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ABSTRACT

Dynam}c behav}or of a new class of information-processing
systems called Cellular Neural Networks s investigated. In th}s paper we
introduce a small parameter n the state equat}on of a cellular neural
network and we seek for period}c phenomena. New approach is used for
proving stability of a cellular neural network by constructing Lyapunov’s
major}z}ng equat}ons. Th}s algorithm }s helpful for find}ng a map from
initial continuous state space of a cellular neural network nto d}screte

output. A compar}son between cellular neural networks and cellular
automata s made.
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INTRODUCTION

Cellular Neural Networks present a new class of information-processing systems. It is

a large-scale nonlinear analog circuit which process signals in real time. The basic circuit unit

of a cellular neural network is called a cell, an analog processor element which contains linear

and nonlinear circuit elements, typically- linear capacitors, linear resistors, linear and

nonlinear coatrolled sources, and independent sources [1, fig.3] The architecture of typical

cellular neural networks is similar to that found in cellular automata [7,8]: any cell in a cellular

neural network is connected only to its neighbor cells. Adjacent cells can interact directly with

each other. Cells not directly connected may affect each other indirectly,because of the

propagation effects of the continuous-time dynamics of the networks. The main difference

between cellular automata and cellular neural networks is in their dynamic behavior. A

cellular neural network is a continuous time dynamical system. A cellular automaton is a

discrete time dynamical system.

1Received: February, 1993, Revised: May, 1993.

2Current address: Florida Institute of Technology, Melbourne, Florida 32901, U.S.A., under
Fulbright Scholarship.

Printed in the U.S.A. (C) 1993 The Society of Applied Mathematics, Modeling and Simulation 107



108 ANGELA SLAVOVA

Some theoretical results concerning the dynamic range and the steady-state behavior of

cellular neural networks have been presented in [1]. The dynamical system equations

describing a typical cellular neural network cell [1, fig.3] consists of the following equations and

constraints:

State Equation:

C(k,1) ENr(i,j)
A(i, j; k, l)vukt(t +

+ E B(i’j;k’l)vukt(t) + I,
c(.,t)e,.(,)

(i)

l <i<_M, I <_j<_N,

where the ith row and jth column cell is indicated as C(i, j); by definition the r-neighborhood

Nr of radius r of a cell, C(i, j), in a cellular neural network is [1]

N(i,j)= {C(k,l)lmaz{Ik-il, l/-jl} <r, I <_k<_M, I_</_<N};

vzij, vuij, vuij refer to the state, output and input voltage of a cell C(i,j); C,Rx are fixed

values of a linear capacitor and a linear resistor in the cell; I is an independent voltage;

A(i,j;k,l) is a feedback operator and B(i,j;k,l) control operator, for which

Ixu(i j; k, l) = A(i, j;, k, l)Vuk and Ixu(i j; k, l) = B(i, j; k, l)Vuk1(Izu(i, j; k, l) and Iu(i, j; k, l)
are linear voltage-controlled sources for all C(i, j) e N(i, j)).

2) Output Equation:

= (2)

o, vii(t) < o,
vuij(t = vzij(t), 0 <_ vzij < 1,

1, vzij(t > 1

I<i<M

I<_j<_N

where function f is piecewise-linear.

Function f can be approximated within any precision by a smooth (Cl) sigmoid

function, which help us in analytical proofs, since C1 is more convenient to work with.

3) Input Equation:

4)

vuij=Eij, I<_i<_M,I<j<M.

Constraint Equations:

(3)

0 < vxij(O < 1 (4)
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5) Parameter Assumptions:

A(i, j; k, l) = A(k, l; i, j)

c>o, n >o. (7)

As mentioned above in [1] it is proved that cellular neural networks, described by the equations

(1-7) must always converge to a constant steady-state after the transient has decayed to zero.

Moreover, it is obtained that cellular neural networks have binary-valued outputs, which have

applications in image-processing [2]. These properties of cellular neural networks imply that

the circuit will not oscillate and become chaotic.

Our interests are in obtaining some periodic or chaotic behavior of a cellular neural

network. For this purpose we introduce a small parameter u in front of function f. Then the

state equation (1) can be rewritten in the following form:

dv 1 vC-d = --x + IzAf(v) + I, (8)

where v = vxij(t), A = A(i,j;k,l), f(v) = f(vxij) and we also assume that B(i,j;k,l) = O. I

is convenient for our further analysis and comparison of cellular neural networks to cellular

automata.

One of the most popular techniques for analyzing the stability of dynamical nonlinear

circuits is Lyapunov’s method by defining an appropriate Lyapunov function for cellular neural

networks [1].

Since we introduce a small parameter/z in equation (8), our approach will differ from

the above. We will use the Lyapunov’s majorizing equations method to investigate the

convergence properties of cellular neural networks, described by state equation (8). Moreover,

we will seek for the periodic solutions of (8) and dynamic range of cellular neural network.

Stability of equilibrium points of cellular neural networks will change as an effect of a small

parameter / and we can estimate the upper bound of the interval of values of/z, in which

periodic solution exists.
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2. PRELIMINARIES

Lyapunov’s majorizing equations method can be applied for the operator system of

quite general kind with bounded linear operators:

z = LF(x, t, #) (9)

where the function F belongs to the class C1 with respect to x(t, #) and to the class C with

respect to t, p. L is a linear and bounded operator. Suppose also that

F(O, t, O) = O, OF(O, t, O)
0 = 0. (0)

From the boundedness of the operator L it follows the existence of a finite constant p > 0, such

that the following inequality is satisfied for any function E C:

II L(t)II _< ,o II (t)II, t e [0, T]. (11)

We introduce the class f of functions (a, p) such that:

i) (c, #) is a function of c > 0, belonging to the class Click] for [c _< R (R is a

constant), and class C[p];

ii) (c,#) is positive for c > 0, p > 0, monotone increasing with respect to all

arguments and convex in c in the case of nonlinearity in c.

Definition 1. A Lyapunov’s majorant with respect to the function F(,t,p) is a

function &(c, p) of class f in the domain c _< R, 0 _< p _< p., such that for [c _<// and

[] <_ c the following inequalities are valid:

II r(x, t, p)II _< (, ),

II a(=,a=t, ,) II _< ae(,o,:, ’)"
Lyapunov’s majorizing equation is as follows:

Due to the properties of Lyapunov’s majorizing equations [3], we have the following basic

theorem:

Theorem 1: If system (12) has .for p [0,p.] a solution a(p) C[0,p.], which is

positive for kt > 0 and such that o(O) = 0 and II ’(’.)II <_ R, t. tn s=iw approxima-

tions:

z = LF(z_i,t,p), k = 1,2,...
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3. DYNAMIC BEHAVIOR. OF CELLULAR NEUILkL NETWORKS

If we consider function f(v) from the equation (2), we have four possible cases for the

state of a cell C(i, j):

< 0,
dvxij

2) O<vzij(t)_<land dt- =0’
dvxij

3) 0 <_ vxij(t < 1 nd at # O,

4) vzij(t) > 1.

When vxij(t) < 0, then vuij(t = 0 for all t > 0, no matter if vxij(t = const, or

vxij(t # const., which corresponds to the first case. When vxij > 1, then vuij(t = 1 for all

t>0, so we have the fourth case. If 0<vxij<l, then vuij(t)=vxi(t). In the third case

vxij(t 5k const, and we can expect some periodic behavior or oscillation.

Now let us consider equation (8), which can be rewritten in the following form:

d__.v = Mv + g(v, t, #), (13)dt

where M = ! g(V, t, p) = #-f(v) + -I.CRz’
Assume that g(v,t,#) is a periodic function in t with period T, in other words we

consider the third case. Function g(v, t, #) satisfies also the following conditions:

(0, t, O) = O,
Og(O, t, O)

Ova- = O. (14)

Let us consider an auxiliary linear nonhomogeneous equation for equation (13):

d__.v = iv + (t), (15)dt

where (t) is an arbitrary, periodic function with period T. Its solution is

t+T
MT_ E]- / eM(t- ")9(s)ds. (16)V()

t

This formula defines v as the result of the application of an operator L to the function (t), i.e.

v(t) = L,(t), t [0,T]. (17)
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The operator L is linear and bounded. Therefore there exists a constant p, such that inequality

(11) will be satisfied. If we go back to equation (12), the following can be obtained:

v(t,#) = Lg(v,t, lz), (18)

which is an operator equation of type (9), equivalent to equation (13).

Now we can write Lyapunov’s majorizing equation (18)

=

in the certain domain

(19)

where (c, #) is a Lyapunov’s majorant for the function g(v, t, I) in the form:

= > I.
According to the properties of Lyapunov’s majorizing equations [3] we can conclude that for

# E [0,/.) the solution a(#) of (20) is positive and a(0)- 0. Therefore by using Theorem 1,

the following theorem has been proved:

Theorem 2: Suppose that equation (19) in the domain Iv < 1 has a positive

solution c(#) for 0 < t < tz. and (1.) < 1. Then equation (13) has for 0 < lz < I. a periodic

solution v = v(t,p), with period T, which is unique in Ihe class C[/]. This solution can be

found by the simple iterations:

vk = Lo(v , t,/z), k = 1, 2,...

Vo = v(0).

Remarks and Conclusions:

1. From the properties of Lyapunov’s majorizing equations [3] and since function

ff(c,p) is linear, it follows that solution c, =a(/z) will exist on the half-open interval

0 _</z </.. The solution c = c(#) may be unbounded for p---,/.. If we consider the plot of

curves y- ff(c,#) for # </z., /z-/z., /z >/z. in the plane (c,y) and the plot of the straight

line y = c, we can see that curve ff(c,/z) for/z >/. diverges.

2. Small parameter gt affects dynamic range of a cell, in other words if # >/z., state

voltage vxij(t will be unbounded and this implies in different unpredictable boundary effects

between neighbor cells. If/z E [0,/z.), state voltage vxij(t is bounded (from Theorem 2) and

periodic, therefore output vuij(t = vxij, 0 < vxij < 1 will have periodic behavior.
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3. Consider iterations (21) and fix t = r,/ =/o,/o E [0,/.). Then

x,,o), k = 1, 2,...

=

gives the dynamic rules of a cellular neural network. Therefore, we can use cellular neural

networks to obtain a dynamic transform of an initial state at any time t. In the special cases

when t---oo and state variable vij is a constant, the output vuij tends to either 0 or i, (see
equation (2)), which are limit points for a cellular neural network.

1 then each cell of a cellular neural network4. In [1] it is shown that if A(i,j;k,l)

must settle at a stable equilibrium point after the transient has decayed to zero. But in our

case we have tA(i, j; k,l) --, which implies oscillation phenomena [4].

4. STABILITY OF CELLULAR NEURAL NETWORKS

The physical idea of stability is closely related to a "bounded" response of the

dynamical system, when it is driven by an external input. A mathematical definition of

stability is based on the "boundedness" of the solutions of differential equation [5,6]. This

gives rise to many definitions of stability. For our cellular neural networks, in view of the

nearest neighborhood interactive property, we will define the stability for all system

equilibrium points by first determining the stable cell equilibrium states and then using the

neighbor interactive rules to find the corresponding system equilibrium points.

From the dynamical point of view, if the system is disturbed and is displaced slightly

from the equilibrium state, several situations are possible. If the trajectory of a cellular neural

network starting from initial state remains near equilibrium state, then cellular neural network

is said to be stable. If it tends to return to the equilibrium state, cellular neural network is

said to be asymptotically stable.

Let us consider equation (8)

C= dr-- = vziJ + pA(i, j; k, l)f(vzij) + I,

or in the form

dvzij
dt := gx(vzi t, t). (23)

By definition the equilibrium points for system (23), will be vij, for which gx(v*zij, t,l)= O.
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Therefore in 0 _< vxij(t) <_ 1, the equilibrium points of a typical cell of a cellular neural network

C(i, j) are defined as"

IRxv;ij(t) = 1"--’#A’R 1 <_ <_ M, 1 <_ j <_ N. (24)

Then we can define stable system equilibrium points of a cellular neural network, which

describe its global dynamic behavior.

Definition 2: Stable system equilibrium point of a cellular neural network is

I anda state vector with components vxij(t), 1 <_ <_ M, 1 <_ j <_ N, for which

limt...oovuij(t = 0 or 1.

From the above definition we can see that if we change the parameter, it will change

the equilibrium points. Since any stable system equilibrium point is a limit point of a set of

trajectories of the corresponding differential equation (8), such an attracting limit point is said

to have a basin of attraction [5]. Therefore parameter # can affect the stability of a cellular

neural network, in sense that different limit points and basins of attraction will be obtained for

different values of small parameter #. So, if we consider the initial state space as [0,1]Mx N

and the output space as {0,1)Mx N, then cellular neural network can be used to map an initial

state of a system into one of many distinct stable equilibrium points and this map, defined by

(22), will depend on #. In other words we have:

F," [0,11M x N__{0, 1}M x N,

which gives us the dynamic behavior of cellular neural networks.

5. SIMILARITY BETWEEN CELLULAR NEURAL

NETWORKS AND CELLULAR AUTOMATA

In Section 3 we reduced state equation (8) of a cellular neural network to the operator

equation (18). According to Theorem 2, state voltage vxij(t of cell C(i,j) can be found as a

boundary of the iterations:

vk = Lg(vk , t, #), k = 1, 2,...,

=

where v=vxij(t), l<_i<M, I<j<N. As stated in Remark 3, if we fix t-r and

# = o [0,.), we can obtain a dynamic transform of an initial state at any time t.
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Therefore the equation

vk = Lrg(Vk_l,t,l), k = 1,2,...

Vo = ,(0),

gives the dynamic rules of the state variables of a cellular neural network. In other words,

equation (26) gives the rules of interaction between cells in a cellular neural network. The

output equation (2) of a cellular neural network can be rewritten in the form:

O, vkij < 0
k k k

vuij = %ij, 0 <_ vi:i <_ 1

1, vii > 1

or

k k-1 k-1 Nr(i,j)}vuij = {vij ,vukt for all C(k,l) E (27)

As we said before the structure of the cellular neural networks is similar to that of cellular

automata. A typical equation of a two-dimensional cellular automaton is ([7])

aij(n + 1) = ff[akt(n for all C(k,1) Nr(i,j)]. (28)

Comparing equation (27) and equation (28) we can see a similarity between them. Therefore

we can use cellular automata theory to study dynamic behavior of the cellular neural networks.

It is well known [7], that cellular automata may be considered as discrete dynamical system. In

almost all cases, cellular automata evolution is irreversible. Trajectories in the configuration

space for cellular automata therefore merge with time, and after many time steps, trajectories

starting from almost all initial states become concentrated onto attractors. These attractors

typically contain only a very small fraction of possible states. There are four classes of cellular

automata, which characterize the attractors in cellular automaton evolution. The attractors in

classes 1, 2 and 3 are roughly analogous respectively to the limit points, limit cycles and

chaotic attractors found in continuous dynamical systems [8].
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