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ABSTRACT

In this paper several limit theorems are proved for the
fluctuations of the queue size during the initial busy period of a queuing
process with one server. These theorems are used to find the solutions of
various problems connected with the heights and widths of random
rooted trees.
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1. INTKODUCTION

There is an intrinsic relationship between queuing processes and rooted

trees. Most of the results of this paper are built on this relationship. We shall

study the stochastic behavior of the fluctuations of the queue size during the

initial busy period of a single-server queuing process and mke use of the results

obtained for the solutions of various problems connected with the heights and

widths of random rooted trees. We consider a queuing process with one server.

It is supposed that initiMly, when the server starts working, the first customer is

already waiting for service. The server serves this customer and all the new

customers in order of arrival as long as they keep coming. Denote by i, i,.., the

number of arrivals during the first, second,.., service times respectively, if there

are no more customers to serve, the initial busy period ends. The initial busy

period consists of n services if and only if

i + i +... + i. = n- 1 (1)

and
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i +i +--.+i_> r for 1 < r < n- 1. (2)

If the initiM busy period consists of n services, let us associate the following
graph with the queuing process considered: The graph has vertex set (1,2,...,n)
and vertices r and s where 1 _< r < s <_ n are joined by an edge if and only if the

sth customer arrives during the service time of the rth customer. Evidently, the

graph is a rooted tree with vertex set (1,2,...,n), vertex 1 being the root of the

tree. Different queuing processes yield different trees.

If in the queuing process, the number of arrivals during the successive ser-

vice times are random variables, which we shall denote by 1,:,..., and if the
initial busy period consists of n services, then the corresponding graph is a ran-

dom rooted tree with n vertices. We shall assume that {} is a sequence of in-

dependent and identically distributed discrete random variables with distribution

P{ = j) = p1 (3)

for j = 0,1,2, We obtain various models of random rooted trees by choosing
the distribution {pj} in a suitable way.

In what follows we shall use some combinatorial theorems which axe the

generalizations of the classical ballot theorem of Bertrand [4]. We shall express

the various limit distributions as the distributions of some functionals defined on

the Brownian excursion {r/+ (t), 0 _< t < 1}. After studying the stochastic be-

havior of the initial busy period for various queuing processes, we derive some

limit theorems for the heights and widths of random rooted trees.

The results of this paper are the extensions of Takcs [40], [42], [43], and

[44] and were presented at the International Conference on Random Mappings,

Partitions, and Permutatior, Los Angeles, January 1992. See Takcs [45].

2. COMBINATORIAL THEOIMS

Let l/1, V2,...,Vr,... be independent discrete random variables which take

on nonnegative integers only. Write N = vI + v2 +--. + v, for r > 1 and No = 0.

Theorem 1: We have

P{N < r for 1 < r <_ n and N, = n k} = P{N, n- k} (4)
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for O < k < n and n = l,2,

Proof: This theorem is a generalization of the classical ballot theorem

of Bertrand [4]. For its proof, see Wakcs [35], [36], and [39].

Define

p(k) = inf{r:r-N = k, r > 0}

for k = 0,1,2, If r- N < k for all r >_ 0, then p(k) = o.

Theorem 2: We have

P{p(k) n} = P{n- N, = k} (6)

for n >_ l and k >_ O.

Proof: If k > n, then both sides of (6) are 0.

then by Theorem 1,
If0<k<n, andn>l,

P{p(k) = n} =P{r-N < k for 0 _< r < n and N, = n- k} =

P{N, N < n r for 0 _< r < n and N, = n k} = (7)

P{N, < i for 1 _< i _< n and N, = n- k} = P{N, = n- k}.

Theorem 3: Let f(k,k2,...,kn) be a symmetric function of the variables

k, k, ., k,, where k O, 1, 2, Then

k1 "l’k2"l’""t’kn=k
kl -I-" "-I- kr < r for l<r_<n

n-k= Z: (s)
k1 "t’k2"l-’’"l’kn=k

forO<_k<_n.

Proof: We can prove (8) by mathematical induction on n if we take

into consideration that in (8) k, may take on the values 0,1,...,k where k _< n.

As an algernagive we can prove (8) by ghe repeated applications of Theorem 1.

We note thag (8) sgill remains valid if we assume only that the function
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f(k,kz,...,k,) is invariang under the n cyclic permutations of (ki, kz,...,k,).

If, in particular,

f(kl, k2,..., ’m) = g(kl)g(k2)...g(k.),

then Theorem 3 is applicable and in (8)

f(k, k=,..., k,) = Coeyf. of z in ( g(i)xi)".
k1 +k2+’"+knmk

(9)

(I0)

3. THE BROWNIAN EXCUIION

The Brownian excursion process {r/+ (t), 0 < t < 1} is a Markov process for

which P{r/+ (0) = 0} P{r/+ (1) = 0} = 1 and P{r/+ (t) > 0} = 1 for 0 < t < 1. If
0 _< t < 1, then r/+ (t) has a density function f(t,x). Obviously, f(t,x)= 0 for

x_<0. If0<t<landx>0, then

-x2/(2t(1-t)) (ii)

If 0 < t < u < 1, then the random variables + (t)and / + (u) have a joint density
function f(t, x; u, y). We hve f(t, x; u, y) = 0 if x < 0 or y _< O. If 0 < t < u < 1

and z > 0, y > 0, then

f(t,z;u,v)

(12)

where

(x)= 1 -/ (13)

is the normal density function. For the properties of the Brownian excursion

process we refer to Lvy [241 and [251, It8 and McKean, [131, Chung [71 and
TakAcs [40].

For the Brownian excursion {r/+ (t), 0 _< t _< I} we define
1

w + fr/
0

+(t)dt, (14)
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and r + (a) for a >_ 0 as the local time a level a, that is,

r + (c) = IzmolE measure {t: a _< } +(t) < +,,o_< t <_ }. (5)

Let

P{ sup l + (t) < z) = F(z),
Otl

P{+ < } = w(),

(6)

(71

P{r + (c) _< x} = G,(x).

We note that G(O)= F(a) for a > O.

if z > O, then

(18)

(19)

and F(z) 0 for z _< 0. Ia 1952, Gedenko and Studev [1] determined F’(x) in

the context of order statistics. See also Wakcs [34] and Kennedy [20]. The

moments

g,. f x"dF(x)
0

(20)

r >_ 0 &lld 0 = 1, 1--F-z-._V/7i’/2’ #2-" 72/6, ]23 = 3(3)/, 4exist for 4/30.
For r > 1,

where

is the Riemann zeta function.

, = e(- )r( + )()/e/ (21)

i (22)() =
n 1

l/’r

If x > 0, then

W(x) = e-"t’Vk/3V(1/6 4/3, Vk) (23)
k=l

where U(a, b, x) is the confluent hypergeometric function,

vt,- 2aa/(27x2), (24)

and z- --ak(k = 1,2,...) are the zeros of the Airy function Ai(z) arranged so
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that 0 < a < a <... < a < If x < 0, then W(x) = O. The moments

M,. = ix"dW(x)
0

exist for r > 0 and M0 = 1, M1 = v/, M = , Ma =,,. M 221
10---o

Takcs [40].

If x >_ 0, then

G,(x) = 1 2 e
.i= k

-(’ + ’)/( x)H. + :(x + 2aj)lk!

where Ho(x),H(x),... are the Hermite polynomials defined by

[l]c Jxn

H,(x) = n’’ k., ""i= o2’j!(n 2j)!"

If x < 0, then G,(x) = O. The moments

#,.(a) = f x"da,(z)
0

exist for r >_ O. We have/Zo(a) 1, #(a) = 4ae and

#(a) 4(e-2

See Takcs [41] and [42].

From the results of this paper we can draw the conclusion that

P{ sup T
a>O

+ =

(25)

(26)

(27)

(28)

(29)

(30)

0

(31)

and

0

(32)

Accordingly, the random variables supo <t < r/+ (t) and 1/2suPo, > o’r + (a)
have exactly the same distribution function F(x). For a direct proof of this

result see Jeulin [14], p. 264.

Moreover, the random variables



Limit Distributions for Queues and Random Rooted Trees

1 oo

0 0 0

also have the same distribution function W(z).

195

(33)

4. SINGLE-SERVER QUEUES

Let us suppose that in the time interval (0,o) customers arrive at

random at a counter and are served singly by one server in order of arrival. It is

assumed tat the server starts working at time t =0 and at that time i

(i = 1, 2,...) customers are already waiting for service. The initial i customers are

numbered 1,2,...,i and the customers arriving subsequently are numbered
i + 1,i + 2,... in the order of their arrivals. Denote by the number of

customers arriving during the service time of the rth customer. This queuing
model will be characterized by the initial queue size i and the sequence of

random variables v,,...,v, Throughout this paper we use the abbreviation

N = + vz +---+ v for r = 1, 2,... and No = 0.

Denote by ’ (r= 1,2,...) the number of customers

immediately after the rth service ends and write 0 = i. We have

in the system

( = [(_ 1] + + v (34)

for r >_ l where [x] + =xifx>_Oand[x] + =Oifx<O.

Following Kendall [18], we say that the initial i customers in the queue

form the 0th generation. The customers (if any) arriving during the total service

gime of ghe initial i customers form the firs generation. Generally, he

customers (if any) arriving during the total service gime of the customers in the

(r-1)gh generation form the rth generagion for r- 1,2, Denote by

(r = 1,2,...) the number of cusgomers in he rh generation. If (r)= 0 for some

,- >_ + + -...= 0.

O(i) = max{r: (r) > 0}. (35)

If (r) > 0 for >_ 0, then O(i)

The time of the server consists of alternating busy periods and idle

periods. Denote by p(i) the number of customers served in the initial busy
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period in the case where the initial queue size is i (i = 1, 2,...). Obviously,

ifl<i<n.
P{p(i) = n) = P{N > r- i for i _< r < n and N,, = n -i} (36)

In what follows we assume that vx, v2,...,v,.,.., is a sequence of indepen-
dent and identically distributed random variables for which

P{u = j) = P.i (37)

if j = O, 1, 2,... where p1 >_ O, and

Define

d = gcd{j:p > 0}, (39)

and

if a < o, define a > 0 by

a = JP2 (40)

a2= (j-a)pj. (41)
j=O

If u,u,...,u,.., axe independeng and idengically disgribuged random

variables, ghen in (a6) we can replace u, u,..., u, by u,, u, ,..., u respectively,
wighoug changing ghe probability. Thus we obtain

P(p(i) n} = P{N < r for 1 < r _< n and N, = n- i} (42)

for I _< i _< n. By Theorem 2 we have

P{p(i) = n} P{N, = n- i} (43)

for l_<i_<n. Each possible value of p(i) has the form

s = 0,1, 2,..., and actually, P{p(i)= n} > 0 if n = sd +i and

large.

n sd + i where

s is sufficiently

In what follows, we are interested in finding the probabilities

F,(n i)= P{ <. m for 0 < r < n and p(i) = n} (44)

C( 10 = P{(r) < m for 0 <_ r <_ 8(i) and p(i)= n} (45)
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for 1 < i _< n and 1 < m < n and their asymptotic behavior as n--+oo and m--,oo.

For each m >_ 1 we can determine (44) and (45) recursively for n = 1, 2,...,
and 1 <i<n.

If we take into consideration that in the queuing process the number of

arrivals during the first service may be k = O, 1, 2,..., rhea we obtain that

rain(m, n i)
F .(n Ii) = PkF a(n-- 11 + i-- (46)

k=O

for 1 < i < n and 1 < i < m where F.,(nli) = 0 if i > m or i > n, and

F,(n In) = P{N, = 0} (47)

for 1 <n<m.

We note that if p1 = qpi(j = O, 1, 2,...) where p > O, q > 0 and p + q = 1,

then F(n i) H,(n Ii) where

H.(nli)=p,,_iq,,{( 2n-i-1 ) ( 2n-i-1)}_ (48)
n- 1 + j(m + 2) n + j(m + 2)

for I <i <n and I <i<m.

If Po- q, P2 = P where p > 0, q > 0, p + q = 1 and pj- 0 otherwise, then

necessarily n = i+ 28 (s = O, 1,2,...) and F,.(n i) = H(n Ii) where

H(nli)=p.q,,_.{( n-1 ) (_ n-1 )} (49)
s + j(m + 2) s- 1 + j(m + 2)

for 1 < i < n and 1 < i _< m. Both (48) and (49) can be proved simply by using

the reflection principle for random walks. See Wakcs [34] and [37]. We note

that

H(2n -il i) = H,,,(n Ii)

where the left-hand side is defined by (49) and the right-hand side by (48).

In the same way as (46) we obtain that

rain(m, n i)
G.(n Ii) = P{N = k}G(n- i k)

k=l

for 1 _< i < n and 1 _< i _< m where G,.(n- i i) = 0 if i > m or i > n, and

(50)

(51)
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a( I,) = P{g. = o} (52)

if 1 _< n _< m. Sarting from the initial conditions, we can determine G.,(nlm)
for n = 1,2,... and 1 _< i _< n. Also for fixed m ad n we can consider (151) as a

sysgem of m linear equations for the degermination of G(nli) for i = 1,2,..., m.
If ghe (+ )roogs t = ti(m) (j = 1,2,...,(’ + ) ) of he equagion

are distinct, then

(a+ )
a,,(n Ii)= ai, j(m)[Ai(m)]"

j=0

=0 (3)

(54)

for n = 1,2,... where ai, j(m) does not depend on n.

i, 1 ifi=k.

In (53) 8i, k = 0 if i # k and

5. THE PrtOCESS {(,r > 0}

We can express (44) in the following form:

F,,(n i) = P{0 < i + N- r < rn for 0 _< r _< n and i + Nn n = 0} (55)

for l<i<nand l<i<m. In (55) Nr-r-(t/1-1)-b(t2-1)+...+(b,r-1) is

the rth partial sum of independent and identically distributed random variables

and p(i)=n if and only if r=n is the smallest r= 1,2,... for which

i + N,- r = 0. Accordingly,

P{ff < m for 0 <_ r <_ n p(i) n}

= P{i + N- r <_ m for 1 <_ r <_ n p(i) = n} (56)

provided that P{p(i) = n} > 0. If n = sd +i (s = 0,1,2,...) and s is sufficiently

large, then P{p(i)=n}>O. If we assume that in (40) a=l and in (41)
0 < a < o, then

(rv- ,--, 0 _< t _< 1 p(i) n {r + (t), 0 _< t < 1}, (57)

where {r/+ (t), 0 _< t < 1} is the Brownian excursion process. The meaning of (57)
is that if nc the stochastic process on the left-hand side, given the condition



Limit Distributions for Queues and Random Rooted Trees 199

p(i) = n, converges weakly to the Brownian excursion process. This is a con-

sequence of a heorem of Kaigh [15] and [16]. Previously, Belkin [2] and [3] con-

sidered a varian of (57) in which he condition is p(i)> n. See also Iglehar [12]
and Bolthausen [5].

Theorem 4. If a = 1, 0 < a < oo and n = sd + l(s = 0,1, 2,...), then

liooP{max(o, ,.. ., n) < xa p(i) = n} = F(x)

where f(x) is defined by (16).

(58)

Proof: Since the supremum is a continuous functional on the Brownian

excursion process, (58) immediately follows from (57).

The limit theorem (57) suggests that if

for r > 2, then

jpi < o, (59)

linmooE{(max(’av/’’" ""’ "))r p(i) = n} = #r (60)

where #,. is defined by (20). This statement is indeed true in the two particular

cases covered by (4:8) and (4:9). The proof for r- 1 follows from ghe resulgs of

de Bruijn, Knugh and Rice [81, and for r > 1, from ghe results of Kemp [171.

Theorem 5: /f a = 1, 0 < a < o and n = sd + 1 (s = 0,1, 2,...), then

li,ooP{(x + +... + , < = w()

where W(x) is defined by (17).

Proof: Since the integral is a continuous functional on the Brownian

excursion process, (61)immediately follows from (57).

6. THE PROCESS {(r),r > 0}

Under the assumption that vi, v2,...,v,.., are independent and identically

distributed random variables, the sequence {(r),r > 0} is a branching process.

We can imagine that in a population initially we have i (i = 1,2,...) progenitors
and in each generation each individual reproduces, independently of the oghers,

and has probabiligy p (j = 0,1,2,...) of giving rise go j descendaxs in ghe
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following generation. Then (r) can be interpreted as he number of individuals

in ghe rth generagion (r = O, 1, 2,...). Obviously,

= (62)

ghag is, (i) is ghe gogal number of individuals (gogal progeny) in ghe branching
process if ’(0)= i. Possibly, p(i)= e.

gvidenly, {((r), 0 < r < 0(i)} is a subsequence of {G, 0 < r < (i)}, ad
(r)- , if s- (0)+ (1)+... + (r- 1) for r >_ 1. This implies that if p(i)= n,
ghen

and

0 < roam - roam (r) < roam l(i- (} (63)o _< r _< n o _< r _< o(i) i- 1 _< me(r)(r >_ O)

O(i)
(- [(r)] < n roam I(i l- (64)

,- o ,- o i- l _< ,,(,’)(," > o)

If r>_l, if a=l, if O<a<oo,
(s = O, 1,2,...), hen for any > 0 we have

if (59) holds, and if.n=sd+l

V.,, 2 , (65)

for sufficiently large m and n where #(a)is defined by (28). We have #o(a)= 1,

21(O) 4ae- 2a2 and
r-1

r(O) 2r + lr!of : (1 + X)-( +)g_ (x)dx
0

for r >_ 2 and a > O, and

9-() = (_ 1) r- 1 (- j)-
i=0

j (r- 2)

(66)

(67)

for r _> 2 and x >_ 0. For the proof of the above results see Takcs [42].
that

0
ifr> 1.

We note

(68)

Theorem 6: If a = 1, 0 < a < c and n sd + l(s = 0,1,2,...), then

l,/_mooP{(r) _< Xav for 0 <_ r <_ O(i) p(i) = n} = F(x) (69)
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where F(x) is defined by (16).

The finite dimensional distributions of the process

{t,,,l/(O-v), 0 < t < lip(i)= n} (70)

converge to the corresponding finite dimensional distributions of the Brownian

excursion {r/+ (t),0 _< t _< 1}. By a theorem of Kaigh [15], [16] we have also weak

convergence. A necessary and sufficient condition for weak convergence is

tim limsupPmaz 1 ,1 > eo’/’d p(i) = n} = 0
h..,O n oo j-kl <,h

(7)

for e > 0. Here n sd + l(s = 0,1,2,...) and h > 0.

Skorohod [10] pp. 449-450.

See I.I. Gikhman and A.V.

By (63)

P{ max i- max 0(m) > evl p(i) n}
O<i<n m>

< P{ max o(m) > nhlp(i) = n} + PIn._am>_ <_nh

for any e > 0 and h > 0. Furthermore, if (59) holds, by (65)

P{ max o(m) > nh p(i) = n} < P{(m) > nh p(i) n}m> rn >O

< h:E E{[dm)l’lp(i)- n} n,h,t 2 2>0zt2v) (73)

as n--eoe. Here we used the substitution a = ma/(2’-). Then

If r = 2, then by (73)

liooP{ max,> 0rim) > nh p(i) n} = o

for h > O. By (71)aztd (74)

(74)

liooP{ max i- max (m) > eavi p(i) = n} = o
O<i<n m>O

for any e > 0. Consequently, by (75) and (58)

(75)

liooP{ max,> 0d.) _< :o-v," ,o(i) n}
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This proves (69).

max , < xav/K p(i) = n} = F(x).
0<i<n

(76)

Theorem 7: If a = 1,0 < a < and n = sd + 1 (s = O, 1, 2,...), then

li,.mooP( [(r)] _< xanZ/ p(i) n} W(x)
o<<_()

(77)

where W(x) is defined by (17).

If we use (64) and (71), then by (16) we obtain (77).

Theorem 8:If a=l,
n = sd + l(s = 0,1,2,...), then

if 0<a<o, if (59) holds for r >_2 and if

IdooP( r(r) <_ zan/ p(i) = n} = W(z)
0 < _<o(i)

(TS)

where W(x) is defined by (17).

For the proof of (78) see Takhcs [421.

Finally, we note that it is plausible that

{2([2av/-ff/al)/(a/’ff), >_ 0 = + _> 0}, (79)

that is, the stochastic process on the left-hand side converges weakly to the

stochastic process on the right-hand side if

7. tNDOM ROOTED TIES
Let us consider the queuing process introduced in Section 4. Let us

suppose that the initial queue size is i = 1, and denote by p = p(1) the number of

customers served in the initial busy period. If p = n, we associate a random

graph with the queuing process. The graph has vertex set (1, 2, ., n). Two
vertices r and s, where l_<r<s<n, are joined by an edge if and only if

customer s arrives during the service time of customer v. The random graph is

evidently a tree. We designate vertex 1 as the root of the tree. If in the queuing

process = i for r = 1, 2,..., n, then necessarily

i + i +... + i,, = n 1 (80)
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and
i + i +... + i > r for 1 < r < n- 1. (81)

Denote by S, the set of nonnegative integers (i,i2,...,i,) satisfying the
conditions (80) and (81). With every sequence (i,i2,...,i,)in S, we associate a

rooted tree. In the tree (i,i2,...,i,) two vertices r and s (1 < r < s _< n) are

joined by an edge if and only if

i0+i +...+i_ < s < io+i +...+i (82)

where i0 = 1. In the tree (i,i2,...,i,), the root has degree il and vertex r

(1 < r < n) has degree i + 1.

By Theorem 1 the number of trees in S, is

1 = ln_(2n- 2 = (83)IS.I =n 1
’r/,-- 1 ]

Cn-I
I +i2+...+in=n-1

where Co = C1 = 1, C2 = 2, C3 5, C = 14, are the Catalan numbers.

Let {p} be a probability distribution on the set of nonnegative integers,
is, pi >_ 0 for j = O, 1, 2,... and

= (s4)

Let

d = gcd{j:p > 0}. (85)

If S, is not empty, that is, if n- sd + 1 and s is a sufficiently large positive

integer, then let us choose a tree at random in S, assuming that the probability
of a ree represenged by (i, i,..., i,) is

(86)

where

1 (87)an = E Pilpi2"" "Pi. = " Pilpi2" "Pin"
(i1,i2, n 6 Sn 1 + 2 +...+ n n- 1

If a, = O, then (86) should be interpreted as O. If P{p- n} > O, we have

P{u = i, u2 = i2,..., u, = i, = = p(i, i:,...,i,). (ss)
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8. EXAMPLES FOR PNDOM ROOTED TPES

Example l:In the interval (0,c), customers arrive at a counter in

accordance with a Poisson process of density A and the service times are

independent random variables each having the same exponential distribution

function

In this case

H(x)
0

-" if x >_ O,
(89)

if z<0.

(90)

for j = O, 1, 2,... where p = /( + ), q = #/(A + #), and

1 for (i, iz,...,p(i., z:,. ., i,.,) = C,_ (91)

In this example, the vertices of the random tree are labeled, but we can

ignore the labels, and interpret S, as the set of oriented (plane) rooted trees with

n unlabeled vertices. If we choose a gree ag random in S,, assuming ghat all he

IS’, = 6’,,_ rees are equally probable, ghen

which is in agreement with (91).

i:,..., i,) e s,, (ge)

Example 2: Let R be a fixed set of nonnegative integers which always

contains 0. Let S,(R) be the subset of S, which contains all the tress

(i,i,...,i,) in S, for which i R for r- 1,2,...,n, tha is, if a tree belongs o
S,(R), hen ghe degree of the root R and if j is ghe degree of any oher vertex

of the gree, ghen j- 1 R. Then by Theorem a, ghe number of grees in S,(R) is

Let

S.(R) = Co_.ff. of Xn-1 in ( x’)".
(ix, i: i,) e S.(R) e R

(93)

for j R and Pi = 0 and j R. In this example

S.(R) if (il, i2,-.-, in)e

This example can be interpreted in the following way.

(94)

(95)

We consider
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Sn(R), he set of oriented (plane) rooted trees with n unlabeled vertices

whenever the degrees of vertices are subject to the constraints imposed by R.
We choose a tree at random in S,(R), assuming that all the possible choices are

equally probable.

Example 3: Customers arrive according to Poisson process of density
and the service times have unit lengths. In this case

p = e- xA for j = 0,1,

ntP(ix, i2,’" ", in) = i1!2!...in!

(96)

In this case, the procedure is equivalent to the following. We choose a

tree at random in the set S of rooted trees with n labeled vertices, assuming
that all the possible choices are equally probable. By a formula of Cayley [6],
ghe number of such trees is n’- . By heorem 1, ghe number of grees in S is

Let

r[ 1 + n[ nn- 1 (98)

For the vertices of a tree (i,i,..., i,) in S, can be labeled in

n!
i!i!.

different ways. It seems (98) is the simplest proof for Cayley’s formula.

Example 4: Let R be again a fixed set of nonnegative integers which

always contains 0. Let S(R) be the subset of S which contains all the trees

(i,i,...,i,) in S for which i R for r- 1,2,...,n, ghat is, if a gree belongs go

S,(R), then the degree of the root R and if j is the degree of any other vertex

of the tree, then j- 1 G R. By Theorem 3, the number of trees in S,(R) is

STz(R) =
(q,i :i,) e s,,(n)i’

= (n- CoeIf. of in,

(99)

= (a lJ!)l(
iR

for j R and p = 0 for j R. In this case

( 00)

for (il, ’2,’" ", in) e Sn. (97)
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n! 1 if (i, i,. i)e S,(R). (102)p(i , i,) = .i,! IST,(R) ""

This example can be interpreted in the following way. We consider

S,(R), the set of rooted trees with n labeled vertices whenever the degrees of the
vertices are subject to the constraints imposed by the set R. We choose a tree

at random in S,(R), assuming that all the possible choices re equally probable.

9. PROBLEMS

For tree chosen at random in S, define r,(m) as the number of vertices

at distance m from the root. The distance of a vertex from the root is the

number of edges in the path from the vertex to the root. Furthermore, define

max{m: r,(m) > 0} (103)

as the height of the tree,

n max{Tn(m):m > 0} (104)

as the width of the tree, and

,- mr,(m) (105)

as the total height of the tree.

Our aim is to find the asymptotic distributions of the random variables

8, and T,(m) if mo and ncx.

Let {pj} be a probability distribution on the set of nonnegtive integers.
Define the generating function

f(z) . pjz
j (101)

for Izl <1. We assume that f(1)=l, f’(1)=l, f"(1)=a where 0<a<oo
and f()(1) < c for r > 2. Let

d = gcd{j: pi > 0}. (107)
Let us choose a tree at random in S,, assuming that the probability of a

gree represented by (i,i,...,i,,) is

P(il, i2,..., in) = aZ lpilPi2. .Pin (08)
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where a is given by (87) if S is not the empty set.

n = sd + 1 nd s is a sufficiently large positive integer.
distribution of r(m) we assume

The se S is not empty if

In finding he asymptotic

m = [2av/H/a] (109)

where 0 < a < cx.

Le us consider the branching process ((r),r >_ 0} defined in Section 4.

The total number of individuals (otal progeny) in the branching process is

and the time of extinction is

If extinction never happens, then # o. Furthermore, let

E
r>O

that is, r is the total number of ancestors of all the individuals in the

process. Possibly " = cx.

(112)

branching

For the random trees we have

V{r.(m) = k} = P{’(m) klp n},

P{I. = k} = P{# = kip n}, (11)

P{w. : k} P{r kip n}

and

e{6.-- k}- P{mao(r) kip- n}.

In proving various limit theorems for the random trees considered we

assume that a = f’(1)= 1, that is, {(v),r > 0} is a critical branching process. If

a- 1, tha is, f’(1)= 1, then P{p < o} = 1. If we wan to apply these limit

theorems to the four examples considered in Section 8, we should choose the

parameters p and in such a way that the condition a = 1 is satisfied.
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10. THE LIMIT DISTRIBUTION OF r.
The random variable r, is the total height of a tree chosen at random in

S,. The expectation of r, has been determined by J. Riordan and N.J.A. Sloan

[32] for random rooted trees with n labeled vertices, and Ju. M. Voloshin [46] for
random rooted trees with n unlabeled vertices. See a/so A. Meir and J.W. Moon

We can determine the distribution of r. by (115).
generating function

Let us introduce the

(z,w) = , P{p = n}E{z""}w" (117)

defined for zl_< 1 and [wl < 1. If we take into consideration that in the

queuing process the number of arrivals during the firs service time may be

j = O, 1, 2,..., we obtain that

,o) = f (118)

For a given f(z) we can determine the distribution and the moments of 7", by

(118). If a =/’(1) = 1, /"(1) = a, /()(1) < oo for r >_ 2, and

n sd + l(s = 0,1, 2,...), then the limit

exists for r > 0 and

(119)

4v/r!M = KF((3r 1)/2)2,/ (120)

where K0 -1/2, K1 1/8 and

K 3r- 41( +

_
I(jI( (121)

3=1
for r = 2, 3, Hence

M, V,12e] (122)

as r---oo and we can conclude that there exists a distribution function W(x) of a

positive random variable such that

O’Tnhm P
,-oo { 4V/-n3 < x} = W(x) (123)

in every continuity point of W(x). The distribution function W(x) is uniquely
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determined by the moments

fzdW(z) = M
0

(124)

for r = 0,1,2, By (124) we obtain (23). For details see L. Takhcs [40], [421.

In the particular case where pi = (1/2)+ for j = 0,1,2,.., that is if we
consider random rooted trees with n unlabeled vertices, we can write that

=1

where {r/o+ rh+ ,...,} is a Bernoulli excursion, that is, a random walk in which

= =0and 0for0i2n. Since

0 < t < (t),0 < t < 1},

if noo, that is, the stochastic process on the left-hand side converges weakly to

the Brownian excursion, we can conclude from (123) and (124) that if w + is

defined by (14), we have

P{w + <_ x} = W(x)

and

E{(w + )} M (128)

for r = 0,1,2, See also Louchard [26].

11. THE LIMIT DISTRIBUTION OF r,(m)

By (113) we can determine the distribution of rn(m).
the generating function

Let us introduce

(z,w) = P{p n}E{z"()}w" (129)

for [z[ <_ 1 and [w[ _< 1. If we take into consideration that in the queuing
process the number of customers arriving during the first service time may be

j = 0,1, 2,..., we obtain that

for m = 1,2,... where

’(z, w) wf(_(z, w)) ( 3o)
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oo W"

By using (130) we can prove that if a = f’(1)= 1, f"(1)= 2, f(O(1)<
for r 2, and n = sd + l(s = 0,1,2,...), then

for > 0 where () is the distribution function of a nonnegative random
viable d is given by (26). Also

= .() (laa)

exists for r >_ 0 and #(a) is defined by (28) and is given by (66) for r >_ 2.

The above results imply that if r + (a) is the local time at level a > 0 of
the Brownian excursion {r/+ (t), 0 _< t _< 1}, then

P{T + (a) <_ x} = G,(x) (134)

and

E{[ + ()]} = ,()

for r = 0,1,2,

For random rooted trees with n labeled vertices the asymptotic
distribution of T,(m) was found by Stepanov [33]. See also TakLcs [41]. In the

context of branching processes and in a different form the limit theorem (132)
was found by Kennedy [19]. By his results we can conclude that

o < < /()
0 < v < 1(4c2)

-a:"2/2C 4’"))(i 4a2v)-3/2uf(u, v)dudv

for x>O and

o R()> 0 =d R() > 0.

(136)

(137)

If we consider the branching process {(r), r > 0} and use the notation

7(r) = (0)+ (I)+... + (38)
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for r > 0, then by Theorem 1 we obtain that

P{(r) = k, 7(r)= t, p = n} = P{(r) > 0}.

P{(r) = k,7(r) = (r) > O}n,’k kp{ygq_ ,,_+
(139)

if k>l and n>_e>_r+k. Thus the problem of finding the asymptotic

distribution of r,(m) can be reduced to the problem of finding the asymptotic
behavior of

P{(,) = ,’r() = e () > o}

Kennedy [19] found that

liooE{e- :(’()+ ’())/()2 I(r) > O)

or (,)> 0 = (,)> O. , t prir t,:, = O, thi ,: ,,,
proved by ek [=91 [ao]. ny [91 i -or provi proo o (4). U
merely indicated that it can be proved by the same argument as was used by
Pakes in the particular case s = 0.

If in (139), k -[uaax/], e -[4va=n] and r -[2av/o" where u > 0 and

0 < 4av < 1, and n--,c, then by (141), we can prove (136).

Since

12. THE LIMIT DISTRIBUTION OF/,.

P{#. < m} P{r,(m)- 0}

for n >_ 1 and m >_ 1, the distribution of #,

Tn(m) for m >_ O.

is determined by the distribution of

In 1978, Kolchin [22]
n = sd + 1 (s = 0,1, 2,...), then

proved that if a=f’(1)= 1, f"(1)=a, and

li,P{; <_ x} F(x) (143)
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where F(x)is given by (19). Kolchin’s proof is based on Theorem 1 in this

paper. See also Kolchin [2!].

In the particular case where p = (1/2)+ for j = 0,1,2,..., Konovaltsev
and Lipatov [23] proved (143). See also de Bruijn, Knuth and Rice [8] and
Wakcs [34] and [38]. In the case where Pi = e-/j! for j = 0,1,2,... Rnyi and
Szekeres [31] proved (143/. See also Stepanov [331.

By (143) we expect that if (59) holds, then

l/ooE{(;n)} =/t (144)

for r >_ 0 where u is given by (21). This is indeed proved in some particular
cases. If pi= (1/2)i+ for j= 0,1,2,..., then de Bruijn, Knuth and Rice [8]
proved (144) for r = 1 and Kemp [17] for r >_ 1. In some other particular cases

Flajolet and Odlyzko [9] proved (144)for r _> 1. For p- e-/j! (j >_ 0)formula
(144) has not been proved yet. Rnyi and Szekeres [31] state that (144)is true

for r = 1, but provide no proof.

13. THE LIMIT DISTRIBUTION OF ,
If in the queuing process p- n, then

, = max{(r), r >_ 0}, (145)

and obviously,

If p = n, then by (75)

, < max ( < 2,. (146)
O<i<n

-( maXo < < ,i ,)--,0 (147)

in probability as nc. Thus if p = n, the random variables 6, and maxo <i< ,i
have the same asymptotic distribution. Accordingly, if a = f’(1)= 1, f"(1)- a

where 0 < cr < c and n sd + 1 (s = 0,1, 2,...), then

where F(x)is given by (19).

lira P{ .n._ < x} = F(x) (148)

Aldous [1], p. 47 has conjectured that .(148)is true.

By (148)it is plausible that if (59) holds, then
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=

where/ is given by (21). By (60) and (146) this is true in two particular cases,
namely when p = (1/2)i+ for j = 0,1,2,... and when Po = P = 1/2. Odlyzko
and Wilf [28] proved that if p = e-/j! for j >_ 0, then E{t/,} = O( v/nlog n)as

By (79) and (148)we can draw the conclusion that

P{sup r + (c)_< 2z} = F(x) (150)

where r + (ce) is defined by (15) and F(x) by (19). For a direct proof of this

result see Jeulin [14, p. 264].
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