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ABSTRACT

Markov processes arc an important ingredient in a variety of stochastic appli-
cations. Notable instances include queueing systems and traffic processes offered
to them. This paper is concerned with Markovian traffic, i.e., traffic processes
whose inter-arrival times (separating the time points of discrete arrivals) form a

real-valued Markov chain. As such this paper aims to cxtcnd the classical results
of renewal traffic, where interarriva] times are assumed to be independent, identi-
cally distributed. Following traditional renewal theory, three functions are ad-
dressed: the probability of the number of arrivals in a given interval, the corres-

ponding mean number, and the probability of the times of future arrivals. The
paper derives integral equations for these functions in the transform domain.
These arc then specialized to a subclass, TES +, of a versatile class of random se-

quences, called TES (Transform-Expan&SampIe), consisting of marginally uni-
form autoregressivc schemes with modu]o-i reduction, followed by various trans-
formations. TES models arc designed to simultaneously capture both first-order
and second-order statistics of empirical records, and consequently can produce
high-fidelity models. Two theoretical solutions for TES + traffic functions are
rived: an operator-based solution and a matric solution, both in the transform
domain. A special case, permitting the conversion of the integral equations to dif-
ferential equations, is illustrated and solved. Finally, the results are applied to
obtain instructive closed-form representations for two measures of traffic
burstincss: peakedness and index of dispersion, elucidating the relationship
between them.

Key words: Traffic Processes, Markov Processes, Markovian Traffic, TES
Processes, Stochastic Process, Peakedness Functional, Peakedness Function, Index
of Dispersion for Intervals.
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1. Introduction

Let {Xn}n=0 be a stationary non-negative Markovian stochastic process, interpreted as

inter-arrival times in a traffic process. We shall refer to {Xn} as a traffic process, or interchange-
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ably, as an arrival process. The purpose of this paper is twofold: to extend the classic theory of
renewal traffic (Cox [1]) (where {Xn) is a sequence of independent identically distributed random
variables) to the case where {Xn) is a Markov sequence, and to specialize the results to the class
of TES + processes [8, 9, 10], to be overviewed below.

The following notation and assumptions relating to {Xn} are adopted. The common mean
and variance of the Xn are assumed finite and positive. The marginal density of the Xn is
denoted by fx(x), and the n-step transition density of {Xn} is denoted by fn(ylx). It will be
assumed that fl(YlX) is positive in y on a set of positive Lebesgue measure for almost every x.
A subscript is used to resolve ambiguities as to the random variable involved. The
autocorrelation function of {Xn} is

E[XnXn + r] E2[Xn]
pX(r) Var[Xn

v _> O, (1.1)

and the corresponding spectral density has the representation

Sx(W 1 +Z PX(v) cos(wv), 0 < w <_ r. (1.2)

Assume that -X0 and 0 are arrival points, and that X1 is considered as the first arrival
point. For fairly general Markovian traffic, we shall be interested in the following functions:

1. The probability functions qn(t)- P{i(t)- n}, n > O, of the number of arrivals,
N(t), in the interval (0, t].

2. The mean number M(t)- E[N(t)] of arrivals in the interval (0, t].
n

3. The density function pn(t) of the time Sn Xj from 0 to the uth arrival point.
j--1

We then proceed to specialize the discussion to TES traffic-TES processes being essentially
transformed versions of autoregressive schemes with modulo-1 reduction (see Jagerman and
Uelamed [8, 9, 10]). The modulo-1 (fractional part) operator, (.), is defined for any real x by
(x)-x-[xJ, where [xJ- max{n integer: n > x}. We shall be primarily interested in the class
of TES + processes, {Xn+ }=0, where the plus superscript is used to distinguish this process
from other flavors of TES processes (see ibid.) A TES + process, {Xn+ }, has the form

X2 -D(Un+), n>_O, (1.3)

distortion, = o is a stochastic sequencewhere D is a measurable real function called a and {Un+
of the form

Uo, n 0
U2 (U:_ 1 + Vn) n >0

(1.4)

where U0 is distributed uniformly on the interval [0, 1), and {Vn}= 1 is an arbitrary sequence of
independent identically distributed random variables with common density function ,fv; the Vn
form a sequence of innovations, i.e., for each n > 1, Vn is independent of {U0+ ,U1+ ...,Us+_ 1},
namely, the history of {Us+ } to date. The auxiliary TES + processes of the form (1.4) are called
the background processes, whereas the target TES + processes of the form (1.3) are called the
foreground processes.

Throughout this paper, the following notational conventions are used. A plus superscript is

consistently appended to mathematical objects associated with TES + sequences. To improve
typographical clarity, we use the notation fx+ instead of fx+, and so on. However, to

economize on notation, the subscript will often be omitted; in that case, it is understood that the
object is associated with the foreground sequence, {Xn+ }- the focus of this paper. An exception
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is the transition density of the background process, {Xn+ }, which will be denoted by gu+ (v u), in
conformance with previous notation (Jagerman and nelamed [8, 9]). Real functions are implicit-
ly extended to vanish on the complement of their domains. The indicator function of a set A is
denoted by 1A. A vertical bar in the argument list always denotes conditioning. The Laplace

Transform of a function f is denoted by f(s)-f e-sf(y)dy; unless otherwise

specified, all Laplace transforms are evaluated for a real argument s.

Since this paper is concerned with traffic modeling, we shall make throughout the reasonable
assumption that D is strictly positive almost everywhere on [0,1), thereby guaranteeing that
interarrival times modeled by TES + processes give rise to simple traffic. Furthermore, for a

marginal distribution, F, we shall take D- F -1, where F-l(y)- inf{u:F(u)- y} is always
single-valued, even if F is not one-one (F is always monotone increasing, but not necessarily
strictly monotone). Distortions of the form D-F -1 ensure that {Xn+ } has marginal
distribution F, allowing us to match any empirical distribution; in practice, F is usually obtained
from an empirical histogram of data measurements. Jagerman and Melamed [8] showed that the
background TES + processes, (1.4), are Markovian with transition densities

gu+ (v u) 7v(i2r)ei2"(v- u), (1.5)

and the corresponding foreground processes, (1.3), have autocorrelation functions (see Equation
(1.1))

px+ (.)_ 1 E (i2rt)l(i2rt)12 (1.6)
Var[X2] r,= -o

The rest of this paper is organized as follows. Section 2 presents some technical preliminaries.
Section 3 develops functional equations in the transform domain for the traffic functions of
interest, valid for fairly general Markovian traffic. Section 4 specializes the integral equations to
TES + traffic and presents operator-based solutions, while Section 5 presents a matric solution,
both in the transform domain. Section 6 shows how to solve for the traffic functions of a TES +
process with exponential innovations by converting the integral equations to differential
equations. Finally, Section 7 computes the peakedness measure for the burstiness of TES +
processes. The resulting formula is shown to be related to, but more general than, another
measure of traffic burstiness, called IDI (index of dispersion for intervals).

2. Prehminaries

This section presents some preliminary technical material concerning Laplace transforms of
certain integrals and a theory for solving a class of Fredholm-type integral equations.

The following lemma extends the standard Laplace transform of convolution In the lemma,
the (2ne-one) correspondence between a function, f, and its Laplace transform, f, is denoted by

f-f (see Van Der Pol and Bremmer [15]); further, for a function g(t,x) of two variables, the

Laplace transform, with respect to either variable, will be denoted by (s,x) and (t,s) as the

case may be.

Lemma 1" Suppose that for some So,

c ]g(t,x) ldt < oc

0 0

SoX If(x) ld<.
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Then, for s >_ So,

Proof: From the absolute convergence of the Laplace integrals,

e sxf(X)dx e g(u,x)du e Xlg(u x

0 0 0 0

in which the double integral on the right is absolutely convergent. Setting t u -t- x in the double
integral yields by Fubini’s theorem

i i
0 0 x

oo

ie-stdtig(t-x,x)f(x)dx.
o o

The result follows immediately, since a Laplace integral always converges for points s >_ So, where
so is a convergence point. FI

Note that if g(t,x)- g(t)is independent of x, then f g(t- x,x)f(x)dx becomes the familiar
0

convolution, and Lemma 1 yields the known result (s)f (s) on the right-hand side.

We next present a theory of Fredholm-type integral equations, to be used in the sequel to
compute statistics of Markovian traffic, namely, the functions, qn(t), M(t) and pn(t) defined in
Section 1.

Consider the Fredholm-type integral equation

., z(x) h(x) + z i s’z(Y)Ks(x’ y)dy,
0

(2.1)

in which h(x) is the forcing function and the kernel Ks(x y)is given by

It will be assumed throughout that Ks(x,y E L2([0, oo)x [0, oo)), for all s > 0, namely,

s>0,

and that h(x) L2([0,oc)), that is

(2.3)

h2(x)dx < oc.

0

Thus, (2.1) is a Fredholm-type integral equation (Zabreyko et al. [16]), and in terms of the Fred-



On Markovian Traffic with Applications to. TES Processes 377

holm operator %s, defined by

%s[f(x)] / f(y)Ks(x y)dy,
0

f C (2.4)

the integral equation (2.1) takes the form

+

Furthermore, since Ks(x y) E L[0, cx) as a function of y for every x > 0, the domain of %s may be
enlarged, for each x, to include functions which are bounded on [0,) and summable over every
compact interval.

The L2([0, cx)) norm is defined by II f II 2 -[ff2(x)dx]1/2, and the L2([0, c)x[0, c)) norm
0

by Ilgll2-[f fg2(x,y)dxdy]1/2. If M s an operator mapping L2([0,(x))) onto itself, then
0 0

M inf{C > O" M[f] ] 2 C f 2, f L2([0, ))} denotes the induced operator norm of
M. Since M M ] 2, follows that the operators Es, defined in (2.4), are bounded as a

consequence of (2.3).
We now return to the solution of the integral equation (2.5). The iterated kernels Ks, n(x,y),

given by

Ks(X,Y),
gs’n(x’Y) / Wfl n-e- (w Ix)Ks, l(w,y)dw,

o

n-1

n>l

provide an integral representation for the nth iterate, %y, of the operator %s, namely

%sn[h(x)]- f h(y)Ks, n(X, y)dy. Formally, the integral equation (2.5) has the solution
0

s,z(X) (I- Z%s)- l[h(x)], (2.6)

with the corresponding Neumann series representation (see Tricomi [14])

n--1

The resolvent operator, Rs(z of %s, satisfies by definition the equation

[I z%s]- I + zRs(z),

whence, it can be represented as

Rs(Z) E zn- l%2" (2.9)
n=l

Substituting the right-hand side of (2.8) in (2.6) yields a solution for ps, z(X) in terms of the
resolvent Rs(z), namely,

+ (2.10)
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The resolvent is also an integral operator with kernel Qs, z(X,y)- , Ks, n(x y)zn- 1, whence

s,z(X) h(x) + z / h(y)Qs, z(X y)dy. (2.11)
0

To investigate the radius of convergence of the Neumann expansion (2.7) or, equivalently, the
expansion for the resolvent (2.9), we seek the lowest characteristic value As and the corresponding
eigenfunction s(x) satisfying

Cs(x) As ] Cs(y)e- sYfi(Y x)dy. (2.12)
0

It is known that the Neumann series converges for z < lax (see, e.g., Tricomi [14]). Since
the kernel (2.2) satisfies Ks(x y) >_ O, it is also known that s > 0 and that s(x) may be chosen
to satisfy s(x) >_ O. It will now be shown that for s > 0, the circle of convergence of (2.7) and
(2.10) includes the circle z 1.

Theorem 1: For s > O, the radius of convergence of the Neumann series (2.7) and the
resolvent series (2.10) is greater than one.

Proof: Since As is the radius of convergence, it suffices to show that As > 1. To this end,
write

sup {s(x)} As sup Cs(Y)e

! }<_ As sup /sup{s(Z)}e-SUfl(ylx)dy
x->O/Jz>00

where the first equality follows from (2.12), and the succeeding inequality is a consequence of the
positivity of the kernel and the positivity of fl(ylx) on a set of positive Lebesgue measure.
Dividing throughout by SUpz > 0{s(z)} > 0, we can write

1 < -Sfl(Ul)du < uv fl(u )d

where the inequalities again follow from the positivity of the kernel and the positivity of fl(ylx)
on a Borel set of positive Lebesgue measure. VI

We conclude that II %s [[ As-’1 < 1, whence %s is a contraction. By the Banach-Cacciopoli
theorem (Jerri [11]) the (equivalent)solutions, (2.7) and (2.10), are unique.

3. Integral Equations for Markovian Traffic

Recall that by assumption, t- 0 is an arrival point, -X0 is the previous arrival point and
the next arrival point. Denoting qn(tlx)- P(N(t)- n Xo- x}, define the generating

function G(z,t x) E[zN(t) Xo x]- E q,(tlx)z’.
n--O

We now proceed to derive an integral
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equation for G(z, t lz ). Noting the sample path relation

1, on {X1 > t}zN(t) N(t_X1 {X1zz on < t}
(3.1)

and recalling that fl(ylx) is the 1-step transition density of {Xn} it follows from (3.1) that

E[I{x1 > t} Xo x] / f(y x)dy

E[z
1 + N(t- X1)I{x1 < t}lX0 x] z / G(z,t y ly)fl(ylx)dy.

0

Hence, the required integral equation for G(z, fly is

G(z, t x) f fl (y x)dy %- z / a(z, t- Y lY)fl(Ylx)dY"
0

(3.2)

Unfortunately, (3.2) is neither of Volterra nor Fredholm type. For later applications it will be
more convenient to transform it into a Fredholm-type integral equation. To do that, observe
that the conditions of Lemma 1 are satisfied for fl(y]x) and G(z, t ly in the set {z: z _< 1}.
Thus, taking Laplace transforms in (3.2) yields

(z, s Ix)
1 fl(s Ix) /s +z e-SUG(z, sly)fl(Ylx)dy, s>0. (3.3)

0

The integral equation for the Laplace transform M(slx of the conditional expectation
M(tlx E[N(t) lx is obtained from the integral equation (3.3) using

IX)---z(Z, 8 IX) lz__l "-1?1(8 X) 2t- /e-SY(8 Y)fl(Y x)dy, (3.4)
0

justified by the uniform convergence of-g-zG(z,s x)in the set {z: zl < 1}, by appeal to
Theorem 1.

Finally, we obtain an integral equation for the Laplace transform of the generating function

L(z,t Ix)- Pn(t x)zn-l, where Pn(t x) ff--i P{Sn <- t lXO-x}" Since
n--1

n

P{Sn > t Xo x} P{N(t) < n Xo x} E qk(t x)’
n--1

k=O

we can write pn(t x) 0
Ot qk(t x)’ whence
k=0

0 -1E qk(tlx)- Ot 1-zL(z,t x) Ot z 0 G(z,t x) (3.5)
n=l k=0

Applying Laplace transforms to (3.5) yields the relation
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1-sG(z, slx
1--Z

and applying (3.3) to the relation above results in the integral equation

fl( + ]
0

(3.6)

for L (z, six). It is interesting to note that

1 (3.7)

and this relation extends the known formula for the transform of the renewal density in renewal
theory (Cox [1]).

The three equations (3.3), (3.4) and (3.6), all have the generic form (2.1). We are now in a

position to use the Fredholm-type integral equation theory, developed in Section 2, to solve the
integral equations (3.3), (3.4)and (3.6).

For the integral equation (3.3) the forcing term, hG(X
a- ll(S ix)

s is assumed to belong to
L2([0, cx)), or to be bounded on [0, oo] and summable over every finite interval. The solution of
(3.3) is

1 fl(Ss Ix) + -, zn% 1 fl(Ss Ix (3.8)

Since the circle of convergence of the Neumann series (2.7) includes z -1, the integral
equation (3.4) for M(s Ix)is established, as noted easier, as well as itsexistence. For the

integral equation (3.4), the forcing term, hi(x fl(Slx’----)s is also assumed to belong to

L2([0, oc)), or to be bounded on [0, oo] and summable over every finite interval. The solution of
(3.4) is

M(s x) l-gfi(s x) + l-g E %r2[fa(s x)] fi(s x) + l-gRs(1)’]i(s x)" (3.9)

For the integral equation (a.6), the forcing term, hL( --f( Ix), is again assumed to
belong to L([0,c)), or to be bounded on [0, oe] and summable over every finite interval. The
solution of (a.6) is

Z (Z, 8 IX) 71(8 IX)+ E znr[’]l(8 Ix)I" (3.10)

The coefficient of zn in (3.8) is the transform n(S x), whence

,(s x) %nI’l l(S x)ls / 1- fl(slY)K,s
0

n >_ 1. (3.11)

Finally, the coefficient of zn in (3.10) is the transform n + 1(8 IX), whence

"n(8 x) Y--1[1(8 IX)]- f Y)Ks, n- I(x,y)dy,
0

n>l. (3.12)
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4. Specialization of TES + Traffic Processes

We now proceed to specialize the discussion to a TES + arrival process {Xn+}, with
innovation density fv" From (1.5), the transition density, gg+ (v ]u) of the uniform background
TES + process, {Us+ }, has the representation

v+ (v ) v(v- ),

in which the function gu on the right-hand side is given by

gu(w) E fv(w + n) E 7V(i2ru)ei2w’ (4.1)

where the second equality follows from the Poisson summation formula (Lighthill [12]).
rewrite the integral equations from Section 3 for their {Xn+}Next, counterpartswe

GX (z,s Ix), M+X (s Ix) and L+X (z,s Ix) in terms of the function gu(w). This has the important
advantage of transforming the infinite integration range to the compact set [0, 1]. To this end,
observe that the probability element fl+ (ylx)dy, with x D(u) and y D(v), is transformed to

fl
+ (y x)dy f+ (D(v) D(u))D’(v)dv gu(v- u)dv.

Consequently, the integral equation (3.3) is transformed to

,..+1 fl (8 D(u))x+ (z, s D(u)) s

1

+ z f 8x+ (z, D(v))- v()v(v- u)ev,
0

(4.3)

the integral equation (3.4) is transformed to

1/271+
1

+ J+X (s D(v))e-
0

sD(V)gg(V u)dv, (4.4)

and the integral equation (3.6) is transformed to

Z +x (z, s D(u))- 1+ (s

1

+ z / Z+X (z, s D(v))e- sD(V)gU(v- u)dv. (4.5)
0

For each u, the function +x (s In(u))is analytic in the plane {s" Re[s] > 0} with a pole at

s 0. The contribution of this pole (to be used in Section 7) is given in the next theorem.

Theorem 2: For any TECo + process {Xn+ } of the form (1.3), the asymptotic expansion of
rx+ (s D(u)) at 0 is given, for each u, by
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s s--.O+,

where ) 1/E[Xn] and
e v( i27ru)x+ (")- + x+ --= 7.( )

(4.6)

)(i2ru)ei2ruu, (4.7)

for some constant bo+ to be determined in Section 7.

Proof: The asymptotic analysis will be carried out, postulating the expansion (4.6) and
substituting it into (4.4). Accordingly,

8
2

1

b+x (u, 1 /(+X bs(V’)s + --+ [1 sn(v)lg(v- u)dv, (4.8)
0

in which only the relevant powers of s have been retained, and the first term on the right-hand
,,+side, 1/8, arises from fi (OlD(u))- 1 by expanding it in powers of s around 0. Equating the

coefficients of 1Is2 in (4.8) yields
1

+x +x f g(v- u),
0

1
which is clearly satisfied since f g(v- u)dv 1.

0
the following integral equation for bx+ (u),

Equating the coefficients of 1Is in (4.8) yields

1 1

b +x (u) -1- +x / ,(v)g(v u)dv + /b+x (v)g(v- u)dv.
0 0

To solve the integral equation above for bx+ substitute the Fourier series representation of
g(v-u) from (4.1), which gives

bx+(u) 1- x+ fv(i2ru)D i2ru)e i2ruu

+ E fv(i2piu+X (- i27ru)e-i2ruu.

To put the Fourier series above in standard form, we use complex conjugates to obtain

b +x (u) 1 +X E ?v( i2ru))(i2ru)ei2ruu

On the other hand, since

E v(-i2pi)’+x (i2r)ei2ru.

b +x (u) E "+X (i27ru)ei2ruu,

one may equation coefficients in the representations (4.9) and (4.10) and deduce that

(4.9)

(4.10)

X+ (i27ru)-
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5 (o)+ (o),

AX+ 7V(- i2ru))(i2ru)+ 7V(- i2ru)b+x (i2ru),

u-0

Since 5(0)- 1/Ax+, the equation for bx+ (0)is consistent but does not determine bx+ (0).
constant will be determined later on in Section 7. But for u :/: 0,

fv( i27ru)
bx+ (i2ru) A)

1 v( i2)
D(i2ru)"

This

The theorem follows, since the postulated asymptotic expansion is consistent.

Since M(tlD(u)) is monotone increasing in t (for fixed D(u)), a real Tauberian theorem [15]
may be used to obtain the following asymptotic expansion at infinity,

M(t D(u)) At, t---,.

One may also expect

M(t D(u)) At + b +x (u),

although this does not directly follow from the Tauberian theorem.

The three equations (4.3)-(4.5) all have the generic form

1

+ z /
0

where the kernel Ts(u v) is given by

(v)Ts(u,v)dv (4.11)

Ts(u v) e- sD(v)gu(V u). (4.12)

Thus, the Fredholm-type integral equation (4.11) is a special case of the integral equation (2.1)
and the kernel Ts(u v) in (4.12) is a special case of the kernel gs(x,y of (2.2). In conformance
with the notational conventions of Section 2, the associated operator s, s > 0, on L2([0, oc)) is

1

s[f(u)]- /
0

e- sD(V)gU(v- u)f(v)dv, f(u) E L2([0, 1)).

The iterated kernels Ts, n(u v) take the form

Ts, n(u,v 1

0

Ts(u v), n 1

sD(v)gu(v w)Ts, n 1 (w, z)dw, n>l.

Since the theory outline in Section 2 for Fredholm-type integral equations holds for Ks

special case, we may apply the solutions as well to the special case of TES + processes.
as a
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From (3.8), the solution of the integral equation (4.3)is

+X (z, s D(u))
1 fl (Ss D(u)) + E znW2

1 fl (ss D(u))
n=l

and from (3.11),

n+.(s D(u) TI.1- 1+ (. D(u)).1

(4.13)

1

1 [1 fl (s D(v))]Ts, n(u v)dv, n >>_ 1.

0

From (3.9), the solution of the integral equation (4.4)is

17+(slD(u))+la E ’~ +M +X (s D(u)) s[fl (sin(u))]
n--1

(4.14)

-j
+ (s D(u)) + 1-gR+ (1)’]1+ (s D(u)), (4.15)

where Rs+ is the resolvent (2.8), corresponding to the TES kernel Ts(u v).
From (3.10), the solution of the integral equation (4.5)is

Lx+ (z, s D(ul) fl (s IV(u)) + E znnr r + (s D(u))]"s J1
n’-I

(4.16)

and from (3.12),

2 (s D(u)) - 1171+ (8 D(u))]

1

/’]1+ (s D(u))T,, l(U, v)dv, n > 1.

0

(4.17)

It is interesting to compare the structure of the integral equations (4.3), (4.4) and (4.5) and
their respective solutions (4.13), (4.15) and (4.16) above (when the interarrival process is a

Markovian TES + sequence) with the renewal case (when the inter-arrival process consists of

1+independent indentically distributed random variables), implying fl (s Ix) x+ (s)). The

renewal case is just a special TES + process with gu+ (v In) gu(v- u) 1. from standard re-

newal theory or from the respective integral equations (4.3), (4.4) and (4.5), the corresponding
transforms are

r(Z, s _1
~+1 fx (s)

1- ZTx+ (s)

~+1 fx (s)

~+fx (s)
1 ZTx+ (s)"
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For any gu(w), let d(Z,S,U) +x (Z, r D(u))-r(z,s), ld(s,u) I +
X (s D(u))- Ir(s)

and Ld(Z,S u)= +X (z,s D(u))- r(Z,S) be the respective deviation functions from the renewal
case. Each of the deviation functions satisfies an integral equation as follows" Gd(Z s, u) satisfies

d(Z,S, u)
1 ]1+ (s D(u))_ (z s)[1 Zl+ (s D(u))] / z[d(Z,S u)]8

Md(S u) satisfies

Md(S,U 1~+-gfl (s D(u)) Mr(s)[1 fl (s D(u))] + s[Md(S, u)],

and Ld(Z, S u) satisfies

Ld(Z,S, u) 1+ (s D(u))- Zr(Z,S)[1 zT1+ (s D(u))] + zY[Zd(Z,S, u)].

For TES + processes which ale approximately renewal, one would expect the corresponding
Neumann expansions (2.7) for Gd, Md and Ld to provide good approximations. This aspect of
the integral equations may be used to construct analytical approximations for the solutions.

5. A Matric Form of Solutions for TES + Traffic Processes

The Fourier series representation of gu(w) in (4.1) may be used to construct a matric solution
for the integral equation (4.11). Following Tricomi [14] to this end, substitute (4.1) for gu(w)in
(4.11), yielding

1

v(i2ru U)dv.
J
0

Next, we write
1

o(u) h(u) + zE fv(i2ru)e -i2uu (v)e sD(v) + i2UVdv
0

1

h(u) + zE fv( i2ru)ei2ruu j (v)e sD(v) i2rUVdv (5.1)
0

where Parseval’s equality (Hardy and Rogosinski [6])justifies the interchange of integration and
summation in the first equality, and complex conjugation justifies the second equality. Denoting
for integer #,

c.(s) / (v)e- sD(v)- i2rpVdv (5.2)
0

to be the Fourier coefficients of o(v)e-sD(v), we can rewrite (5.1) as

(u) h(u) + zE 7V( i2ru)cu(s)ei2ruu"

Equation (5.3) is a solution for (u)in terms of (...,c_ 1(8),C0(8),C1(8),...), which is an unknown

vector with components cu(s ). In order to determine this unknown vector, substitute (5.3) into
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This yields
1

/
0

h(v)e sD(v) i2rttVdv

1

"4- z e sD(v)

0

V(- i27ru)eu(s)ei2ruvdv

sD(v) + i2r(t,- U)Vdv

where Parseval’s formula again justifies the interchange of integration and summation.
be the vector with components cu(s), and let h(s) be the vector with

1

hu(s f h(v)e-sD(v)-i2’rUVdv. Finally, let M(s) be the matrix with

Mu, r’(s) o_ ~fv( i2rv) fl e sD(v) 4" i2t(r, U)Vdv" Equation (5.4) now takes the form
0

ct,(s ht,(s + zE Mu, u(s)ct,(s),

Let c(s)
components

components

which can be written in matric form as

The solution of the matric equation above is

(5.5)

where I is the (infinite-dimensional) identity matrix. The solution (5.5) may be effectuated, in
practice, by using an n n submatrix extracted from M(s) by symmetrical truncation. This is
the same as symmetrically truncating the Fourier series (4.1) for gu(w).

6. Example: TES + Processes with Exponential Innovations

When the transform fv(s) of the innovation density is rational then, in principle, it is
possible to obtain the exact solution for the integral equation (4.11). In that case, gu(w) has the
form of an exponential polynomial, so that a differential operator may be found to eliminate the
integration; this will replace the integral equation by a differential equation. Difficulties still
remain, however, since the differential equation will have variable coefficients.

In this section, we illustrate this procedu for the exponential innovation density
)’ From (4.1), the correspondingfy(x)- e )’, x > 0, with its Laplace transform fy(s) , + s"

density gv(w) is given by

E ei2ruw A ),(w) (6.1)gV(w) ) + i27ru 1 e- )’ e
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and the corresponding transformed transition density is

,,+fl (s D(u))-
1

1 -e - e

0

-sD(v)-(v-U)dv"

Putting (6.1) into the integral equation (4.11) yields

1

(u) (u)+ z / ()
1 -e -’

0

sD(v) ,X(v U)dv

()+ z
1-e- s’z(v)e

0 - sD(v) ,v + Udv

1

+ z
1 -e / os, z(v)e- sD(v)- ,v + AUdv"

After differentiating (6.3) with respect to u, we get

’s z(u) hi(u) + z Ae- " sn(u) sn(u)s,(u) z o (u)
1 -e 1 -e

(6.2)

(6.3)

u

A- Az j Otis, z(V)e sD(v)e -1- e

)v ;+ )U.dv
0

1

-4- Az j 99s, z(V)e- sD(v)Ael e-’x-,Xv + ,Xu
dv

h’(u) ,,Zs,z(U)e- sD(u) _+_ .z / 99s. z(V)e-
sD(v)e- ,k(v- u)

1 -e-’x dv.

0

Replacing the integral term above, with the aid of (6.3), yields the differential equation in s,z(U)

p’s,z(U)- [1 ze- sD(u)] Os, z(U) h’(u)- $h(u), u e [0, 11. (6.4)

The right-hand side, r/(u)(h’(u)-Ah(u), of (6.4)is readily computed for each of the integral
equations (4.3), (4.4) and .5), using a+ (s D(u))from (6.2). Specifically, for (4.3),

hG(u 1[ + (s D(u))G(u + e-"gl

for (4.4),

hM(t) ---g’ll + (s D(u))iM(U)- __Ae- sD(=).,

and for (4.5),
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hL(U) fl (s D(u))qL(U )e- sD(u).

To simplify the exposition we assume a distortion-free TES + process (D(u)- u). ’ro solve
for x+ (z, s Is) in (4.5), the differential equation (6.4) now simplifies to

’s, z(u) All ze suits, z(u) Ae su, u E [0, 1],

with the complementary solution (see Ritger and Rose [13])

,() ce,, + (l)e
s, zkU)

To determine a particular solution, define the operator

Sz[(u)]- ’(u)- All ze-"Xu](u), E L2([0, 1)),

and postulate a solution ps, z(u) of the form

s, z(u) E ane nsu’
n-1

for some coefficients an --an(s,z). Applying the operator Sz to the postulated solution above
then results in

Sz[Os, z(U)] (A "t- s)ale- su + E [--(A q- ns)an -b Azan lie- nsu.
n-2

,X andBut from (6.3), Sz[ps, z(U)]--Ae su, implying the recursive relations ai-A+ s

an -- ,x +’XZnsan 1, for n _> 2. Hence an 1 YIn ,x +’Xzks’ and the solution of (6.5) can now be
k--1

written explicitly in terms of the constant c as

z
1- 1]-’1-- e nsu Az (6.6)A+ks"n=l k=l

The constant c- c(z,s,A) is independent of u and will be determined by substituting (6.6) into
(6.3). A direct calculation of hL(U fa (s Is), with the aid of (6.2), yields

hL(U)
8 -Jr-

e -[-
u- 1). (6.7)

Substituting (6.6) and (6.7)into (6.3) results in

ce" + (1) " +_1
n=l k=l

A Ie-su_l--e-s e,(u-1)1A+s l_e-
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1 -e -’x e
n--1 k--1 0

Since c does note depend on u, set in particular, u- 0 in the equation above, yielding
oo n

,Z+ H +n=l k=l

,+s eA_ l

-,- (n + 1)s n
1 e:.t_ (n -t- li) kII=a

Using the evaluation

1

e(z/)- "- ,dv

0
z

in the preceding equation, we conclude

The generating function x+ (z, s Is) is now given by (6.6) with c given in (6.8).
The solutions for x+ (s Is) and x+ (zslu) are largely similar. However, for/x+ (s In), we

have a straightforward solution in terms of LX+ (z, s Is) as given by (3.7).

7. The Pea&edness of TES + Traffic Processes

The peakedness functional provides a partial characterization of the burstiness of an ergodic
traffic stream by gauging its effect when offered to an infinite server group. In practice,
peakedness is typically used to approximate a solution for blocking and delay statistics in finite-
server queues.

Let {Xn} be a stationary sequence of interarrival times with a general probability law, arrival
rate A= 1/E[Xn] < ee, and expectation function M(t) (recall Section 1). Assume that the
corresponding traffic stream is offered to an infinite server group consisting of independent servers

with common service time distribution F. Let B(t) be the number of busy servers at time t, and
assume that its limiting statistics exist. The peakedness functional, zx, associated with the
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traffic process {Xn} given by

zx[F]_ limV_r,B,:.j,,,(.’]
(7.1)

tT EZ[B(t)]
maps the space of all service time distributions to non-negative numbers.

Let (F} be a parametric family of service time distributions, indexed by the service rate

#-1/fxdF,(x). It is convenient to standardize the F,(x) to unit rate by defining
0

Fl(X F,(x/p), and to replace the peakedness functional zx[F,] from (7.1) by the correspond-
ing peakedness function

ZX, FI (IA) zx[F.]. (7.2)

Interestingly, if {G} is any other parametric family of service time distributions, then the corres-
ponding peakedness, functions Zx, F1 (#) and zX, GI(# contain equivalent information on the traf-
fic process {Xn} In the sense that the two are connected by a known transformation (see
Jagerman [7]). In particular, for an exponential service time distribution, Fl(X 1- e-x, the
corresponding peakedness function (7.2) is dented by zx, exp(#) and has the representation (see
Eckberg [3]),

Zx, exp(#) 1 -+ I/I(#). (7.3)

Consider the auxiliary peakedness function

Zx, exp(#,x 1 -- + (7.4)

from which (7.3) can be obtained by integration with respect to the interarrival time density
fx(x). Substituting the integral equation (3.4) into (7.4) yields the integral equation

(7.5)

For the remainder of this section, we specialize the discussion to TES + processes {Xn+ }. In
this case, the peakedness value, Ze+xp(O), assumes a particularly simple form. However, before
stating the main result, we shall need the following simple facts which will serve to simplify the
proof.

Proposition 1: For any TES+ process {Xn+ } of the form (1.3),

(7.6)

1

d z + D(v))dvf o z +- exp

0

(7.7)

1

fl (v D(u)) 1 # D(v)gu+ (v u)dv + o(),
0

(7.8)
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71 (it) 1 + 1/2m2+ It2 + o(it2), (7.9)

El(X2
Proof: (7.6) follows immediately from (7.41, because the marginal density of background

TES processes is uniform on [0,11.
To prove (7.7) we show that Zexp(#,+ x) is analytic at #- 0, permitting the interchange of

integration and differentiation. To this end, use the asymptotic expansion of ]rx+ from (4.6) in
the general relation (7.4) to deduce

Zp(,, D(u)) 1 + b +x (u) + O(it), ItO,

proving that, in fact, Ze+xp(#, x) is analytic for Re[it] >_ 0. Moreover, at It 0,

b +x (u) Ze+xp(O, D(u))- 1,

and from (7.61,
1

bo+ /b+x (u)du ze+xp(O) 1.

0

This determines the constant b0+ (which was left undetermined in Theorem 2) in terms of

Zp(O).v___ The determination of Zp(O)___ will be given later in Theorem 3.
1+ uD(V)gu+ (v u) dv in powers ofEquation (7.8) is obtained by expanding fa (it n(u)) f e
0

It around 0. Similarly, (7.9) is obtained by expanding fx (it) E[eUXn+]in powers of It around
0. [-1

The main result now follows.

Theorem 3: For any TES+ process {Xn+ } of the form (1.31, we have the representations

Ze+xp(O)_ 1 + (C+x )2
2 / (Cx+/2E PX+ (’)

1 / (Cx+ 127rsx+2 (0), (7.10/
r--1

where (C+x )2 Var[X2 ]/E2[X2 is the squared coefficient of variation corresponding to f+x"
Proof: Substituting x- D(u), y- D(v)and (4.2)into (7.5) yields

+Ze+xp(it, D(u)) 1 + ----a l (I D(u))

+ f ZLp(it, D(v))e- uD(V)gu+ (v u)dv.
0

(7.11)

To obtain ze+xp(O,D(u)), substitute (7.8) into (7.11) and set It-0.
equation

1

Zp(O,V(u)) 1 ) +X / D(v)gu+ (v u)dv
0

This yields the integral

1

+ f ZLp(O D(v))gu+ (v u)dv,
o

(7.12)
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in the unknown function zv(O,D(u)). Since gu+ (v In)- gu(v- u)is periodic in each argument,
we make use of Fourier series to represent the solution of (7.12). Substituting the representation
(4.1) for gu+ (v In)into the integral equation (7.12) and interchanging summation and integration,
we obtain after some manipulation

Zp(O, D(u)) 1 E AX+ 7v(i2ru))( i2ru)e i2r,u

1

+ E fv(i2ru)e-i2’u ei2v~ + ’" D(v))dv. (7 13)exp,
0

1
i2rv TNext, we let u- f e Zexp(O,n(v))dv and conclude that Ze+xp(O,D(v)) has the Fourier

series representation o

Ze+xp(O,D(u))- E Fuei2ruu. (7.14)

The representation (7.14) is now used on both sides of (7.13) to obtain, after conjugation,

E ,ei2r’u = l E A+x v(- i2ru))(i2ru)ei2’’u

+ E 7V(- i2r)’2,ei2r’u. (7.15)

The Fourier coefficients, , can now be deduced to be

z.(0), o
z’u A +X fv(- i2ru).)

(7.16)

-1-v(-i2ru) (i2ru), ul

where the first case above follows by setting (7.14) in (7.6) for u- 0, and the second case above
results from equating Fourier coefficients in (7.) for u 0. Furthermore, equating coefficients
there for u-0 yields the relation ’0- 1- x+ D(0)/ F0, which is consistent with the fact that
5(0)-1/x+, but 0-zp(O) cannot yet be deduced. Substituting, however, the Fourier
coefficients, z’,, from (7.16) into the right-hand side of (7.14) now yields the relation

Zp(O, D(u)) + fv( i2ru) 5(i2ru)ei2uu, (7.17)-ZexP(O)-A’"
1-?V(- i2r)
0

with +zexv(O as yet undetermined.

To determine Zp(O), integrate (7.11) with respect to u, and use the relation (7.6) to obtain

1

Ze+xp(#) 1 AX+[I f (#)] + jZp(#,D(v))e uD(V)dv. (7.18)
0

Next, substitute (7.9) into the right-hand side of (7.18) and expand the resulting equation in



On Markovian Traffic with Applications to TES Processes 393

powers of # around O, which yields

Simplifying the above equation with the aid of (7.6) and (7.7) and dividing by # now gives the
following condition equation for ze+xp(O,D(u))

1

Zp(O D(u))D(u)du 1 +
0

(7.19)

The value of ze+xp(O)is finally obtained by substituting (7.17)into (7.19) resulting in

1/2
o fv(- i2r) 2Zp(O) ($ +x )2m2+ + ($x+=)2_oo 1- Ty( i2rw)

D(i2r)

1 +)2 )2
oo fv(i2r,)

=(AX m2+ +(AX+ u=E- l-v(i2ru)
5(i2  ) (7.20)

where the second equality is justified by the fact that all quantities in (7.20) are real except for
the terms in the infinite sums.

The first equality of (7.10) follows from (7.20), noting that

oo 1 fv(i2r,)
[n(i2r’)[2

’= -u0

E E (i2rrz)l)(i2rrz)12-Var[Xn+] EP+x
v--1 ---x) v--1

where the second equality is justified by the absolute convergence of the series, and the third by
appeal to (1.6). Finally, the second equality of (7.10) follows from the identity

Px+ ()
rSx+ (0)- 1

2
r=l

in view of (1.2). E!

Theorem 3 reveals an interesting connection between the peakedness Ze+xp(O) and the index of
dispersion notion of traffic burstiness or variability [2, 4, 5]. Let {Xn} be a stationary sequence
of interarrival times. The index of dispersion for intervals (IDI) is the sequence {In}, defined by

Var(X + + Xj n In-1 TI j +1 + c 1 + 2E (1 )px(). (7.21)n rtE[Xj]

The limit Ix limIn of (7.21) is
nTo

Ix c2x 1+2 px(r (7.22)
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For a TES + process, {Xn+ }, a comparison of (7.22) with (7.10) yields the relation

Thus, for TES + processes, zp(O) and Ix+ convey the same information. However, for a general
traffic process, (Xn} the peakedness function, zx, exp(#) contains much more information, and
especially the traffic impact on a server system. It is, therefore, desirable to obtain at least an

approximate solution of the integral equation (7.11), for # > 0.

To this end, define
1

/ e
-i2=,v ,D(V)dv,d,(#)

0

and for the auxiliary peakedness function, ZLp(#,D(u))in (7.4), assume an approximation of the
form

ze+xp(#,D(u)) ze+xp(# / b,d,(#)ei2’r’u, (7.25)

for some coefficients b, as yet undetermined. (7.25) clearly satisfies (7.6), independently of the
choice of the b. Next, we make the essential assumption that the coefficients b depend only on

and require that the approximation (7.25) satisfy (7.18). Accordingly, on substituting the
former into the latter, we get

+ 1 X+ X+ 1
o

(7.26)Zexp(#)
1 fx (#) # # 1 fx (#) u~+ + -+

In order to determine the b, we further require that sending #0 / in (7.26), result in a limit
that exactly equals the correct value, Zp(O), as given in Theorem 3. We show that this
requirement yields

lim + m+ + ( +x b, D(i2) u (7.27)):
0

To see that, use (7.9) to obtain the evaluation 1 1 +
~+ --(AX )2m2+ + o(#), and expand

l_Ix(p P

(7.24) in powers of # about 0 to deduce the relation d- -#D(i2u)/ o(#). Equation (7.27)
follows from the preceding two relations. A comparison of (7.27) with (7.20) now determines the

b as

b,
1 fv(i2r,)

Substituting the bu above into (7.25) yields the final approximation,

zp(#,P(u))
_

ze+xp(#) + (7.28)

and similarly, from (7.26),
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+izxp#,
_
1- ~+IX (#) It

It is interesting to observe that the first two terms,

1 7X+ (it) It

(7.29)

in (7.29) constitute the exact peakedness function for the corresponding renewal traffic (i.e., a

sequence of independent identically distributed inter-arrival times with common marginal density

fx+ ). Thus, these first two terms represent the contribution of the marginal density, fx+, to the
burstiness of {Xn+ ), while the third term in (7.29) arises from the dependence structure {Xn+ ).
Equation (7.29) thus captures the effect of both first-order and higher-order statistics on the
burstiness of a TES / traffic process. This interpretation is consistent with the fact that a
renewal process entirely lacks second-order effects (its autocorrelation function is, zero for positive
lags), and consequently, renewal traffic owes its peakedness to first-order statistics, exclusively.
Interestingly, the case It--0 in Equation (7.10) exhibits precisely two contributions, namely,
those corresponding to first-order and second-order statistics, but no higher-order ones.
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