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ABSTRACT

In this paper several limit theorems are proved for the
fluctuations of the queue size during the initial busy period of a queuing
process with one server. These theorems are used to find the solutions of
various problems connected with the heights and widths of random
rooted trees.
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1. INTRODUCTION

There is an intrinsic relationship between queuing processes and rooted
trees. Most of the results of this paper are built on this relationship. We shall
study the stochastic behavior of the fluctuations of the queue size during the
initial busy period of a single-server queuing process and make use of the results
obtained for the solutions of various problems connected with the heights and
widths of random rooted trees. We consider a queuing process with one server.
It is supposed that initially, when the server starts working, the first customer is
already waiting for service. The server serves this customer and all the new
customers in order of arrival as long as they keep coming. Denote by 2,,1,,... the
number of arrivals during the first, second, ... service times respectively. If there
are no more customers to serve, the initial busy period ends. The initial busy

period consists of n services if and only if

i1+i2+"’+in=n—1 (1)
and
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httg+--+i,>rforl1<r<n-1. (2)

If the initial busy period consists of n services, let us associate the following
graph with the queuing process considered: The graph has vertex set (1,2,...,n)
and vertices r and s where 1 <r < s <n are joined by an edge if and only if the
sth customer arrives during the service time of the rth customer. Evidently, the
graph is a rooted tree with vertex set (1,2,...,n), vertex 1 being the root of the

tree. Different queuing processes yield different trees.

If in the queuing process, the number of arrivals during the successive ser-
vice times are random variables, which we shall denote by v,,v,,..., and if the
initial busy period consists of n services, then the corresponding graph is a ran-
dom rooted tree with n vertices. We shall assume that {v,} is a sequence of in-

dependent and identically distributed discrete random variables with distribution

Plv, = j}=p; 3)
for 7=0,1,2,.... We obtain various models of random rooted trees by choosing

the distribution {p;} in a suitable way.

In what follows we shall use some combinatorial theorems which are the
generalizations of the classical ballot theorem of Bertrand [4]. We shall express
the various limit distributions as the distributions of some functionals defined on
the Brownian excursion {p%(¢),0 <t<1}. After studying the stochastic be-
havior of the initial busy period for various queuing processes, we derive some

limit theorems for the heights and widths of random rooted trees.

The results of this paper are the extensions of Takacs [40], [42], [43], and
[44] and were presented at the International Conference on Random Mappings,

Partitions, and Permutations, Los Angeles, January 1992. See Takécs [45].

2. COMBINATORIAL THEOREMS

Let vy,vy,..,v,,... be independent discrete random variables which take

on nonnegative integers only. Write N, =v, +v,+---+ v, for r > 1 and N, =0.

Theorem 1: We have

P{N,<rfor1§r_<_nandNn=n—k}=,—’%P{N,,=n—k} (4)
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for0<k<nandn=1,2,...

Proof: This theorem is a generalization of the classical ballot theorem
of Bertrand [4]. For its proof, see Takéics [35], [36], and [39].
Define
o(k) = inf{rir— N, = kyr > 0} (5)

for k=0,1,2,.... If r— N, <k for all r >0, then p(k) = oo.
Theorem 2: We have

P{p(k) =n} =EP{n— N, =k} (6)
forn>1and k> 0.
Proof:  If k> n, then both sides of (6) are 0. If 0 <k <n, and n>1,
then by Theorem 1,
P{p(k)=n}=P{r—N,<kfor0<r<mnand N, =n—-k} =
P{N,—N,<n—-rfor0<r<nand N,=n—k}= (7
P{N,-<ifor1SignandNn=n—k}=%P{N,,=n—k}.

Theorem 3: Let f(ky,ky,...k,) be a symmetric function of the variables
ky, kg, .k, where k; =0,1,2,.... Then

f(klakZ‘)"'a kn)
k1+k2+"'+kn=k

k1+"'+kr<rfor15r5n

i D DI { ROUSN B ®)
ky+ky+r ek, =k
for0<k<n.
Proof: = We can prove (8) by mathematical induction on n if we take

into consideration that in (8) k, may take on the values 0,1,...,k where k <n.
As an alternative we can prove (8) by the repeated applications of Theorem 1.

We note that (8) still remains valid if we assume only that the function
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f(ky,kgy.. ., k,) is invariant under the n cyclic permutations of (k;, ky,. .., k,).

If, in particular,

F(Ry koo kn) = g(k1)g(ky). - -g(kn), 9)
then Theorem 3 is applicable and in (8)

_ (kg k) = Cocf . of o* in (zog(i)m‘)". (10)

ky+ky+ k=

3. THE BROWNIAN EXCURSION

The Brownian excursion process {n*(t),0 <t <1} is a Markov process for
which P{n*(0)=0}=P{n*(1)=0}=1and P{n*(t)>0}=1for 0<t<1. If
0<t<1, then n*(¢) has a density function f(¢,z). Obviously, f(¢,z) =0 for
z<0. f0<t<landz>0,then

2 2
Flt,z) = 2T == /@0 -1), 11
(,2) 2nt3(1 — )3 =

If 0 <t<wu<1, then the random variables n*(t) and % (u) have a joint density
function f(t,z;u,y). We have f(t,z;u,y)=0if 2<0or y<0. If0<t<u<l
and z >0, y > 0, then

f(t, z;u,y)

Tt () (A ) e () w

olz) = eV (13)

is the normal density function. For the properties of the Brownian excursion
process we refer to Lévy [24] and [25], Itd and McKean, [13], Chung [7] and
Takacs [40].

For the Brownian excursion {n*(t),0 <t < 1} we define

wt = ]n+(t)dt, (14)
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and 7*(a) for a > 0 as the local time at level , that is,

7+ (o) = lim { measure {t:a <n*(f) <a+¢0 <t <1). (15)
Let
P{ sup n*(t) <z} =F() (16)
P{w* <z} =W(2), (17)
and
P{r*(a) < g} = Gof2). (18)

We note that G,(0) = F(a) for a > 0.

If >0, then

(=,) R 5/2 [e.2] K 2 2
Fz)=> (1-4 ]'2:1:2)e‘212z2 = ._._.__‘/5;2 j2e"2" /(22*%) (19)
j=-—o j=0

and F(z) =0 for £ <0. In 1952, Gnedenko and Studnev [11] determined F'(z) in
the context of order statistics. See also Takéacs [34] and Kennedy [20]. The
moments

b= [wir) (20)

exist for r >0 and g =1, gy = \/7/2, py = 72[6, ps3 = 3/7((3)/V/B8, ps=7*/30.
Forr>1,

pr = 2(r = LG+ 1)((r)/27/* (21)
where
_ 1

(=3 22

is the Riemann zeta function.

If >0, then
W(a) = YO e~ k23U (1/6,4/3,v) (23)
k=1

where Uf(a, b, ) is the confluent hypergeometric function,
v = 2a/(272%), (24)

and z = —ai(k=1,2,...) are the zeros of the Airy function Ai(z) arranged so
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that 0 <@, <a; <...<ap<... If <0, then W(z) =0. The moments

M, = / 2 dW (z) (25)
0
exist for r>0 and My=1, M, = /F, M=%, M;=/Z M,=32L See L.
Takacs [40].
If >0, then
cin=i2f F ( ) S o H e+ 2a5)/K (26)
ij=1 k=

where Hy(z), H,(z),... are the Hermite polynomials defined by
'[ﬂ/2] 1)ign =2 o7
Holz) =n! jz—:oz'7 i(n —25)F (27)

If £ <0, then G (z) =0. The moments
pele) = [27dG () (28)
0

exist for r > 0. We have po(a) =1, py(a) = dae~2" and

o) = 42" — =), (29)
See Takécs [41] and [42).

From the results of this paper we can draw the conclusion that

P { sup 07“"(a) <2z} = F(z), (30)

P{ %/[T+(a)]2da < :1:} = W(z) (31)
and ’

P{ /ar+ (a)da < a:} = W(z). (32)

Accordingly, the random variables supy<;<17¥(t) and jsup,soT*(e)
have exactly the same distribution function F(z). For a direct proof of this
result see Jeulin [14], p. 264.

Moreover, the random variables
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]n*'(t)dt, %7[7+(a)]2da and 7m+(a)da (33)

also have the same distribution function W(z).

4. SINGLE-SERVER QUEUES

Let us suppose that in the time interval (0,00) customers arrive at
random at a counter and are served singly by one server in order of arrival. It is
assumed tat the server starts working at time ¢=0 and at that time ¢
(¢ =1,2,...) customers are already waiting for service. The initial ¢ customers are
numbered 1,2,...,: and the customers arriving subsequently are numbered
t+1,i+2,... in the order of their arrivals. Denote by v, the number of
customers arriving during the service time of the rth customer. This queuing
model will be characterized by the initial queue size i and the sequence of
random variables vy,v,,...,v,,.... Throughout this paper we use the abbreviation
N, =vi+vy+---+v,forr=1,2,...and Ny =0.

Denote by (, (r=1,2,...) the number of customers in the system

immediately after the rth service ends and write (; =:. We have

(=1 —1]T +v, (34)

for r > 1 where [z]* =z if 2 >0 and [z]* =0 if z <0.
Following Kendall [18], we say that the initial ¢ customers in the queue
form the Oth generation. The customers (if any) arriving during the total service

time of the initial ¢ customers form the first generation. Generally, the

customers (if any) arriving during the total service time of the customers in the

(r—1)th generation form the rth generation for r =1,2,.... Denote by {(r)
(r=1,2,...) the number of customers in the rth generation. If {(r) =0 for some
r>1,then é(r+1)=§{(r+2)=...=0. Define

6(2) = maz{r:{(r) > 0}. (35)

If ¢(r) > 0 for all r > 0, then 6(¢) = .

The time of the server consists of alternating busy periods and idle

periods. Denote by p(i) the number of customers served in the initial busy
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period in the case where the initial queue size is ¢ (i = 1,2,...). Obviously,

P{p(i)=n}=P{N,>r—ifori<r<nand N,=n—1} (36)
ifl<i<n.

In what follows we assume that v,,v,,...,v,,... is a sequence of indepen-

dent and identically distributed random variables for which

if 7=0,1,2,... where p; >0, and

Sopi=1. (38)

7=0
Define
d = ged{j:p; > 0}, (39)
and
a= Z ip;. (40)
ij=0

If a < 00, define 0 > 0 by
ot = 3 (- aPp; (1)
17=0
If v,,vg,..,v,,... are independent and identically distributed random
variables, then in (36) we can replace vy,v,,...,v, by v,,v, _1,...,V; respectively,
without changing the probability. Thus we obtain
P{p(t)=n}=P{N,<rfor1<r<nand N,=n—i} (42)
for 1 <:<n. By Theorem 2 we have
P{p(i) =n} = LP{N, =n—i} (43)

for 1 <:<n. Each possible value of p(:) has the form n =sd+: where
s=0,1,2,..., and actually, P{p(i)=n}>0 if n=sd+: and s is sufficiently
large.

In what follows, we are interested in finding the probabilities
F,(n]i)=P{(, <mfor 0 <r<nand p(i) = n} (44)
and

G,.(n]7) = P{¢(r) <m for 0 <r < 6(i) and p(:) = n} (45)



Limit Distributions for Queues and Random Rooted Trees 197

for 1 <i<nand 1 <m <n and their asymptotic behavior as n—oo and m—oo.

For each m > 1 we can determine (44) and (45) recursively for n = 1,2,...,
and 1 <:<n.

If we take into consideration that in the queuing process the number of
arrivals during the first service may be k = 0,1,2,..., then we obtain that
min(m,n — i)
F,(n]?)= 2 piFun—1]k+i-1) (46)
k=0
for 1 <i<nand1<i<m where F,(n|t)=0if¢>m ori>n, and
Fp(n|n)=P{N, =0} (47)
for1<n<m.

We note that if p; = qp’(j =0,1,2,...) where p>0, ¢>0 and p+q=1,
then F(n|1) = H,,(n|?) where

2n—1—-1 2n—1—1
Ha(nli)=p Z{(n 1+](m+2)) (n+j(m+2) )} (48)

forl<i<nand1<i:<m.

If po=gq, p,=p where p>0, ¢>0, p+¢=1 and p; =0 otherwise, then
necessarily n =i+2s (s =0,1,2,...) and F,(n|:) = H;(n| 1) where

n—1 n—1
Hulnli)=» ;{(s+j(m+2) )_(s—-l+j(m+2) )} “9)

for 1<i<n and 1 <i<m. Both (48) and (49) can be proved simply by using
the reflection principle for random walks. See Takécs [34] and [37]. We note
that

Hy(2n—1]1) = Hp(n]1) (50)
where the left-hand side is defined by (49) and the right-hand side by (48).

In the same way as (46) we obtain that

min(m,n — i)

Gulnli)= 3. PINi=RGu(n—il ) (51)

for1<i<nand1<:<m where G, (n—t|i)=01if i >m or ¢ >n, and
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Gu(n|n) = P{N, =0} (52)

if 1 <n<m. Starting from the initial conditions, we can determine G,,(n|m)
for n=1,2,... and 1 <:<n. Also for fixed m and n we can consider (51) as a
system of m linear equations for the determination of G,,(n|?) for i =1,2,...,m.
If the ("#1) roots A = X;(m) ( =1,2,...,("#1) ) of the equation

Det[’\isi,k - P{Nz = k}]i,k =1,2,..,m — 0 (53)
are distinct, then
PR
Gp(n|i) = 2_:0 a; j(m)[A;(m)]" (54)

for n =1,2,... where a; ;(m) does not depend on n. In (53) §; , =0 if i # k and
6",]0:1 ifZ=k.

5. THE PROCESS {¢,,r > 0}

We can express (44) in the following form:

F,n|i)=P{0<i+N,—r<mfor0<r<nandi+N,—-n=0} (55)
forl<i<nand1<i<m. In(85) N, —r=(v;—-1)+(v;—1)+...+ (v, —1) is

the rth partial sum of independent and identically distributed random variables
and p(t)=n if and only if r=n is the smallest r=1,2,... for which
t+ N,—r=0. Accordingly,

P{{, <mfor 0 <r <n|p(i)=n}
=P{i+ N, —r<mfor 1 <r<n|p(i) =n} (56)

provided that P{p(:)=n}>0. If n=sd+: (s=0,1,2,...) and s is sufficiently
large, then P{p(:)=n}>0. If we assume that in (40) a=1 and in (41)
0 < o < 00, then

NG

where {n*(¢),0 <t <1} is the Brownian excursion process. The meaning of (57)

is that if n—oo the stochastic process on the left-hand side, given the condition

,0$t$1|p(i)=n}=>{n+(t),0_<_t§1}, (57)
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p(?) = n, converges weakly to the Brownian excursion process. This is a con-
sequence of a theorem of Kaigh [15] and [16]. Previously, Belkin [2] and [3] con-
sidered a variant of (57) in which the condition is p(z) > n. See also Iglehart [12]
and Bolthausen [5].

Theorem 4. Ifa=1,0<0<o0 andn =sd+1(s=0,1,2,...), then
lim_P{maz((o e o) < 20/ | o) = 0} = F(2) (59)
where F(z) is defined by (16).

Proof: Since the supremum is a continuous functional on the Brownian

excursion process, (58) immediately follows from (57).

The limit theorem (57) suggests that if

2 ]er <09, (59)
1=0
for r > 2, then
) maz(Co,Cise- o Crlrey /-
g B ey Coly iy <) g, (60)

where p, is defined by (20). This statement is indeed true in the two particular
cases covered by (48) and (49). The proof for r =1 follows from the results of
de Bruijn, Knuth and Rice [8], and for r > 1, from the results of Kemp [17].

Theorem 5: Ifa=1,0<o0<oocandn=sd+1 (s=0,1,2,...), then

lim P{Cy+ Gt ..+ o < zon®? | (i) = n} = W(2) (61)
where W(z) is defined by (17).

Proof: Since the integral is a continuous functional on the Brownian

excursion process, (61) immediately follows from (57).

6. THE PROCESS {¢(r),r > 0}

Under the assumption that v,,v,,...,v,,... are independent and identically
distributed random variables, the sequence {{(r),r > 0} is a branching process.
We can imagine that in a population initially we have ¢ (z = 1,2,...) progenitors
and in each generation each individual reproduces, independently of the others,

and has probability p; (j=0,1,2,...) of giving rise to j descendants in the
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following generation. Then £(r) can be interpreted as the number of individuals
in the rth generation (r = 0,1,2,...). Obviously,

= Z é(r)a

(62)

that is, p(7) is the total number of individuals (total progeny) in the branching
process if £(0) =1i. Possibly, p(i) =

£(r) =

Evidently, {£(r),0 <r <6(:)} is a subsequence of {(,,0 <r < p(7)}, and
Coif s=¢80)+&(1)+...+&(r—1) for r > 1. This implies that if p(i)=n
then

T8 6™ d29% 0 SIS B e S (63)
and
n 0(s) )
2 6= L LTI Sn o a2 s S G- ()
If r>1, if a=1, if 0<o<oo, if (59) holds
(s=0,1,2,...), then for any € > 0 we have

and if n=sd+1
IE{(E(T)) |p(2)-—n}~—( \/_) A ‘/—)l < en®?mr-3

(65)
for sufficiently large m and n where p,(a) is defined by (28). We have pq(c)
(a) =4ae” 2a” and

=1,
prle) =27 e’ [ (142)7 20+ (a)da
for r > 2 and a > 0, and °

(66)
(=] r—1\z—J)""
gr-i(@)= 3 (1" il (67)
J=0 (T )
for r > 2 and z > 0. For the proof of the above results see Takéacs [42]. We note
that
lim S p, (122 (@)da = 2t-v/prtl 68
e ) 57 = /u o (68)
ifr>1.
Theorem 6: Ifa=1,0<0<ooandn=sd+1(s=0,1,2,...), then

lim P{{(r) < zoy/n for 0 <r < 0(3)| p(i) = n} = F(z) (69)
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where F(z) is defined by (16).
Proof: The finite dimensional distributions of the process
{Cne/(0v/n),0 <t <1 p(i) = n} (70)
converge to the corresponding finite dimensional distributions of the Brownian

excursion {n*(t),0 <t <1}. By a theorem of Kaigh [15], [16] we have also weak

convergence. A necessary and sufficient condition for weak convergence is

tim limgupP{maz 1¢;= G| >eoy/n|p(i) = n}=0 (1)
— J

~-k| <nh

for €e>0. Here n=sd+1(s=0,1,2,...) and h > 0. See L.I. Gikhman and A.V.
Skorohod [10] pp. 449-450.

By (63)
P{ mag_ (;—mag &(m)>eov/n|p(i) =n} )
< P{ mag €(m)>nh|p(z)-n}+P§rrw;c|< NGi= Gl > eay/n|p(é) =n}

for any e > 0 and h > 0. Furthermore, if (59) holds, by (65)
P(_ mg m) > k| (i) =) < 3 Plelm) > nb o) =)

<

e BT | o) =0} ~ ;1—}7;(5’—{—’5)'2 WP~ 1)

m2>0

lV

1 oV, 2yn  T(3H)e !
=+ ) (Z pr(e@)Aa)— 2(r—1)/22hrn(r—~l)/2

as n—oo. Here we wused the substitution o =mo/(2/n). Then

Aa = ocAm/(2y/n) and Am = 1.
If r =2, then by (73)

lim, P{ maz €(m) > nh | p(i) = n} = 0 (74)
for h > 0. By (71) and (74)
lim P{ maz_ (;—mag Lm) > eoy/n|p(t)=n} =0 (75)

for any € > 0. Consequently, by (75) and (58)
lim P{ maz {(m)<zoy/n|p(i)=n}
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=lim P{ maz_ (;<zoy/n|p(i)=n}=F(). (76)
This proves (69). o
Theorem 7: Ifa=1,0<o<oocandn=sd+1(s=0,1,2,...), then
m P{ Y €I < zon?| o) = n} = W(z) (77)
0<r<6()
where W (z) is defined by (17).
Proof:  If we use (64) and (71), then by (16) we obtain (77).
Theorem 8:If a=1, if 0<o<oo, if (59) holds for r>2 and if
n=sd+1(s=0,1,2,...), then
i P{ Y rer) < zon®?| p(i) = n} = W(z) (78)
0<r<6()
where W(z) is defined by (17).
Proof:  For the proof of (78) see Takacs [42].

Finally, we note that it is plausible that

{2¢([2av/n/a])/(oy/n), a2 0] p(i) = n}=>{r ¥ (),a 2 0}, (79)

that is, the stochastic process on the left-hand side converges weakly to the

stochastic process on the right-hand side if n—oo.

7. RANDOM ROOTED TREES

Let us consider the queuing process introduced in Section 4. Let us
suppose that the initial queue size is i = 1, and denote by p = p(1) the number of
customers served in the initial busy period. If p =n, we associate a random
graph with the queuing process. The graph has vertex set (1,2,...,n). Two
vertices r and s, where 1 <r<s<n, are joined by an edge if and only if
customer s arrives during the service time of customer r. The random graph is
evidently a tree. We designate vertex 1 as the root of the tree. If in the queuing

process v, =i, for r = 1,2,...,n, then necessarily

hti+...+i,=n-1 (80)
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and
h+i+...+.>rforl<r<n-1. (81)
Denote by S, the set of nonnegative integers (3,,%,,...,1,) satisfying the

conditions (80) and (81). With every sequence (3,,1,,...1,) in S, we associate a
rooted tree. In the tree (i,1y,..,%,) two vertices r and s (1<r<s<n) are
joined by an edge if and only if

o+ttt _1 <5<+ +.. .+, (82)

where ig=1. In the tree (iy,1,,..,1,), the root has degree i, and vertex r
(1 < r < n) has degree i, + 1.

By Theorem 1 the number of trees in S, is

2n—2
|Sul =15 > 1=}{ 1)=cn-1 (83)

iy tig+... i =n-1 n-—
where Cy=C, =1,C, =2, C3 =75, C, = 14, are the Catalan numbers.

Let {p;} be a probability distribution on the set of nonnegative integers,
that is, p; > 0 for j=0,1,2,... and

3=0
Let
d = ged{j:p,; > 0}. (85)

If S, is not empty, that is, if n =sd +1 and s is a sufficiently large positive
integer, then let us choose a tree at random in S, assuming that the probability

of a tree represented by (3,,%,...,4,) is

Plissis.-nin) = 07 P Py i, (86)
where

a, = Z Pi\Piy--Pi = 711 E;

Pi Piy-Pi - (87)
(il,i2,....in)esn iptig+... -1

ln—-n

If a, =0, then (86) should be interpreted as 0. If P{p =n} >0, we have

P{Vl = 2.1,1/2 - iz,. ..,Vn = in I p = n} = p(i].’iZ""’in)‘ (88)
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8. EXAMPLES FOR RANDOM ROOTED TREES

Example 1:In the interval (0,00), customers arrive at a counter in
accordance with a Poisson process of density A and the service times are

independent random variables each having the same exponential distribution

function
1—e # if >0,
H(zx) = - 89
(=) { 0 ifz<0. (89)
In this case
pj=qp’ (90)
for j =0,1,2,... where p = A/(A + p),¢ = u/(A + p), and
P(iyy gy - min) = ‘C'l__l for (iy, i3, - min) € S (91)

In this example, the vertices of the random tree are labeled, but we can
ignore the labels, and interpret S, as the set of oriented (plane) rooted trees with
n unlabeled vertices. If we choose a tree at random in S,,, assuming that all the

| S,.| =C, _, trees are equally probable, then

Plinyizs--win) =5 1“1 for (31,0, in) € Spy (92)

which is in agreement with (91).

Example 2: Let R be a fixed set of nonnegative integers which always
contains 0. Let S, (R) be the subset of S, which contains all the tress
(%1,%95-+1,) in S, for which i, € R for r =1,2,...,n, that is, if a tree belongs to
S.(R), then the degree of the root € R and if j is the degree of any other vertex
of the tree, then j —1 € R. Then by Theorem 3, the number of trees in S, (R) is

1SR = % 1=1Coeff. of "~ 1in (3 2°)" (93)
(igrigre - 8y) € S, (R) i€ER
Let
p;=p/ (Z;%p‘) (94)
1€
for j€ Rand p; =0 and j ¢ R. In this example

p(il, i27 ) zn) = ]T%}%T if (ih i2’ L) Zm) € Sn(R) (95)

This example can be interpreted in the following way. We consider
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Sa.(R), the set of oriented (plane) rooted trees with n unlabeled vertices
whenever the degrees of vertices are subject to the constraints imposed by R.
We choose a tree at random in S, (R), assuming that all the possible choices are
equally probable.

Example 3: Customers arrive according to a Poisson process of density A
and the service times have unit lengths. In this case
AN .
p;=¢e ’\%!— for j=0,1,..., (96)

and

n! 1
21!22!. o .‘ln! nﬂ -1

p(il’ 7:2, ooy iﬂ) = fOI‘ (il‘) 2.2, vony in) E Sn- (97)

In this case, the procedure is equivalent to the following. We choose a
tree at random in the set S}, of rooted trees with n labeled vertices, assuming
that all the possible choices are equally probable. By a formula of Cayley [6],

n-1

the number of such trees is n" ~!. By Theorem 1, the number of trees in S}, is

1S2l =% =1 ) M =nrl (98)

Al | Al |
S hlgh e ! e L L

s e olpe

For the vertices of a tree (y,1,,...1,) in S, can be labeled in

nl (99)

IR
different ways. It seems (98) is the simplest proof for Cayley’s formula.

Example 4: Let R be again a fixed set of nonnegative integers which
always contains 0. Let S;(R) be the subset of S}, which contains all the trees
(21,%95--2,) in S}, for which i, € R for r =1,2,...,n, that is, if a tree belongs to
S7(R), then the degree of the root € R and if j is the degree of any other vertex
of the tree, then j—1 € R. By Theorem 3, the number of trees in S}(R) is

!
n g E‘n:) c Sn(mzl!z2!. !

= (n—1)! Coeff. of 2"~ in (i;j:{)". (100)
Let

p; =N/ ;A‘/i!) (101)
ie
for j€ R and p; =0 for j ¢ R. In this case
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P(i1yigse e nin) = 2,'32? A ] S*%R) l if (44,40, - 25) € Su(R). (102)

n

This example can be interpreted in the following way. We consider
Sn(R), the set of rooted trees with n labeled vertices whenever the degrees of the
vertices are subject to the constraints imposed by the set R. We choose a tree

at random in S}(R), assuming that all the possible choices are equally probable.

9. PROBLEMS

For a tree chosen at random in S, define 7,(m) as the number of vertices
at distance m from the root. The distance of a vertex from the root is the
number of edges in the path from the vertex to the root. Furthermore, define

Ln = maz{m:7,(m) > 0} (103)
as the height of the tree,
8, = maz{r,(m):m > 0} (104)
as the width of the tree, and
Th = Z mT,(m) (105)
as the total height of the tree. mee

Our aim is to find the asymptotic distributions of the random variables

Tny My 0, and 7,(m) if m—oo and n—oo.

Let {p;} be a probability distribution on the set of nonnegative integers.

Define the generating function
f)= 3o, (106)
;=0

for |z| <1. We assume that f(1)=1, f/(1)=1, f"(1) = o® where 0 <o < o0
and f)(1) < oo for r > 2. Let

d = ged{j:p; > 0}. (107)
Let us choose a tree at random in S, assuming that the probability of a

tree represented by (zy,%,,...1,) is

P(t1y%95. . 02n) = a7 IP;IP.'Z- -Pi (108)
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where a, is given by (87) if S, is not the empty set. The set S, is not empty if
n =sd +1 and s is a sufficiently large positive integer. In finding the asymptotic
distribution of 7,(m) we assume that

m = [2ay/n/o] (109)
where 0 < a < oo.

Let us consider the branching process {£(r),r > 0} defined in Section 4.
The total number of individuals (total progeny) in the branching process is

p= Z;of(r), (110)
and the time of extinction is -
p = sup{r:{(r) > 0}. (111)

If extinction never happens, then y = co. Furthermore, let

r=Yore(r), (112)

r2>0
that is, 7 is the total number of ancestors of all the individuals in the branching

process. Possibly 7 = oo.

For the random trees we have

P{r,(m) =k} = P{¢§(m) = k| p=n)}, (113)
P{u,=k} = P{u=k|p=n), (114)
P{r,=k}=P{r=k|p=n) (115)

and
P{5, = k} = Plmag £() = k| p =n}. (116)

In proving various limit theorems for the random trees considered we
assume that a = f'(1) = 1, that is, {{(r),r > 0} is a critical branching process. If
a =1, that is, f(1)=1, then P{p <oo} =1. If we want to apply these limit
theorems to the four examples considered in Section 8, we should choose the

parameters p and ) in such a way that the condition a =1 is satisfied.
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10. THE LIMIT DISTRIBUTION OF 7,

The random variable 7, is the total height of a tree chosen at random in
S, The expectation of 7, has been determined by J. Riordan and N.J.A. Sloan
[32] for random rooted trees with n labeled vertices, and Ju. M. Voloshin [46] for

random rooted trees with n unlabeled vertices. See also A. Meir and J.W. Moon
[27].

We can determine the distribution of 7, by (115). Let us introduce the

generating function
U(zw) = 3° P{p = n}E{z " (117)
n=1

defined for |2| <1 and |w| <1. If we take into consideration that in the
queuing process the number of arrivals during the first service time may be
7=0,1,2,..., we obtain that

U(z,w) = wf(¥(z, zw)). (118)
For a given f(z) we can determine the distribution and the moments of 7, by
(118). I a=f1)=1, f1)=0*, fl)<oco for r>2, and
n=sd+1(s=0,1,2,...), then the limit
. o, \
exists for r > 0 and
]
M, =K, 4y/mr! - (120)
I((3r—1)/2)2"
where Kg= —1/2,K, =1/8 and
3r—4 N
K, = T4 K, 1+ ZIKJ-K,_J- (121)
J=
for r =2,3,.... Hence
6r/ r \/2
M, ~ 5 .1_22) (122)

as r—oo and we can conclude that there exists a distribution function W(z) of a

positive random variable such that

. oT,
lim P { Vi

in every continuity point of W(z). The distribution function W(z) is uniquely

< :c} = W(z) (123)



Limit Distributions for Queues and Random Rooted Trees 209

determined by the moments
/ 2" dW(z) = M, (124)
0

for r =0,1,2,.... By (124) we obtain (23). For details see L. Takacs [40], [42].
In the particular case where p; = (1/2)"*! for j=0,1,2,..., that is if we

consider random rooted trees with n unlabeled vertices, we can write that

2n
Tar1=5d 0" +n) (125)

1=1
where {ng",n:",...,n5%.} is a Bernoulli excursion, that is, a random walk in which

ngt =ns =0and nt >0 for 0 <:<2n. Since
{nifan/ VP, 0 <t <1}={n*(1),0 <t <1}, (126)
if n—oo, that is, the stochastic process on the left-hand side converges weakly to
the Brownian excursion, we can conclude from (123) and (124) that if w™ is
defined by (14), we have
Plot <2} =W(2) (127)
and
B{(w* )} =M, (128)
for r =0,1,2,.... See also Louchard [26].

11. THE LIMIT DISTRIBUTION OF 7, (m)

By (113) we can determine the distribution of 7,(m). Let us introduce

the generating function

$(z,w) = 3 Plp = n}E{zn M} (129)
n=1
for |z| <1 and |w| £1. If we take into consideration that in the queuing
process the number of customers arriving during the first service time may be
7=0,1,2,..., we obtain that
q)m(za w) = wf(Qm—l(z’ w)) (130)

for m =1,2,... where
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By(z,w) =25 LP{N, =n—1}. (131)

n=1
By using (130) we can prove that if a = f/(1) =1, f(1) = 02, f"(1) <
for r >2,and n =sd +1(s =0,1,2,...), then

. pf2ma(2ay/n/a]) | _
lrgLnooP{ o/ < :c} = G(z) (132)

for £ >0 where G,(z) is the distribution function of a nonnegative random

variable and is given by (26). Also
'zme{(zT"([i%E/ ”D)r} = p(c) (133)

exists for r > 0 and g, () is defined by (28) and is given by (66) for r > 2.

The above results imply that if 7% () is the local time at level a >0 of
the Brownian excursion {n%(¢),0 <t <1}, then

P{r*(a)<z}=G,(z) (134)

and

E{[r* ()]} = p(a) (135)
forr=0,1,2,....

For random rooted trees with n labeled vertices the asymptotic
distribution of 7,(m) was found by Stepanov [33]. See also Takacs [41]. In the
context of branching processes and in a different form the limit theorem (132)

was found by Kennedy [19]. By his results we can conclude that

Go(z) — G,(0) = / / e~ a2 - 4"2”))(1 —40%) "3y f(u,v)dudv  (136)

0<u<z/(2a)
0<v<1(da?)

for £ > 0 and
/

for Re(s) > 0 and Re(w) > 0.

sin w sinh(y/w/2 i
e U W f(y, v)dudv = }:/(%g}i—)—i_{ \/%—;/_) (137)

o~28

If we consider the branching process {¢(r),r > 0} and use the notation

Y(r) =§0) + (1) +... +£(r) (138)
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for r > 0, then by Theorem 1 we obtain that
P{{(r) = k,y(r) = ¢,p = n} = P{{(r) > 0}.
P{E(r) = ko(r) = 2] €0) > 0=k 2PV, =n—1)

if k21 and n>¢>r+k. Thus the problem of finding the asymptotic
distribution of 7,(m) can be reduced to the problem of finding the asymptotic

(139)

behavior of

P{{(r) = k,(r) = €| {(r) > 0} (140)
as r—oo. Kennedy [19] found that
lim_Efe~207€0)+wr /@0 | () > 0)

g1

_ | sinh(v2w) + sinh(y/w/2 (141)
Vaw Vw/2

for Re(s) >0 and Re(w) > 0. In the particular case where s = 0, this result was

proved by Pakes [29] and [30]. Kennedy [19] did not provide proof of (141). He

merely indicated that it can be proved by the same argument as was used by

Pakes in the particular case s = 0.

If in (139), k = [uaoy/n), & =[4va’n] and r =[2ay/n/o] where u >0 and
0 < 4a®v < 1, and n—oo, then by (141), we can prove (136).

12. THE LIMIT DISTRIBUTION OF g,

Since

P{u, <m} = P{r,(m) =0} (142)
for n > 1 and m > 1, the distribution of p, is determined by the distribution of
Ta(m) for m > 0.

In 1978, Kolchin [22] proved that if a= f'(1)=1, f’(1)=0? and
n=sd+1(s=0,1,2,...), then

lim P{z\/-<a:} F(z) (143)
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where F(z) is given by (19). Kolchin’s proof is based on Theorem 1 in this
paper. See also Kolchin [21].

In the particular case where p; = (1/2)*+! for j=0,1,2,..., Konovaltsev
and Lipatov [23] proved (143). See also de Bruijn, Knuth and Rice [8] and
Takécs [34] and [38]. In the case where p;=e~'/j! for j=0,1,2,... Rényi and
Szekeres [31] proved (143). See also Stepanov [33].

By (143) we expect that if (59) holds, then

(144)
for r > 0 where p, is given by (21). Th1s is indeed proved in some particular
cases. If p;=(1/2)*! for j=0,1,2,..., then de Bruijn, Knuth and Rice (8]
proved (144) for r =1 and Kemp [17] for r > 1. In some other particular cases
Flajolet and Odlyzko [9] proved (144) for r > 1. For p;=e~!/j! (j > 0) formula
(144) has not been proved yet. Rényi and Szekeres [31] state that (144) is true

for r = 1, but provide no proof.

13. THE LIMIT DISTRIBUTION OF §,,

If in the queuing process p = n, then

6,, = maz{{(r),r > 0}, (145)
and obviously,
8n<maz_ (<26, (146)
If p = n, then by (75)
#( mag_ (= 6,)—0 (147)

in probability as n—oo. Thus if p = n, the random variables §,, and maz, < ; < n(;
have the same asymptotic distribution. Accordingly, if a = f/(1) =1, f*(1) =o?
where 0 <o <occandn=sd+1(s= 0,1,2,...), then

i, Plyt2s <) = o) 049
where F(z) is given by (19). Aldous [1], p. 47 has conjectured that (148) is true.

By (148) it is plausible that if (59) holds, then
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lim E{G 22} = b, (149)

where u, is given by (21). By (60) and (146) this is true in two particular cases,
namely when p;=(1/2)*! for j=0,1,2,.. and when p, = p, =1/2. Odlyzko
and Wilf [28] proved that if p; =e~!/j! for j >0, then E{§,} = O(y/n log n) as

n—o0.

By (79) and (148) we can draw the conclusion that
P{sup 7%(a)< 2z} = F(2) (150)
a20

where 71 (a) is defined by (15) and F(z) by (19). For a direct proof of this
result see Jeulin [14, p. 264].
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