- ai(t a}ui(s)ds

where h(t) and h’(t) are bounded and the bound depends on the initial function. Then

u7 + aiu = h’(t) + aih(t) ui/R

or

all of whose solutions are bounded. This completes the proof.

Now if one is interested in linear analysis of (23), such as was given by Marcus and

Westervelt [12] for the pointwise delay with a view to obtaining local information, say near

u = O, then (23) is written as

u = / [el(t- s)(OE(u(s))/Oui)/i]ds (27)
--00

where i = g(0) > 0. That is, we have linearized the denominator.

Theorem 6: Let (25), (26) hold.

o lhe se of equilibrium points of (1).

Then every bounded solution of (27) converges

The proof is, of course, an exact repetition of that of Theorem 4.

We return now to (24) with initial conditions of Theorem 1.
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Theorem (24) s=pvos that (t) = 0 iI t < 0 a.d (0) e . =pos atso

that a(t) <_ 0 and a’(t) >_ 0 for all > O. Then for

0

(28)

we have

._12 /a(t---s)(/(OV(x(v))/Oxi)dv;d
0 s

0

(29)

, ,
}

0 s

If, in addition, a"’(t)<_ 0 and a(t) a(0), then for each bounded solution x(t) of (24) with

these initial conditions, x(t) approaches the equilibrium points of (4).

Proof: We have
t

w’ = -(OVlOD/(
0

q-(1/2)a(t) (OV(x(s))/Oxi)ds
0

+ ai(t) i (OV(z(s))/Ozi)ds(OV(z)/Ozi)
0

-(1/2)_.7(t- ) (ov((v))/oD ds

0

f a(t- s)f (OV(x(v))/Oxi)ds(OV(s)/Oxi).
0 s

An integration of the last term by parts yields

ai(t (OV(z(v))/Ozi)ds + ai(t s)(OV(z(s))/Ozi)ds (OV(z)/Ozi)
0 0

which will now verify (29). The final conclusion follows from an argument of Levin [10; p.
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540]. That will complete the proof.

5. DISCUSSION

System (10) seems to be a proper formulation for the general problem described by

Hopfield and a more justifiable delay system than that of Marcus and Westervelt. It seems to

be very difficult to evaluate its stability properties in its full generality, but it is significant

that Lemma 1 yields boundedness of solutions. Analysis in the full generality is expected to be

a long-term project, but the results of Section 4 indicate that (10) should be very stable.

Noting that (1) is almost a gradient system should significantly enhance the stability analysis.

6. REMARKS ON MEMORY

The object of the memory is to enable the Tij in (1) to reflect the time lag. System

(10) has a memory in every sense of the word. For a general aij(t), (10) can not be reduced to

an ordinary differential equation without memory. When (25) holds, then systems (23) and

(24) have limited memory in that ai(t can be removed at the expense of doubling the order.

Any ordinary differential equation can be expressed as an integral equation and sometimes it

appears to have a memory. For example, ttopfield’s system can be written as

h (t,u = 7iui q"

sO that using the integrating factor e7it, we obtain

= + f e-
0

(30)

But since solutions of (30) are uniquely determined by (to, Uo) alone, equation (31) does not

have a memory.

Section 4 has focused on a(t)= e -t and this can be generalized to a(t)= Eli(t)
where each fi(t) is the solution of a linear homogeneous ordinary differential equation of degree

n with constant coefficients. (See [1; p. 84]).
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