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ABSTRACT

The crude asymptotics of the large delay probability in a tandem queueing
system is considered. The main result states that one of the two channels in the
tandem system defines the crude asymptotics. The constant that determines the
crude asymptotics is given. The results obtained are based on the large deviation
principle for random processes with independent increments on an infinite
interval recently established by the authors.
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1. Introduction

Within the framework of the queueing theory, deep analytical methods have been developed
for investigating statistical characteristics of waiting times for messages under several disciplines.
However, these methods turned out to be of little use in the area of communication networks,
where a message is served in a consecutive order by several devices. The simplest example of this
situation is a tandem consisting of two consecutive channels (or devices) with the simplest service
discipline FIFO (first in first out). Here very cumbersome explicit solutions were found for
some special cases only. In [4], an explicit solution was found for the case of a Poisson input flow
with service time exponentially distributed. In this case, the output flow from the first device

appears to bc again Poisson. Explicit solutions were also found for the cases when service times
are deterministic (see [10, 12]) and when the service times for both servers are identical ([2, 3]).
There arc no analytical results for the general situation.

More restricted formulations of the problem can be of practical interest. For example, in

nany real situations, the designer of the system sets a significance level, i.e., a small number p,
and wants to make sure that the waiting time co of a message in the system exceeds a given
bound with probability smaller than this significance level p. It neans that it is of interest to

study the function T(p) defined by the relation

l’Fhe work is partly supported by the Russian Foundation of Fundamental Researchers,
Grant 93-011-1470.

2The work of the second author is supported in part by a grant of AMS-FSU Aid Fund.
Printed in the U.S.A. (C)1994 by North Atlantic Science Publishing Company 301



302 R.L. DOBRUSHIN AND E.A. PECHERSKY

Pr( > T(;))- p (1.1)

in the stationary mode for a servicing system.

If we suppose that the decrease rate of the tail of the probability distribution describing the
input flow is exponential or quicker, it is reasonable to expect the following asymptotics of the
function T(p):

lira T(p)_
pO ln(1/p)

a. (1.2)

So T(p) ln(1/p) for small p, and it is of interest to find the constant a. Of course, the follow-
ing question arises: Is this approximation sufficiently accurate for applications? Here it is appro-
priate to emphasize that in the vast majority of cases only very rough estimates for the desired
significance level can be extracted from the real situations. It is common to apply a very rough
scale of the type

p 10 2 10 3 10 4

and so on.

lost, when looking for inaccuracy of the significance level p.

Instead of the function T(p) it is possible to study the inverse function p(T).
that

It means that only ln(1/p) is given so that inaccuracy of the asymptotics of T(p) is

It is easy to see

1 -lira
In Pr(w > z)

x--,o x (1.3)

So the stated problem belongs to the class of problems involving exponential asymptotics of large
deviations intensively studied in recent years (see the monographs [7] and [8]). In the framework
of the theory of large deviations, a -1 is the minimal value of the rate function in the
corresponding domain.

In the following, we shall assume that both the devices of the tandem obey the FIFO
discipline. It means that each device begins processing a message either at the moment when the
message arrives at the device, if it was idle or at the moment when the service of the previous mes-

sage is complete. In the monograph [1], such service disciplines were called disciplines of type I.
It was assumed that the moment of an arriving message at the second device coincides with the
moment of completion of its service by the first device. Consider the random variable w that de-
scribes the waiting time of a message, which we interpret as the virtual waiting time of a virtual
message. (See, for example, [1].) This means that a virtual message requests the service times on

both of the devices to be equal to zero and it is processed after all "real" messages entered the
system earlier or the same time. We shall return to this notion in 3. The complete time that a

real message spends in the system is a sum of the virtual time and the times that are necessary to
process this message by both channels. A study of this complete time can be reduced to a study
of the virtual time in an evident way and we restrict ourselves to a study of the virtual waiting
time.

The main result of the paper states that if w is the virtual delay of the message and the
constant a is defined by relation (1.3) then

o rnax{cl, C2} (1.4)

where aI and a2 give the solutions of the similar problems in which each device serves separately
the original Poisson flow of the messages. A way of determining the constants a goes back to
the Cramr papers [5,6] and it can be found in Borovkov [1]. In this monograph, explicit
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formulas for the characteristic function of the virtual waiting time, known for tile case of a single
device, are used for this aim. An alternative derivation of this result is explained in [9]. This
alternative derivation is based on the general theory of large deviations.

Because w- w1 + w2, where Wl, w2 are the waiting times for the first and the second device,
respectively, the result (1.4) may appear almost evident from a first glance. But it turns more

surprising if we recollect that a2 was calculated under the hypothesis that the input flow to the
second device is Poisson; this hypothesis is not valid for the intermediate flow in the tandem. In
general, the constants a depend essentially on the statistics of the input flow. It is possible to
oppose these arguments with an intuitive explanation. If the second device is "worse" than the
first one, the fluctuations of the input process, critical for the second device, go without essential
disturbances through the first device.

The derivation of the formulated result is based on the use of a quickly developing branch of
the modern probability theory: the theory of large deviations. The main theorems of this theory
state that, for wide classes of random processes and sets of their realizations, the logarithms of the
probabilities of these sets are asymptotically defined by minima of a special function, which is
called the rate function, over these sets. However, a direct application of such results to the
processes arising in queueing theory seems to be difficult. These processes are complex, so it is
hard to find explicit formulas for the corresponding rate functions, and it is even more difficult to
find them for minima of the rate functions. Here we develop a roundabout approach. We
explain it in the context of our tandem problem; it can also be applied to other problems in
queueing theory.

Without loss of generality, we assume that the service times of messages for both devices are

defined at the moments of their arrival to the system. So, if the input flow is Poisson, a two-
dimensional generalized Poisson process, with independent increments, arises as a description of
the input to the system. In such an approach, the random variable w turns out to be a functional
of this input process. But simple explicit formulas for the rate functions of processes with
independent increments are well-known. The domain in which we have to minimize the rate
function becomes more complex. But it turns out that it is easier to minimize a simpler function
over a more complex domain than to minimize a more complex function over a simpler domain.

Though the large deviations for processes with independent increments have been studied
intensively enough, it turns out to be impossible to apply the known results to the considered
case. This is why in [9] we propose a new version of the theorem on large deviations suitable for
the considered case. Here we only formulate and apply this theorem. We cannot use the known
theorems for several reasons. Most pertinent papers (see [15, 16]) are devoted to the study of

large deviations for processes with independent increments defined on a finite time interval but in

the typical problems arising in our approach, it is necessary to study the functionals depending on

the behavior of the process on an infinite interval. There are some papers [13, 17] in which

theorems on large deviations on the infinite intervals are formulated with the use of some

topologies defined by projective limit constructions, but such topologies are too weak for our goals
(see the discussion in 7 of [9]). Another difficulty is due to the assumption used by many
authors that the moment generating function of the increments of the process exists for all values
of the argument of the function. It excludes the most popular case of an exponential distribution
for service time from consideration. And finally, we need a theorem on large deviations for the

vector-valued processes.

We shall not be concerned here with the problem of studying queueing length in a tandem. A
result for the large deviations of the queueing length is formulated in Walrand’s monograph [20]
without a rigorous proof (more precisely, Walrand considered values of a total population in the

tandem system). The large deviations principle proved in [9] seems to be applicable also for such

functionals. The paper of Tsoucas [19] is devoted to a proof of this result for the special case of
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exponential service times; however, the author did not take into consideration one of the
difficulties mentioned above, namely that the random functionals under consideration are defined
on an infinite interval. (Also, the author applied for the proof, a sequence of functionals on the
Skorokhod space and treated them as continuous. However, these functionals can be
discontinuous at some point of a Skorokhod space.)

2. The main result

We describe the input flow of a tandem as a sequence of independent three-dimensional
random vectors

with nonnegative components. We interpret the random variables . and { as the service times
of the ith message at the first and second device, respectively, and r’ as the ith interarrival time.

Make the following assumptions.
(1) The sequence E consists of identically distributed independent vectors.

that
We suppose

(3)

(4)

#j- E. < cx, j- 1,2. (2.2)

For every i, the three random variables ri,,, are mutually independent.
The random variables r are exponentially distributed with parameter > 0 (i.e.,
they have the probability density he- ,xx). (The last condition means the input flow
to the tandem is Poisson.)
The inequalities

Pl < 1, #2 < 1 (2.3)

hold true. (It is the condition of absence of an overload.)
There exist constants 01+ e (0, oc] and 02-t- e (0, oc] such that the moment generat-
ing functions

gj(O)- e < , if 0 < Oj+, j- 1,2, (2.4)

and they are infinite for 0 > 0j+ if the boundary value 0j+ is finite.

We denote by Oj, j 1,2, positive solutions of the equations

Oj-A(gj(Oj)-l),

which will be used in the formulation of the main result. Let also

g-lirn gj(O), j- 1,2.
oTo-

It is easy to verify that equation (2.5) has a unique positive solution if and only if
+

9+ >_ 1+ i

(2.6)

(2.7)

arid #j > 0. For this purpose we observe that the function )[gj(Oj)-1] is a strictly convex

function of 0 vanishing at the point 0--0 and having the derivative A#j which is less than 1 at
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this point.
-jxIn this simplest case, when the random variables have the exponential densities 7je

j- 1,2, conditions (2.3) of absence of an overload is reduced to the condition < rnin{71,72}.
In this case, 0-Tj, gj+-oo, and equation (2.5)has a positive solution for all. e (O, rnin{71,72}). The simplest example, when gj+ < oo and so a solution of (2.5) does not
exist for small enough ,, is the case density proportional to x-aexp{- 7x}, where 3’ > 0 and
c>l.

Under conditions (1-5), the stationary mode of the considered system exists and is unique (see
[14]). Now we will write a formula for the virtual waiting tirne co in the steady state in terms of
the sequence -z For t >_ 0, let

{max k" E ri <- t
i--1

For j- 1,2,

if rI > t,

if rI <_ t.
(2.8)

0, if u(t) 0,
u(t) (2.9)j(t)
E’ if u(t) > O.
i-1

Each of tile random processes j(t), 0 _< < oo, j- 1, 2, is a homogeneous process with indepen-
dent increments. Their trajectories are jump-wise (i.e., piecewise constant) nondecreasing, right-
continuous functions. The virtual waiting time for the tandem can be expressed as

co 87119 {2(V) q- 1(8)- l(V- O)- 8}.
v,s’0 < v <

Consequently, it is a functional of the two-dimensional homogeneous process

(2.10)

(t) -(l(t), 2(t)) (2.11)
with independent increments.

I-n the next section, we give argurnents leading to relation (2.10). These arguments cannot be
considered as mathematically rigorous because we deliberately avoid the use of the related strong
definition of the virtual waiting time (el. [1]) even though it can be applied to a mathematical
derivation of this relation. A mathematical purist can treat formula (2.10) as the definition of
the random variable we study in the paper.

Theorem 2.1: Under conditions (1-5),

lirn ln|’r(w > z)- -min{/31,2},
X---+(X3

where/31 and/2 arc defined by the relationa

the positive root of (2.5),

(2.12)

o;-
if g? > 1+--, and #j > O,

o20, if g? < 1 -t--X-’ and #j > 0, (2.13)

oo, if #j O.

3In this formulation in 0
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In the special case when the service times - 0, the quantity /32 -o. Thus, min{31,
/32} 13a. In this degenerate case, the tandem service reduces to the service by the first server
only. It follows from Theorem 2.1 that

1
--]"-- /1 and -/3, (2.14)

where aj are the quantities defined by relations (1.3) for the case of the one server, and this
theorem implies relation (1.4) formulated in 1.

the case of the exponential densities 7je
-jx of a random variables ,j it isIn easy to see

that

(2.15)

if the inequalities $ < 7j, J 1,2 hold true.

The construction developed below (see Note 5.5 for a precise formulation) permits us to
describe the structure of most harmful fluctuations of the input flow and the service times of
messages which produce the large values of the virtual service time at the moment 0 considered in
the main Theorem 2.1. In the case 1 < 2, they are fluctuations of density of the input flow and
service times at the first device. In the case 1 > 2, they are fluctuations of the density of the
input flow and service times at the second device. There is an essential difference between the
cases when condition (2.7) is satisfied and when it is not satisfied (for j 1, if 1 </2 and for
j 2, if /71 >/2)" In the first case, the delay is mainly defined by the cumulative effect of
fluctuations in a time interval of a length proportional to the delay and preceding the moment 0.
In the second case, the delay is defined by one message with the service time approximately equal
to the delay of a message which arrives just before the moment 0.

3. The virtual waiting time

We mentioned already in 1 that the virtual waiting time w is the pure waiting time of a

message excluding service, and it is served after all messages which entered the system earlier or
the same moment. We define now the virtual waiting time of a message which enters the system
at a moment t as a value of the random process w(t) which is a functional of a realization of the
input flow of messages.

In queueing theory, an expression for the virtual waiting time in the system with a single
device and FIFO discipline is well-known [1]. Consider a server with FIFO servicing discipline
and assume that u is the ith moment of arrivaling messages, which requires time r/i for service.
The sequence (ui, li)= -o is the input flow to the system. Let 4

y r/i if t < O,
,() :t < < 0

if O.>
i.o < r,i <

It is a left-continuous function.
at a moment is

Then the virtual waiting time w(t) of a virtual message arriving

4Here and in the following, we interpret sums of an empty set of addends as 0.
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(t) {,( + 0)- ,()- (t )}. (3.2)
s<t

Returning to the tandem system we recall that, in the equilibrium, the probability
distribution of the virtual delay at does not depend on t and so we can assume that t- 0.
Using the random variables introduced in 2 we define the sequence of moments

7-k,
k:0

-1

E
k=i

ifi>O

ifi<0
(3.3)

as the sequence of the moments of arriving messages. As it is well known (see for example, [1],
9), this construction defines a stationary Poisson flow of moments. Now we put for j 1,2,

-E ’ ift_<O,

(t)- i.t<_i<_0 (3.4)
}, ift >0.

i’o < r,i <

The input flow to the first server is the flow (t,i,)i__ _. So, in terms of this flow we can
express the virtual waiting time (t) at the first server for a virtual message arriving in the
system at t as

(t) ,p {(t + o)- ()- (t )}. (3.)
s<t

To establish a similar formula for the second server we need to describe the input flow to the
second server. It is clear that the message which arrived at the first server at moment ’i will
enter the second server at the moment

(3.6)

2.. to the second server. We define similarly toIt means that we have the input flow (cri, j
_

(3.4) the process

(t) .t _< _< 0

i’O < tri <

ift <0,

ift >0.

(3.7)

Using relation (3.2) we can find the virtual waiting time at the second server for a virtual
message arriving to the second server at rnoment u as

() p {( + 0)- (v)- ( v)}. (3.s)
v< tt

If a virtual message enters the system at moment then it would arrive at the second server at

moment

u(t) + wl(t ). (3.9)
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So its virtual waiting time at the,second server is

co2(t) ((t -4- col(t)) SUp {2(t + COl(t -4- 0)- 2(8) (t "4- COl(t) 8)}.
_< +()

Comparing definitions (3.4) and (3.7) we see that for any two moments v < t,

(t zr- O)- (v) 2(t -4- COl(t) -4- O)- 2(v -t- COl(V)). (3.11)

The set of all moments s v + wl(v that for some v coincides with the set of moments (r i, at
which the message enters the second device, is a discrete set only. But the maximized function in
(3.10) is linear between these moments and so the upper bound in (3.10) is attained if we restrict
it by these moments only. So using the change of variables vs v + COl(V) we can rewrite

(3.10) as

CO2(t) sup {(t A- 0) (v) (t v) (COl(t) COl(V))}.
v<t

(3.12)

Now using (3.5), we can evaluate the total virtual waiting time at both servers (t) of a
virtual message arrived in the tandem at moment t as

(t) COl(t) -4- CO2(t) sttp {(t -4- O)- (V)- (t- v) A- COl(V)}
v<t

+ 0)- + (i(v + 0)- (t
s,v:s < v <

(3.13)

Letting t-0 and observing that ((0 / 0)- 0 we find that

sup { ((v) + (((v + 0)- i(s)) + s}. (3.14)
s<v<O

It is more customary to consider random processes defined on the positive half-line, so it is
convenient to make the transformation changing the sign of the time

(t, ((i(t), (t)))(- t, (- (i(- t), ((- t))). (3.15)

This transformation transforms left-continuous functions to right-continuous functions. Applying
this transformation to (3.14) we obtain that the random variables and CO (see (2.10)) have the
same distribution.

4. Large deviations for processes with independent increments

As was mentioned in 1, the proof of the main result of this paper is based on an application
of a general theorem on large deviations for the processes with independent increments proved in
[9]. In this section, we formulate only this theorem and prove some additional facts (Lemmas 4.1
and 4.2) which will be used together with the theorem in 5. First we recall, the large deviations
principle in its general formulation (see for example [7, 8]).

Let be a topological space and {Pn, n- 1,2,...} be a sequence of probability measures on

the (r-algebra of the Borel subsets of this space. The large deviations principle holds for the
sequence {P,} with a rate function I: !t;[0, oc] if for each Borel5 set B C_ it;

5Here and in the following is the closure of a set B, B is its interior and Bc is its
complement.
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an(]

limn_jnf lglnPn(B > inf I(R),
EB

(4.1)

lira sup ilnPn(B <_ inf I(IR).

Lemma 4.1:

for this sequence.
on this set, i.e.,

Assume that a sequence {Pn} is such that the large deviations principle holds
Let C_ be a closed subset of such that the measures Pn are concentrated

Pn()- 1, n- 1,2,..., (4.3)

For any subset C C_ ]g we denote by C and the interior and the closure of the set C with

respect to the restriction of the topology in to the set }g. Then, for any Borel subset B C_ ,
lim__jnf 1

n lnPn(B :> -inf I(R),
R ( )

(4.4)

and

lira sup lnP,(B) < inf I(IR).
[RE (B n E)/4

Proof: It follows from the main condition (4.3) that

(4.5)

Pn(B) > .P,((B M E)) Pn((B M E) U Ec), (4.6)

The set (B K1 :E) U:Ec is an open subset of % and so the estimate (4.1) and the identity (4.6)
imply that

lira inf ln.Pn(B > inf .I(R), (4.7)

Applying the estimate (4.1) to B- c.. we find that

I(!R) cx for G :Ec. (4.8)

So the desired estimate (4.4) follows from (4,7). Since

(4.9)

and the set (B fl 3g)_ coincides with the closure of the set B fl Yo ill the estimate (4.5) follows
from (4.2) where B 1s replaced by B

Now we specify for the considered case all three objects introduced above: the topological
space ;, the sequence of measures {Pn} and the rate function I. We start with the space g. Let

R(t) be a function of G (-c, oo) valued in Euclidean space Nr. Reca!l that its variation on an

interval [s, u] C oc, oo) is equal to
rz--I

Vat IR sup E m(t +-)- m(t) I, (4.10)
[s,u] s < 2 <... < n u

n 2,3

where the upper bound is taken over all partitions of the closed interval Is, u].
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We consider a space 2; of functions !R "[0, x))-Rr with the following three properties:
(1) The functions !R E 2; are functions with locally finite variation, i.e.,

(2)

Vat !R < oc for all 0 < t < cx. (4.11)
[0,t]

The functions !R E 2; are right-continuous at each point t _> 0, i.e., for each _> 0 the
limit lira !R(u) exists and

R(t) R(t + O)- lirn R(u). (4.12)
ut

(3) The limits

v(R)- lim
R(t) (4.13)

to l+t

exist and are finite.

Sometimes, when it is convenient, we extend the functions !R G by letting

(t)-Ofor -<t<O. (4.14)

After such extension, the variation (4.10) does not depend on s for s < 0

_
u and we let

Var !R Vat !R, if s < 0 < u. (4.15)
[0-0,.] [,.]

We shall treat 2; as a vector space with the natural definition of sums of its elements and
their multiplication by a scalar. There is another useful interpretation of the space 2;. Observe
that there is a one-to-one correspondence between functions !R:[0, oc)r with locally finite
variation and a-finite Rr-valued measures #!R on [0, c). This correspondence is defined by the
relation

t]), t >_ o. (4.16)

Let (I) be the set of all continuous r-valued functions (t), t G , with compact supports, i.e.,
those vanishing outside of a compact interval [- T, T4,]. For G (I) and ill G 2; we let

J4,(!R) J (t)!R(t)dt.
0

(4.17)

(Here and in the following, ab is the inner product of vectors a,b r.)
fixed function , we defined a linear functional ’/4, on the space 2;., we associate a function

f
The function is continuous differentiable and vanishes for large . Then,

f
0

For any number T >_ 0 we define a shift opera,or ST for the distance T such that for any ,

It is clear that for any
Now with each function

(4.18)

(4.19)
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STq(t (t T), E [1. (4.20)

We define a topology on ; by the system of pseudometrics

{ 1 ]Jsn(m-m)) } eel,
n: n O, 1,...

this means that a sequence {N G , N 1, 2,...} converges to R G if and only if

(4.21)

lira p(R, N) 0 for all G . (4.22)
N---cx

We shall call this topology a uniformly-weak topology. If for some T > 0, he space is a

subspace of consisting of all functions having a fixed restriction 3(t), > T, to the ifinite
interval (T,), then the induced topology on 3 coincides with the usual weak topology for
functions on the interval [0, T].

The promised additional result absent in [9] is connected with another version of the topology
in . We consider a new system of pseudometrics defined as follows. Let G , and , G .
The distance (,) is

(,)- sup 1 + S(- )1 (4.a)
e [0,)

Since (,) p(,), the topology generated by the pseudometrics (,), ff G O, is
stronger than the uniformly-weak topology. The topology generated by the pseudometrics

(,), O, will be called the continuous uniformly-weak topology. We shall use the
abbreviations "UW-topology" for the uniformly-weak topology and "CUW-topology" for the
continuous uniformly-weak topology.

Lemma 4.2: The UW-topology and CUW-topology coincide in the restriction on the subset
C of all non-decreasing functions with non-negative components from .
Prf: We must show the UW-topology is not weaker than the CUW-topology.

In the first step we prove the following statement. For any function G O there exists a

neighborhood U of the point in the UW-topology and numbers A, K < such that

olSl(t)]

_
A + Kt, O

_
< cx, G U!R O. (4.24)

We fix a function 0 e (I) with non-negative components such that 0(t)- (1, 1,..., 1) for 0 _< t <_ 2
and take

UR n:n--0,1 1 + n

The function Sit]C0, where [t] is the integer part of the number is equal to (1,1,...,1) on the

whole interval [t,t + 1]. Observe also that for any vector a-(al,a2,...,ar) [r, its norm

a <-- al + a2[ +... + Jar !" So, for any function G (11 and any

t+l

!() < J I()1 d <_ .s[]o(). (4.26)

o
It follows from definitions (4.17), (4.21) and (4.25) that for any function ill e U!R,

Js t]Oo(m) Js [t ]+o(gl m) + Js[ ]+o(R) <_ 1 + + Js[ t]4,o(R) (4.27)
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The properties (4.11) and (4.13) of the functions R E imply that for some constants A’= A’(tR)
and h"= K’(iR),

Js[t]60(R) <_ A’+ It"t, 0 < < oo. (4.28)

The desired estimate (4.24) follows from the estimates (4.26), (4.27) and (4.28) for A A’+I
and K K’+ 1.

Now we need to prove that for any R E O and any open neighborhood U (R) of the point tl in
the CUW-topology there exists an open neighborhood U(R) of this point in the UW-topology
such that U(iR) Cl O C_ U (iR) N O. It is sufficient to consider the neighborhoods U (iR) of the kind

u (), {:7(,) < c}, (4.29)

where G (I), c > 0, since such neighborhoods generate the CUW-topology. Consider a number A,
0 < A _< 1, such that A- 1 is an integer and let

U(iR),A,c {ill: PSiA(iR, [R) < c, 0, 1,...,A 1}.

We prove below that for any fixed 05 ( (I) and c > 0 and for all sufficiently small A,

(4.30)

U [R , A c/3 f"I U] N ( C R 6 c f"l l (4.31)

Since the set U(R)6,ZX, c/aU is open in the UW-topology, the statement of the lemma will
follow from this inclusion.

For any t [0, oo) we let [t]A- kA, if zx <t< ( + 1)A and k is an integer. Comparing
definitions (4.21) and (4.23) we see that for U(tR),zX,/a the distance

(,)< ,p
0,1 A

[0, oo) l+t 1 + [t]lJs[t]A
c<-+ sup

e [0,o)
1 1

l+t l+[t] JS[tlzx(R ll) } (4.32)

1 J JS[tlA({R }sup 1-+- st(R rR)- -gl)l
e [0,)

<--+ sup { 1 (R-gt) (R-gt) l}.te[0,)’ l+t ast --Js[t]A
It follows from the estimate (4.24) (which is also satisfied for ill replaced by iR) and definitions

o(4.17), (4.20) that for iR UiR

Jst(R gl) JStt]A6([R gl) <_ / ](x t) (x --[t]) m + m ldx
oo (4.33)

max I(x)- (x’)_< 4T(A + K(t + T)) x,x" lx- x’[ <_ A

where (- T4),T) is an interval outside which the function vanishes. Since the function is a

continuous function with a compact support, it follows from (4.33) that there exists a number
A > 0 such that for all
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l+tl [jst+(!R_91)_js[t]A(!R-91) <’c (4.34)

So, it follows from (4.32) that

(!R, 91) _< c, (4.35)

which proves the desired inclusion (4.31).
Now we describe the measure Pn" First we recall the notion of a generalized Poisson process.

Let r be a non-negative measure on the space Rr such that the integral

ylTr(dy) < x. (4.36)

We call a probability measure Pr on Borel subsets of the space a generalized Poisson measure
with the jump measure 7r, if for any function 6 (I) the characteristic function is

exp{ig(!R)}Pr(d!R exp (exp{iy(t))- 1)r(dy)dt (4.37)
o Rr

(see notation (4.18)). Heuristically it means that we consider a time-homogeneous Poisson
process such that the probability of a jump of y 6 A in the time interval of length dt is equal to
r(A)dt, if r(A)< oc.

The existence of the measure Pr on ; follows from a well-known statement that, under
condition (4.36), almost all realizations of a process with independent increments are functions
with a locally bounded variation (cf. [11], ch. IV, 1), and from the strong law of large numbers
which guarantees the existence of the limits (4.13). It follows from definition (4.37) that

v(R) rn, P,.-a.s., (4.38)

where the mean value

Let Tn %-- be a transformation

f
/ e (4.39)

T.: R(t)--Rn(t R(nt). (4.40)

It is easy to verify that the conditions (1-3) included in the definition of the space % hold for the
function !Rn(t), if they do for iR(t). Let Pr be a measure on % induced by the transformation Tn

from the measure Pr" It is easy to see that Pr defines again a generalized Poisson process with

the jump measure

7rn(A) nTr(nA ). (4.41)

Now we define the rate function. We suppose that for some a > 0

(ea 1)r(dy) < x.

r
(4.42)



314 R.L. DOBRUSHIN AND E.A. PECHERSKY

This inequality implies the condition (4.36). Let

f
q(O) /(eOu- 1)Tr(dy),

and let @r be set of points 0 E Rr for which q(O) <
function of 0 E r and so Or is a convex set. Let

0 G r, (4.43)

It is easy to verify that q(O) is a convex

ha(x)- sup {Ox-q(O)}, x G Rr. (4.44)
0Or

The function Aa(x is the Legendre transformation of the function q. It is a convex non-negative
(because Ox- q(O)- 0, if 0- 0) function of x valued in [0,c]. Let O be a set of all interior
points of the set @r which is non-empty, because of the condition (4.42). It is clear that q(O) is
smooth in the domain @]. If for some x r there exists 0z G @ such that the value of the
gradient

V q(Ox) x, (4.45)

then

Aa(x -Oxx-q(Ox) (4.46)

(see [18], 26). It is clear that V q(0) m and so

Aa(m 0. (4.47)

In addition, let

Observe that

Asi(x sup Oz. (4.48)
O Or

Asi(x =/Lm-Aa(TX), x e r. (4.49)

It holds true that Ox-q(x)- -c, if 0 Or and so 3’- Aa(TX) _< sup Ox, for any x and 7.
0Or

On the other hand, for any fixed 0 ( Or and x the quantity 7-1(07x- q(O))---Ox as 7--,cx, and
1 Aa(TX)" The function Asi(Xhence the upper bound in (4.49) can not be greater than

can be interpreted as the Legendre transformation of the function

(4.50)

Again (see [18], 13), Asi(X is a convex non-negative function of x G Rr. It is linear on any ray
{Ax, 0 < A < }, x G r. This function is called a support function of the set @. If v 1, then

xsup{O’O O}, if x > 0,

Asi(X) x inf {0:0 E Or}, if x < 0,

0, if x--0.

(4.51)
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Observe that for any Xl, X2 t [r and 0 E @r,

O(x + x2) Ox + Ox2 < Ai(x) + Ai(x2).

Therefore, the function Asi(x is subadditive:

+ < Xl,X2 E Ir.

(4.52)

Any function II ( % can be represented, in a unique way as

R a + Rsi,
where Ra is an absolutely continuous function

(4.54)

Ra(t / a(u)du
0

and Rsi is singular, i.e., a function such that the corresponding measure #Rsmeasure with respect to the Lebesgue measure. Let
is a singular

0

Aa(a(u))du (4.56)

(the integral has sense because Aa > O) and

Isi(Rsi) f Asi(si(u))du"
0

(4.57)

Of course, the derivative lsi(U does not exist and hence the last integral (4.57) needs a

corresponding interpretation.
< t < c}, n- 1,2,

and

Let be the system of all finite partitions H {- oc < o < t1 <
Let

I’(Rsi) E Asi(Rsi(tk Ri(tk- )) (4.58)

Isi(Rsi sup {I(Rsi)}. (4.59)

We shall say that a partition II’-{-<t0<tl<...<t’,<} is a subpartition on the
partition II if each point t coincides with one of the points k. It follows from non-negativity and
subadditivity of the function A si that, if II’ is a subpartition of II, then

< Isi[I(Rsi (4.60)

So we can also interpret Isi(Rsi) as the limit of irIsi(si) with respect to the partial order on the
set 2 defined with the aid of the subpartitions.

In the case r 1, the function Rsi(t can be represented in a unique way as a sum

(t)+ (t), (4.61)

where Rs+/(t) is a non-decreasing function and [R. (t) is a non-increasing function of G [0, oc),
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and supports of the measures #iRs+/ and #iRs are disjoint. Then it follows from (4.51) that

Isi(iRsi iRs+ (oc)sup{O: 0 e O} + !}l (oc)inf{O: 0 e Or}. (4.62)

(oo) io, (), with 0oo 0.

Let

() / Ao(o()) + /A,(%()). (4.0)
0 0

(Here a + oo oo for any a (-oc, oo]).
Theorem 4.3: If condition (4.42) holds true then the sequence of the probability measures

{Pr, n- 1,2,...} satisfies the large deviations principle with the rate function I defined in
(4.63).

For the case r 1 and the processes given in a finite interval, this theorem has been proved
by Lynch and Sethuraman in [15].

The proof of Theorem 4.3 is given in [9].
We shall use also the following fact which is also proved in [9], Lemma 6.4. The rate

function

I(!R)- c, if v(!R) :/: m. (4.64)

5. The proof of Theorem 2.1

This proof is based on Theorem 4.3 for the case r- 2 when the space of trajectories g
consists of functions iR(t)- (iRl(t),lR2(t)) valued in R2. The spaces of possible values of
components IRI(t and iR2(t which are defined by the construction in 4 for the case r- 1 will be
denoted ;1 and 932.

We assume that the jump measure r defining the Poisson measure Pc (see (4.37)), is the
product measure

7r- ,(Tr1 @ 7r2) (5.1)

where the parameter A was introduced in .2 and rj, j- 1,2, are the probability distributions of
the random variables (. introduced in the same section. It is easy to see that the random process
((t) defined by the relations (2.9) and (2.11) coincides with the Poisson process with the jump
measure r. Consider (cf. (2.10)) the following functional defined on the space f13

09() 8vtp {2(V) q- 1(8) }l(V 0)
s,v’O<v<s

(.2)

Since the functions !R G it; have a locally bounded variation (see (4.11)), the left-sided limits
!R(v-0) exist and this functional is well defined. In terms of the normalized process with the
distribution P,, for any integer n, the probability studied for Theorem 2.1 (see (2.12), (2.10)) is

where
Pr(0 > n)- P(.A),

at {R: w(iR) > 1 }. (5.4)
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We let

Qj-{IRjGWa’O<_Rj(t)<_Rj(u),forallt<u}, j- 1,2,

ca { (, 2) 26: , 2}. (5.5)
(2 is the subset of 6 consisting of all pairs of non-decreasing and non-negative functions. It is
obvious that O is a closed set in the uniformly-weak topology. Since we assumed in 2 that the
random variables are non-negative, the measures pn are concentrated on the set (2. So we can

apply the principle of large deviations in the formulation of Lemma 4.1 for O for which we
will consider the interior (A A O) and the closure (A A O)O with respect to the restriction of the

uniformly-weak topology to O used in the formulation of this lemma.

Lemma 5.1: Let

w(R) sup {max{R2(v- 0)- Rl(V- 0), R2(v Rl(V)} q- 111.(8 8}. (5.6)
O<v<s

(.a )o z_ {l. o t > ).

Proofi Assume that [R E O is such that w(Yi) > 1. There are two cases. For some 0 < v < s,
either

]2(v) ]1 (V) + ]1(8)- 8 > 1

or

(5.9)

In case (5.8), since R is a right continuous function, there exists an e e(Yi) > 0 such that for any
small e’ > 0,

R2(t [Rl.(t > 1 q- 3e iRI(S + s, if v _< _< v + e’. (5.10)

’rake a function (051,052) E (I) such thai. 1(t) _=_ -2(t), where the function 2 is non-negative,
vanishes outside the interval (v, v + e’) and is such that its integral over this interval equals 1. It
follows from estimate (5.10) and the definition of the topology that there exists a neighborhood
U(iR) of the point iR such that (see (4.7)) for any function Yt (Yt,2) U(iR)q , it holds true
that

J5(gl) > J+(R)-e > + 2e- Rl(s + s. (5.11)

Since
v + ’

’I4,([II)- .f (!R2(t)- !R’(t))O2(t)dt’

it follows from (5.11) that there exists a point v’- v’(!R) E (v, v + e’) such that

[R2(v’ [R(v’- O) >_ iR2(v’ iRl(v’) > 1 + 2e- ]:{1(8)q- 8. (5.13)
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In a similar way, assuming that the neighborhood U(R) and the number " > 0 are small, we can

find a value s’ _> s + e’ _> v’ such that for 3 E U(R) gl O,

31(8’ (5.14)

It follows from (5.13)and (5.14)that
w(3) > 1. (5.15)

The case (5.9) is similar. Under the assumption that v > 0, there exists e e(R)> 0 such that
for any small e’> 0,

R2(t [Rl(t 2> 1 + ae }tl(S q- 8, if V > _> V e’. (5.16)

A construction analogous to the previous one derives the estimate (5.15) from inequality (5.16).
In the special case, when v- 0 in (5.9), R(0- 0)- 0, condition (5.9) degenerates to the inequality
Rl(S s > 1 and so that for some e > 0 and any function 3 E ,

32(0 31(0 --0)+ ]:11(8 8 2> 1 + 2e.

We can use estimate (5.14) again, and together with (5.17) it will also imply the inequality (5.15)
for this last case. It follows from inequality (5.15) that R is an interior point of the set at

Note 5.1: One can verify that

(t fl) {!R: w(!R) > 1 }, (5.18)

although unnecessary for our objectives. That some points of the set of the trajectories t N O
need not be its interior points can be explained in terms of our queueing problem. Assume that
at time t, when the lines to each server are short, a message enters the system requesting service
times (1 and 2 to the respective channels, and that 1 and 2 are large. Then, the service delay
is close to 2 + 2" Alternatively, suppose at time t- A (with small A > 0), a message enters the
system and requires only service time 2 at the second channel, whereas another message entering
the system at time requires service time 1 only at the first channel. Then both messages can

bc served in parallel, and consequently, the service delay is close to max{(l,2}. But the
corresponding trajectories of the input flow are close in the weak topologies.

For [R- ([R1, [R2)C we let v(R)- (Vl([R1) v2(R2) (see (4.13)), and then let

w() max{vl(l) v2(2) }. (5.19)

Lemma 5.2"
s < v such that

Let the set A consist of all functions iR O for which either there exist points

R2(v -t- RI(S Rl(V- 0) )_ 8 q- 1

OF

w(iR) >_ 1. (5.21)

Then the following inclusion holds true"

(A N )(9. C_ A. (5.22)
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Proof: Let a function R- ([RI,R2)G (ANQ)Q. There exists a sequence R.- {RI,
R2,n) E atNQ which converges to . Note that if E [0, oo) is a point of continuity of the
function i, i- a,2, then m,(z)-m(t). It follows from definitions (5.2) and (5.4) that there
exists a sequence of pairs of points (vn <_ Sn) from [0, oc) such that

}12, n(Vn) nt- {}11, n(Sn) }{1,n(Vn- O) > 8n
q- 1. (5.23)

There are three possibilities for the sequence of the pairs (vn <_ sn).
In the first case, the sequence {sn} is bounded. Then, using compactness arguments, we

suppose without loss of generality that the sequence {tln} is such that v,--+v and sn---s for some

v _< s < oo. Assume that points s + r, v + r and v- v are continuity points of tile functions 1
and R2 where r,r and u are positive. Then sn<s+v and v-u<vn<v+cr for large n and so

the inequalities

R2, n(V q- r) + }11, n( 8 q- 7") }11, n( v b’)

_
[t12, n(Vn) q- 1, n(Sn) R1, n(Vn O) > 8n

q- 1 (5.24)

hold true. On the other hand,

*Jl2n(V -+- 0") -k [}11,n(8 -k 7")- [R1, n(V z,’)--+2(v q- 0") -+- [Ptl (,s -+- 7")- Jll(V -/.’)

as n-+oo. Therefore,

[}12(V + 0") -+- [Rl(8 q- 7")- I(V-/,’) >_ 8 q- 1. (5.26)

Because cr, r and u carl be chosen arbitrarily small, and the functions tl and [R
2 are right-

continuous, the inequality

Jl2(V)-Jr- [R (8)- 1(v- O)

_
8 q- 1 (5.27)

is valid.

Now we assume that the sequence {Vn} is bounded but the sequence {Sn} is unbounded and
so we can suppose without loss of generality that Sn-+Oo and Vn--v < oo as n---,cx Let > 0 and
u > 0 be chosen in such a way that v + cr is a continuity point of the flnction R2 and v-u is a

continuity point of the finction tt. Then, as above we verify that

iirrl stz/)([I{ 2 n(Vn)- R n(Vn --0)) 2(V-+- 0")- [RI(V -//) <: oo.

So it follows from inequality (5.23) that

lira inf
tll, n(Sn) > 1 (5.29)

n+oc +Sn

Now let 0 be a non-negative function vanishing outside the interval (0, 1) and such that its

integral over this interval is equal to 1. Because the function [R1, n is on-decreasing, it follows
from (5.29) that

f }ll,n(’tt)qSO(t- ,sn)dll l,n(Sn)
lira sup > lira.sup (5.30)
n- + sn n 1+

Lemma 4.2 implies that the sequence [Rn--+[R in CUW-topology also.

4,(tln, R)0, where we let - (0, 0), and inequality (5.30)implies that
ltence (see (4.23)),
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f R1, n(Zt)qSo(lt- 8n)dtt
limsup oo limsup
n-+oo + sn n

Due to definition (4.13) we see that there exists the limit

f l(u)O(U--Sn)du
lira
n 1 + sn

f Rl(u)o(U-sn)du
l+sn

(5.al)

v(R1).

The estimates (5.29), (5.30), (5.al), (5.32) imply that v(nl) _> 1 and so we arrived at the desired
condition (5.21).

The third case is when both sequences vn and sn are unbounded and therefore it is reasonable
to assume that Vn--oo and Sn--+oc as n-+oo. Using the compactness arguments we can also
assume without loss of generality that the limit

1 + vn (5.33)a- lira
n-+oo l+s

exists, where 0 < c < 1. Applying again estimates (5.30), (5.31) and (5.32) we find that

limsup
{RX(Sn) < v(R ). (5.34)

n-+oo 1 q- Sn

Consider the function (-05o( 1), o) E (I) where the function 0 was introduced above and
0(" -1) is its shift vanishing outside of the interval (-1, 0). Then, using the monotonicity of
the functions iR1, n,R2, n we find that

JSvno(iRn) ] o(t)(!R2, n(t + Vn)- []l,n(t q- vn 1))dt _> iR2(vn)- {Rl(Vn -0).

Similarly to (5.31), we derive from Lemma 4.2 that

Js
v o(!R-) Jsv o(!R)

limsup n limsup n
n-+oo 1 + vn noo 1 + vn

Similarly to (5.32), we derive that

JSvno(iR)
n--+oo 1 + vn

Returning to inequality (5.23) nd then using the estimates w find that

2,n(Vn)- l,n(Vn- O)+ l,n(Sn)
1 liminf 1 + sn

(2, n(n)--l,n(n--O) l+n)< limsup + limsup
n l+vn l+sn n l+sn

JS
vn O

R
1 + v_) R n ’3n)

< limsup + limsup
n+m l+vn 1+ n-+oo l+s,_

(v([R2)- V(l))O q- v([R.I) v(x2)c q- V(Xl)(1 --c)

_
max{v([R1),v(2)} w([R). (5.38)
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We have arrived at the desired condition (5.21).
Note 5.2: It is possible to verify that

Again the latter is unnecessary for the rest of the paper.

Now we want to describe some properties of the rate function (4.63) with respect to the jump
measure (5.1). Observe that in this case the domain (R)r, in which the moment generating
function q(O) is finite, is such that

O 0 x 02, (5.40)

where

O { (-o, Off ], if gj+ <
J (-c,0j+ ), if gj+ c, j 1,2,

(5.41)

and the quantities 07 and g? are defined by relations (2.4) and (2.6). We shall use the
following notation for the rate functions of the components of the process being considered (cf.
(4.43), (4.44)):

where

Aa, j(vj)- sup {vjOj-qj(Oj)}, j- 1,2, (5.42)

ql(O1) (gl(01)- 1) q(01,0), q2(02) A(g2(O2)- 1) q(O,02) (5.43)

and the moment generating functions

gj(Oj) / exp{Ojxj}rj(dxj), j 1,2,

were introduced by relation (2.4). We let also (cf. (4.63), (4.51) and (5.41))

j(Rj) / Aa, j(Jta, j)dt + O? lsi j(cx), Rj e Oj, j 1,2,I
o

(5.44)

(5.45)

where Ra, j, Rsi,j are absolutely continuous and singular components of the functions !Ilj with

tlj(oe)- limu__,ltj(u), j- 1,2.

Lemma 5.3:
follows:

For any singular function tl-(RI,YI2) E fA (see 4), the rate function is as

I([R) Isi(R 0+ RI() + 02+ R2(x). (5.46)

Proof: Applying definition (4.48) to (5.40) and (5.41), we find that for any x (Xl,X2) E 2,
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The statement of the lemma follows immediately from definitions (4.57) and (4.63).
Lemma 5.4: For any Yl >- O,

inf Aa(!/1, w) Aa, l(Yl Aa(Yl, w(!/1)) (5.48)

where under the assumption that the measure 7 is such that it is not concentrated at the point O,

#2g1(Ol(Y1)),
W(Yl)

0,

if Yl > O,
(5.49)

if y --0,

the mean values #j are defined by relation (2.2), and the value 01(Yl) is such that

Aa, l(Yl) 81p{y101 q1(01)} Y101(Y1)-q1(O1(Y1))). (5.50)

In the special case, when the measure 71 iS concentrated in the point O, relation (5.48) holds true

W(Yl) ’2" (5.51)

Proof: It is obvious from definition (4.44) that for any w E [1,

Aa(Yl, to) sup {YlOl q- we2 q(01,02) ) tp{Y101 q(O1,0)} Aa I(Yl),
(01,02) e Or Vl

so it is sufficient to show that

Aa, l(Yl)- Aa(Yl,W(Yl) ).

Observe that

q(01,0) ql(Ol) ) (e ly 1)rrl(dY). (5.54)

Consider the case when the measure 7r is not concentrated at the point 0 and assume that Yl > 0.
Then it is clear that q1(01) is a continuous function of 01 convergent to -A as 01-+-oo.
Furthermore, the derivative q(01)-+oc as 01-+oo if 01+ -oc. In the case when 01+ < oo but

gl+ -oo, the value q1(01)-+o0, as 1-+01+. It follows that for Yl > 0 the strictly concave

continuous function Y101- q1(01) of 01 E (R)1 has a unique maximal point inside the set Or1.
So

the values 01(Yl) and w(yl) arc well-defined by the relations (5.50) and (5.49). In the case when

01+ < oo, gl+ < oo, the value 0"1(Yl)can be equal to the end point 01+ of the interval @Ul"
Itfollows from definitions (4.44), (5.1) and (2.4) that

q(O) q(O1,02) )(gl (01)g2(02) 1).

Assume that I(Yl) < 01+. Then the derivative qi(l(Yl))- Yl" So, using definitions (5.50), (2.2)
and (2.4) we find that the value of the gradient is

V q(Oq,02)[O ,l(Yl),02 0
(Yl,W(Yl)). (5.56)

(01(Yl),0) is an interior point of the set Or (see (5.40)) and thus the desired equation (5.53)
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follows from the relations (4.45)and (4.46).
interior point of an edge of the set @. Let

In the case when 0*’l(Yl)- 01+ the point (0x,0) is an

(01,02) YlO1 -t- W(Yl)O2 q(Ol, 02), (01,02)

and consider the partial derivatives of this strictly concave function at the. point (01,0). Its
derivative., at 02 is equal to 0, its left derivative at 01, is equal to Yl-(ql)}elt(Ol(Yl)) <- O. So the
point (01, 0) is a point of a local maximum of the function 05. But for a strictly concave function,
any point of its local maximum is the point of its global maximum. It proves the desired relation
(5.53) for this case also.

If Yl 0, a direct computation shows that Aa, l(0 Aa(0,0) A.

In this case, where 71" 1 iS concentrated at X --0,

0, if Yl 0,
inI A(yl, w) A(yl, #) (5.58)

w 6 (-o,oo) oo, if Yl > 0.

This proves the lemma.

Note 5.3: The first of (5.48) can also be obtained in a roundabout way by a use of the
principle of large deviations. Indeed, the left term in (5.48) actually describes the asymptotics of
the probability of the event {R: IRl(n)-nyll < e} for small e > 0 defined by the two-
dimensional Poisson process with the jump measure rr. But the same probability can be treated
as the probability defined by the one-dimensional Poisson process with the jump measure r1 and
rate function Aa, 1. The second equality in (5.48) can be explained in the following way. The
condition {R: IRl(n)-nyll < e} changes the density of arriving messages somehow but the
mean value of the service times of any message in the second device stays equal to #2"

Note 5.4: The statement which is obtained from Lemma 5.4 by interchanging the indices 1
and 2 is of course also valid. The same is true for Lemmas 5.5 and 5.6 and relation (5.59).

The next formula easily follows from relations (5.42), (5.43) and (5.44) under the condition
> O:

Aa, l(W)

Ow, lw--ql(Ow,1) if 0 < w < oo and 01+ oo or q’(O+_)
and if 0 < w _< ql (01+ ), O+ < .oo, and q (01+) <

0,+ ,,,- q, (0:,+ ), if > el
([0, )), if w 0,

, if w < 0,
(a.a9)

where q] is the derivative of the function q,, and Ow, is the unique solution of the equation

qi (Ow,1) w. (5.60)

Lemma 5.5: Assume that #1 > O For any u > O, a >_ 0 let

CLJl(U, a {R E Ol’Rl(U)-

qd(z, a) {[R -(R1, }2) Q:RI(/I (5.61)
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Consider the function (1,2) such lhal

atu, ifO<_t <_u,
l(t)

(Tt U) if U < < C,aTm1

z:(t)
+ m:(t-

ifO<t<u,

if u < < oc,

where the function W(Yl) wa8 introduced in Lemma 5.4 and the mean value m- (ml,m2) (8ee
(4.Z9)). Then,

inf I(!R)- I()- inf I1()- I1(1)- uAa, l(). (5.63)
e (., ) t a(.,)

Proof: The relation

I() I (1) --/tAa, 1(-)

follows immediately from relations (4.63), (5.48) and (5.45).
inequality

(5.64)

So we have to prove only the

aI()

_
I1(1)_ Uia, l() (5.65)

for any !R (5 (u,a). For this purpose we observe that it follows from equality (5.48) and the
convexity and non-negativity of the function Aa, that for any absolutely continuous function
[R (5 ctj(u, a),

I(!R) / Aa((t))dt >_ 11(:11 -- / Aa, l(l
0 0

uAa, 1 l(t)dt uAa, l(). (5.66)
o

It follows from definition (4.63), Lemmas 5.3 and 5.4 and the positivity of the function Aa, that
for any function II (5 O,

I(IR) f Aa(a(t))dt + 01+ Rsi, 1(OO + 02+ lRsi, 2(oo
0

_> II(IR1) >_ / Aa, l(a,l(t))dt + O? lRsi, l(U). (5.67)
0

Fixing a function iR (5 cl.j(u,a), consider the sequence I,N of absolutely continuous functions with
values in 1 such that their derivatives are

where

1

1 N(t)
aNna’s(aNt)’ if < u--,
N!Rsi,(u), if u- < < u,

(5.68)

(5.69)
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(We assume that N > u-1.) It is clear that l,N(U) }l(U) a and

o o

The quantity aN---l as N--,oc. It follows from equation (5.59) that the fllnction Aa, l(X is a

continuous function of x >_ 0. Relation (4.49) applied for the function Asi, shows that for x > 0,

Aa, l(TX)
lira 0+ (5.71)

Using these facts we derive from (5.70) that

N--<x
o o

a,l(a,l(t))dt -t- 0t [Rsi, l(U

and so the desired estimate (5.65) follows from (5.66) and (5.67).
Lemma 5.t}: Assume that #a > O, and that for any z >_ O,

Then,

e > z},
u>0

(z)-- {R-- ({RI,IR2) GO:sup {IRI(U)-u} >_z}.
u>O

inf I(R)- Zfll I(z)
()

inf 11([111)- z/31 II(z,1),
]1 al(Z)

(5.73)

(5.74)

where the valite fll is defined by (2.13) and the function "z- (z,,z,2) is defined by the form-
ula (5.62) with

when condition (2.7) for j- 1 is met and so the value 01 (see (2.5)) is defined, and for the
opposite case,

:az, l(t z + mlt

z,2(/)-- m2t 0

_
<

(5.76)

Proofi The proofs of both equalities (5.74) are completely similar, so we prove only the first

one. First wc prove the inequality

inf I([R) z/1. (5.77)
e (z)

We introduce the class of sets

Comparing definitions (5.73) and (5.78) we see that for any function iR (z) either iR Cu for

some u >_ 0 or v(iR1) > 1 > m. In the last case, I(iR)- oo (see (4.64)), so we scc that
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inf I(!R) >_ inf inf Ia(!Ra) (5.79)
%() , >o

Using this relation, the inequality !Rl(U >_ a,l(U), the statement (5.63) of Lenma 5.5, and the
monotonicity of the function ha, l(X in x >_ 1, we deduce that

(In the last equality we let w u- l(u + z)).
While investigating the minimum in (5.80) we treat two different cases. In the first case,

01+ -cx or 0a+ < c, but q(0a+) c, and so we can use the first line in (5.59) for all w > 1.
We find that the derivative is

0__w( Aa, l(w) ) 1 (OAa, l(W)(w_l)_Aaw-1 (w_ 1)2 - 1

1
(w- 1)2(Ow’a(w- 1)- Aa, l(w))-

It follows from definition (5.59) that the derivative (0w,1)v
increasing function of w.

ql(Ow,1)--Ow,1
(w-- 1)2

(qi’(Ow, 1))

(5.81)

>0 and so Ow,1 is an

Now we consider two subcases. In the first subcase, condition (2.7) with j- 1 is met and so

there exists a unique positive root 01 of the equation q(01)- 01 (cf. (2.5)). It follows from the
description of the behavior of the function ql(O)- A(RI(0)-1) given in 2 that the function

ql(Ow,1)-Ow,1 vanishes at the point 1" It is negative for w < 1 and positive for w > 1" It
implies that the function (w- 1)-1Aa, l(W), 1 < w < oc has its minimum at the point 1, if, of
course, -b > 1. The last inequality is valid, since the function q1(0)- 0 takes its minimal value
when q’(w)- 1 and is negative at this point. Since in the considered case 01 -/31, we obtain by
direct computation on the right-hand side of (5.80) that (see (2.13) and (5.59))

Aa, 1(1) Ol; ql(01)
inf I(!R) > Z Z zO1 Zfll (5.82)

}1 E z 1 1 11)1 1

in the considered subcase.

The second subcase is when condition (2.7) with j-1 is not met. Then the difference

ql(Ow,1)- Ow, 1 is negative for all w > 1. The solution, Ow, of (5.60) approaches 01+, as w--+oc.

The function (w-1)-1Aa, l(W is decreasing, and, therefore, from (5.59) and definition (2.13)it
follows that

zAa, (w) ZAa, l(W
inf lira zO+ zl (5 83)
< w < oo W- 1 --w--, W-

in this subcase.

The second case is when 01+ < oc, and q](O1+ < oo. Evidently from definition (4.43), in this
case ql(01+ < oo also. Then relation (5.81) can be used for w < q’(Ol+ ). For w > q’(01+ we find,
using the second line ira (5.59), that

0_w(Aa, (w))- qa(01+) 01+
-1 (w-l)2 <0" (5.84)
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Again, the lower bound of the function (w- 1)- 1Aa, l(W is reached for w--+oo and

inf I(iR) > z lira O+ w- q(Ol+) zO z/
!R e (z)

,. w- 1

Wc prove the desired estimate (5.77) for all possible cases.

Since z (z) we complete the proof by verifying

Z/ I(z). (5.86)

In the case when condition (2.7) is satisfied, equation (5.86) follows from the relations (5.63) and
(5.75) and a direct computation similar to (5.81). In the opposite case, (5.86) follows from the
relations (5.46) and (4.47).

Lemma 5.7: Assume that #1 > 0 and #2 > O. For the set of trajectories at defined in Lemma
5.2,

inf I([R) min{l, 2} I([R) (5.87)
Re A

where when 1 ]2’ the function is the function {z,1}’ with z- 1, described in Lemma 5.6.
When 1 >-/2, the function is obtained by the same construction but with the interchanged
indices and 2.

Proof: Observe that if w(iR)_>1 (see (5.21)) then either m1 < Vl(R or m2 < v2(iR ).
follows from relation (4.64) that

It

I(R)- oo, if w(R) _> 1.

inf I(iR) inf I(iR),

where

A U v,s.0 < v < s{ [R C Q" R2(v + [Rl(S }l(V 0) 8 q- 1}. (5.90)

First we prove the inequality

inf I([R) >__ min{31, (5.91)

Let ibr any 7 C [Rl and 0 _< v < s,

%v,s,-’/ {}:{ (: }2(V) -v >-- "Y’ [1:{1(8) }:{l(V 0) (8-v) >-- l-T).

Then,

u (a.93)
v, s,’’O < v < s,’ [l%v’ s, 3"

Consider a function iR-(iIll,iR2)%v,s,. and let a,j,si, j, j--1,2 be the absolutely
continuous and singular parts of the corresponding functions. Using definition (4.63) and

relations (5.46) and (5.48) (also with the indices interchanged) wc find that
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I(!R) j Aa(a,l(t), a,2(t))dt + 01+ !Rsi, l() + e2+ iR,i,2()
0

Let

v

>_ / ia,2(a,2)dt + Ot Rsi, 2(v) + / ia, l(a,1)dt + O? (Rsi, l(8) Rsi, l(V O))"
0 v

{ iRl(t + v), if 0 < < s- v,
Rl(t)

{]1(8) + ml(- 8 q- v), if s- v _< <

(5.94)

It follows from definition (5.45) that

$

I1(1)-- / ia, l(a,1)dt +Ot (Rsi, l(S)- Rsi, l(V-O)). (5.96)

From the comparison of conditions (5.92) and (5.73) we see that for 7 <_ 1 the function
R1 ( ’1(1- 7)" Thus Lemma 5.6 implies that

II(R1) >_ max(1- 7, O)1. (5.97)

Consider also the function

{ +
if0<t<v,

if v< < . (5.98)

It follows from definition (5.45) that
v

12(2) ] Aa,2(a, 2)dr + 02-t- lsi, 2(v).
0

(5.99)

We can again (cf. (5.97)) apply Lemma 5.6 but now with the indices 1 and 2 interchanged and
obtain that

I2(!R2) >_ max(7, 0)2. (5.100)

The estimates (5.94), (5.97) and (5.100) imply that for any ill ( A

I([R) >_ max(7,0) + max(1- 7,0)/32

_
rain{/31,/32} (5.101)

and this proves the desired estimate (5.91).
In the case/3 </32, the equality

1({1,1})- /1 (5.103)

follows immediately from Lemma 5.6. Relations (5.91) and (5.103) prove Lemma 5.7 for this
case. The case fll >- f12 is similar. 121

Proof of Theorem 2.1: For the case # > 0 and #2 > 0 this theorem follows directly from
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Lemma 5.7 and Theorem 4.3. The case P2 0 is the degenerate case, when the service time at
the second device vanishes. In this case the virtual service time is given by the simpler formula
(2.10) and the construction used above simplifies matters. It is sufficient to use Lemma 5.6
instead of Lemma 5.7. This case was discussed in detail in [9] and we omit the details here. The
case #1 0 of course similar to the case #2 0. V!

Note 5.5: Roughly speaking it is possible to say that functions R at which the lower bound of
the rate function in definition (4.1)-(4.2) of the principle of large deviations is attained describe
approximately the structure of fluctuations which largely contributes to the probabilities of large
deviations. In our case, they are the functions l introduced in the formulation of Lemma 5.7. It
is a rigorous interpretation of the discussion in the last paragraph of 2. However, we do not
describe the whole set of functions at which the lower bound in the definition of the principle of
large deviations is attained. It seems that, in the general case, this set contains a unique point ,
but in some degenerate cases (for example if/31 =/2) it can be essentially wider.
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