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ABSTRACT

In this paper, we introduce and study some new classes of variational inequa-
lities and Wiener-Hopf equations. Essentially using the projection technique, we
establish the equivalence between the multivalued general quasi-variational in-
equalities and the multivalued implicit Wiener-Hopf equations. This equivalence
enables us to suggest and analyze a number of iterative algorithms for solving
multivalued general quasi-variational inequalities. We also consider the auxiliary
principle technique to prove the existence of a unique solution of the variational-
like inequalities. This technique is used to suggest a general and unified iterative
algorithm for computing the approximate solution. Several special cases which
can be obtained from our main results are also discussed. The results proved in
this paper represent a significant refinement and improvement of the previously
known results.
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1. Introduction

The theory of variational inequalities emerged as an interesting and fascinating branch of
applicable mathematics. This theory constituted an important and significant extension of the va-
riational principles and led to innovative applications in diverse fields. In fact, the variational in-
equality theory provides us a natural, simple, general, and unified framework to study a wide
class of unrelated linear and nonlinear problems arising in fluid mechanics, elasticity, and oceano-
graphy. Furthermore, the variational inequality theory provides us this very same framework to
study general equilibrium problems in economics and transportation, optimization, operations re-
search, and physical, regional, and engineering sciences; see, for example, [1-35] and the references
therein. In recent years, various extensions and generalizations of the variational inequalities
have been proposed and analyzed using new ideas and techniques. It is worth mentioning that
the theory of variational inequalities can be considered as the natural development of the 19th
and 20th problems of Hilbert, which he formulated in his famous Paris lecture in 1900. This
theory allows us to prove not only the existence of solutions for nonlinear equations and inequali-

0

ties (which are not necessarily the Euler-Lagrange equations corresponding to variational pro-
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blems), but also helps us in developing efficient numerical techniques for solving them.

Inspired and motivated by the recent research work going on in this field, we introduce and
consider some new classes of variational inequalities. Noor [25] studied the multivalued general
quasi-variational inequalities, where the projection method was used to suggest an iterative algor-
ithm for finding the approximate solution. In this paper, we prove that the multivalued general
quasi-variational inequality is equivalent to a system of equations, known as the multivalued im-
plicit Wiener-Hopf equations. This equivalence is quite flexible and general. By a suitable rea-
rrangement of the implicit Wiener-Hopf equations, we suggest a number of iterative algorithms
for solving quasi-variational inequalities. We also consider another new class of variational in-
equalities, which is known as the strongly nonlinear mixed variational-like inequality. This class
has important and potential applications in economics and transportation equilibrium problems,
optimization theory, and nonlinear analysis. We note that the projection method and its variant
forms cannot be wused to study the existence of the solution of these mixed
variational-like inequalities, since it is not possible to obtain the projection of the space into the
product of the convex sets. This fact motivates us to use the auxiliary principle technique of Glo-
winski, Lions, and Tremolieres [10] and Noor [18-23] to study the existence of a solution of the
mixed variational-like inequalities. This technique deals with the auxiliary variational-like inequa-
lity and proves that the solution of the auxiliary problem is the solution of the original variation-
al-like inequality. In addition, this technique can be used to suggest a novel and general
iterative algorithm. Recently, it has been shown that the auxiliary principle technique helps us in
finding the appropriate variational principles for different classes of variational inequalities, which
provide us with a general framework to analyze and describe many computational algorithms
ranging from gradient, Newton, decomposition, and descent algorithms; see Zhu and Marcotte
[35], Noor [23], and Larsson and Patriksson [14] for more details.

In Section 2, we formulate the problems and discuss some special cases which can be derived
from these new problems. In Section 3, we establish the equivalence between the multivalued
general quasi variational inequalities and the multivalued implicit Wiener-Hopf equations. This
equivalence is used to analyze some iterative algorithms for variational inequalities. The auxi-
liary principle technique is used to prove the existence of a unique solution of variational-like in-
equalities, which is the subject of Section 4. We show that the auxiliary principle technique can
be used to suggest a general iterative algorithm for variational inequalities.

2. Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted by || - || and (-, -),
respectively. Let K be a nonempty closed convex set in H. Let T, A, g: H—H be single-valued
operators and V: H—2 be a multivalued operator.

Given a point-to-set mapping K:u—K(u), which associates a closed convex set K(u) with any
element u of H, consider the problem of finding u € H and w € V(u) such that g(u) € K(u) and

(Tu + Aw, g(v) — g(u)) > 0, for all g(v) € K(u). (2.1)

The problem of type (2.1) is called the multivalued general nonlinear quasi-variational inequality
problem. This problem is mainly and originally due to Noor [25], where the projection method
was used to study the existence of a solution of the multivalued quasi-variational inequalities
(2.1). It has been shown in [25] that implicit obstacle odd order boundary value problems can be
studied in the general framework of quasi-variational inequalities (2.1).
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Related to multivalued general quasi variational inequality (2.1), we consider the problem of
solving the generalized implicit Wiener-Hopf equations. Let Pl‘%u) be the projection of H into

K(u) and QK(u =I-P, u)? where I is the identity operator. e consider the problem of find-
ingze H,ue I% and w € (V(u) such that

Tg™'Preuyz+p " ' Qpeyyz = — A(w), (2.2)

where p > 0 is a constant and g ~! is the inverse of the operator g. Equations of type (2.2) are
called multivalued implicit Wiener-Hopf equations. For the general treatment, formulations, and
applications, see Speck [31], Shi [30], and Noor-Noor-Rassias [27].

Given single-valued nonlinear operators T, A: H—H and n: H x H—H, we consider the pro-
blems of finding u € H such that n(u,v) € K x K and
(Tu+ A(u),n(v,u)) + j(v) — j(u) > 0, forallve H, (2.3)

where j: H—H is a proper, semi-continuous, convex and nondifferentiable function. This problem
is called the strongly nonlinear mized variational-like inequality problem. It has many applica-
tions in optimization theory, engineering sciences, economics, calculus of variations, and network
equilibrium; see, for example, [19,21,33,34].

Special Cases: 1. If n(v,u) = v—u, then problem (2.3) is equivalent to finding u € H such
that
(Tu+ A(u),v—u) + j(v) — j(u) >0, forallve H. (2.4)

Problem (2.4) is mainly due to Noor [16]. For the applications and numerical methods, see Noor
[16,20)].
II. If n(v,u) = g(v) — g(v) where g: H—H is a nonlinear operator, then problem (2.3) is
equivalent to finding v € H such that g(u) € K and
(Tu+ A(u), g(v) — g(u)) + j(v) — j(u) > 0, for all g(v) € K, (2.5)

and is known as the general strongly nonlinear mixed variational inequality problem [20].

II. If A(u) =0, then problem (2.3) is equivalent to finding u € H such that
(Tu,n(v,u)) + j(v) — j(u) >0, forall ve H, (2.6)
which is a problem considered and studied by Noor [19], where the auxiliary principle technique

was used to study the existence of a unique solution and to suggest an iterative algorithm.

IV. If j(u) = 0, then problem (2.3) reduces to finding v € H such that n(u,v) € K x K and
(Tu+ A(u),n(v,u)) >0, forallve H. (2.7)

Inequality (2.7) is called the strongly nonlinear variational-like inequality, which is mainly due to
Noor [21].

In brief, for a suitable choice of operators T', 4,9,V ,7n, and convex set K(u), one can arrive at
various classes of variational inequalities, complementarity problems, and the Wiener-Hopf
equations as special cases of problems (2.1) - (2.7).

We need the following concepts and results.
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Definition 2.1: The nonlinear operator n: H x H—H is said to be
(a)  Strongly monotone if there exists a constant a > 0 such that

(n(vyu),v—u) > a||v—ul|? forall u,ve H.
(b)  Lipschitz continuous if there exists a constant 3 > 0 such that

[| 7(v,u) || <B||v—u]|, forallu,veH.

We would like to point out that if n(v,u) = Tv—Tu, where T: H—H is a single-valued
operator, then definition 2.1 reduces to the usual definition of strong monotonicity and Lipschitz

continuity of nonlinear operator T. From (a) and (b), it follows that o < 8. Note that if g =1,
then the operator 7 is nonexpansive.

Definition 2.2: The multivalued mapping V: H—C(H) is called M-Lipschitz continuous if
there exists a constant g > 0 such that

MWV @), V) <pllu—vl|, forall u,veH,

where C(H) is the family of all nonempty compact subsets of H and M(-, ) is the Hausdorff
metric on C(H).

Assumption 2.1: The nonlinear operator n: H x H— H satisfies the relation

n(v,u) = —n(u,v), for all u,v € H.

Obviously n(u,v) =0, for all u € H, and it was used in [34, 35] to study the existence of a
solution of the variational-like inequalities.

Lemma 2.1 [1]: Let K be a closed convex set in H. Then, for a given z € H, u= Pz if
and only if u € K satisfies

(u—2z,v—u) >0 for allv e K.

Furthermore, the projection operator Py is nonezpansive, that is,

|| Pgu—Pgvl|| < ||u—v]|, for all u,v € H.

3. Wiener-Hopf Equations Technique

First of all, we prove the equivalence between the multivalued general quasi-variational
inequality (2.1) and the multivalued implied Wiener-Hopf equation (2.2) essentially using the
projection technique of Noor [17,24] and Shi [30].

Theorem 3.1: The multivalued general gquasi-variational inequality (2.1) has a solution

ue H, weV(u) if and only if the multivalued implicit Wiener-Hopf equation (2.2) has a solution
z€ H,ue H, w € V(u), where

g(u) = PK(u)Z’ (3.1)
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2 = g(u) = p(Tu+ Aw), (3.2)
and p > 0 is a constant.

Proof: Let u € H, w € V(u) such that g(u) € K(u) be a solution of the variational inequality
(2.1). Then, by Lemma 2.1, we have

(1) = P e o) — p(Tu+ Aw)] (3.3)
Now, using the fact that QK(u) =1- PK(u) and equation (3.3), we obtain
Qe (ul(w) = p(Tu + Aw)] = g(u) = p(Tu+ Aw) = Pyelau) = p(Tu+ Aw)]
= — p(Tu+ Aw)
= = pTg ™ 'Py(y9(u) = p(Tu+ Aw)] — pAw,
from which and (3.2), it follows that
Tg~ lPK(u)z +p” 1QK(u)z = — Aw.

Conversely, let z € H, u € H, w € V(u) be a solution of (2.2), then

P(Tg ™ Py (g7 + Aw) = = Q)2 = Pe(uy? — = (3.4)
Now from Lemma 2.1 and (3.4), for all g(v) € K, we have

0 < (Pr(uy? = 2 9(v) = Pgy2) = p(Tg ™~ IPK(u)Z + Aw, 9(v) = P g (4)2)-

Thus (u,w), where u =g~ lPK(u)z is a solution of (2.1). O

Theorem 3.1 establishes the equivalence between the variational inequality (2.1) and the
Wiener-Hopf equations (2.2). This equivalence is quite general and flexible. For the appropriate
rearrangement of the Wiener-Hopf equations (2.2), we can suggest a number of iterative
algorithms for solving quasi-variational inequalities (2.1).

I. Equations (2.2) can be written as
QK(u)Z =-p(Tg~ 1PK(u)Z + Aw),
from which it follows that
z= PK(u)z —pTg~ lPK(u)z — pAw
= g(u) — pTu— pAw, using (3.1). (3.5)

This formulation enables us to suggest the following iterative algorithm for solving the quasi-
variational inequality (2.1):

Algorithm 3.1:  Assume that K(u) is a closed convex set in H. Let T, A, g: H—H be nonlin-
ear operators and V:H—C(H) be a set-valued mapping. For given z; € H and uy € H, let us
take wy € V(ugp), g(uy) € K and
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9(up) = PK(uO)ZO
2y = g(up) — p(Tug + Awp).
Since wy € V(ug) € C(H), there exists a w; € V(u;) such that
| wo —wy || < M(V(up),V(uy)),
where M( -, -) is the Hausdorff metric on C(H). Let
g(uy) = PK(u1)21
29 = g(uy) — p(Tuy + Awy).
By induction, we can obtain the sequences {z,}, {u,}, and {w,} such that
9(p) = Pre(y y2n
€ V() |0y =0, I < MV (1 4 ),V (1))

2, 1= 9(u,) = p(Tu, + Aw,), n=0,1,2,....
II. Equation (2.2) may be written as
Qruyz = =p ™ NQy(uyz = T9 ™ Pz — Aw
which implies that
2=Pyy—Tg~ IPK(u)Z +I-p~ 1)QK(u)z - Aw

=g(u)—Tu—Aw+ (I —-p~ I)QK(u)Z’ using (3.1).

Using this fixed point formulation, we can suggest the following iterative scheme:

(3.6)
(3.7)

(3.8)

Algorithm 3.2:  For given zy € H, uy € H, and wy € V(ugy), compute {z,},{u,}, and {w,}

from the iterative schemes.

0() = Py

w, € V(un): “ Wy 41— Wy “ < M(V(un + 1)7V(un))

2n g1 = 9(n) = (T + Aw,) + (I =p " HQp(y o 7= 0,12,

I If T~ exists, then equation (2.2) may be written as

— -1 -1 -1
PK(u)z_—p gT QK(u)z—gT Aw,

from which it follows that

z= (I—p_lgT_l)QK(u)z—gT_lAw.
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This fixed point formulation can be used to suggest the following iterative scheme:

Algorithm 3.3: For given zy € H, uy € H, and wy € V(u,), compute {z_}, {u,}, and {w,} by
the iterative schemes

g(un) = PK(un)zn
Wy, € V(un): ” wy, +1 Wy ” S M(V(un+ l)’V(un))
Zpiq = (I—p"lgT_l)QK(un)zn—yT"lAwn, n=0,1,2,....

For a suitable choice of operators T,g,A,V, and convex set K, one can obtain a number of

iterative algorithms for solving various classes of variational inequalities and related complemen-
tarity problems.

We now study the convergence criteria of Algorithm 3.1. In a similar way, one can study
the convergence of the approximate solutions obtained from Algorithms 3.2 and 3.3.

Concerning the convergence analysis of Algorithm 3.1, we need the following condition:

Assumption 3.1: For all u,v,z € H, the projection operator PK(u) satisfies the condition

||PK(U)Z‘PK(U)Z|| <vllu—vf,
where v > 0 is a constant.

Remark 3.1: We observe that Assumption 3.1 holds true if
K(u) = m(u) + K,
where m is a point-to-point mapping and K is a closed convex set in H. It is well known that
Py (u) = Pk 4 m(uy? = () + Pglv—m(u)].
Thus, from the above relations, we have
1P requy® = Prcgoy? Il = llm(u) = m(v) + Pyl = m(w)] - Prclz = m(v)] |
< |l m(u) = m(v) || + | Pglz = m(u)] - Prclz = m(u)]|
<2 m(u)~m(v) || <2 [lu—v]],

which implies Assumption 3.1 holds with v = 2v > 0, where v > 0 is the Lipschitz continuity con-
stant of the point-to-point mapping m.

Theorem 3.2: Let the operators T,g: H—H be strongly monotone with constants o >0 and
o >0, respectively, as well as Lipschitz continuous with constants 3 >0 and 6§ > 0 respectively.
Let the operator A:H—H be Lipschitz continuous with constant £ >0, and V:H—C(H) be M-
Lipschitz continuous with constant u > 0. Suppose that Assumption 3.1 holds and

B ) e e o Lty

o — 1—-k
l p— pé( ) o ’u2£2 (3.9)

52 262
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o > pE(1— k) + /(82 — k(2 — k) (3.10)

pu€ <1 —k, (3.11)

with k = 2v/1— 20 + 62 + 1. (3.12)

Then there exist z € H, u € H, and w € V(u), which are a solution of the multivalued implicit

Wiener-Hopf equation (2.2), and the sequences {z,}, {u,}, and {w, }, generated by Algorithm 3.1,
converge strongly to z, u, and w in H, respectively.

Proof: From Algorithm 3.1, we have
121 —2all = 11 9(u) = 9(tn 1) = p(Ttty = Ty _ 1) = plAw, — A, _ )|
< Nty =y - = (90) = 9 DI + [l =y 3 = p(Tty = Ty ) |
+p || Aw,, — Aw,, _ ||. (3.13)
Since T is strongly monotone and Lipschitz continuous, therefore
|t =ty — 1 = (T = Ty _q) || 2
= Ny =t g 12 = 2p(Tuy = Ty gy = vy ) + 92 | Ty = Ty _y ||
< (1= 2pat 22 | uy—u, |2 (3.14)
By using the strong monotonicity and Lipschitz continuity of g, we have
ity =ty 1 = (9u) = gt~ D) 12 < (1 =20 +82) |y =, 1|2 (3.15)
Furthermore, since A is Lipschitz continuous and V is M-Lipschitz continuous, we have
Il Aw, = Aw, _ || S Ellw,—w,_y | < EMV(u,),V(u,_y)
< €ulluy =,y Il (3.16)

From (3.12)-(3.16), we obtain

21— 2nll <{VI=20+ 8 + VI—2Zpat 28+ ptufll =, _, |

={k—g—z+ \/1—2pa+p2ﬂ2+p£u}ll Up =ty _q |- (3.17)

Now, from (3.6), (3.15), (3.12), and Assumption 3.1, we have

”un_un—ln < H un_un—l—(g(un)_g(un—l))” + “PK(un)zn—PK(un_l)zn——l“

k—~
S—Q—H%—Un-l I+l PK(un)zn‘PK(un)zn—1 I+ “PK(un)zn—l—PK(un_.l)zn-——l I

k—~
Sl =v gl + lzn=zq g I+ 71U —uy ol
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which implies that

1
||un——un_1us;—(,;—;—;jnzn—zn_ln. (3.18)
“\ 2

Thus, from (3.17) and (3.18), we have

E Y pép+ /1= 2pa + p2B°

1—1(k+7)

||zn+1_zn|| S ”Zn_zn—l”

=0z,—z,_11» (3.19)
with
54 st V1= 2pat 7
N 1-— %(k +7) '
Now from (3.9), (3.10), and (3.11), we have 6 < 1. Hence, from (3.19), it follows that {z,} is

a Cauchy sequence in Hj that is, 2, , ;—2z € H, as n—oo. From (3.18), we know that {u,} is
also a Cauchy sequence in Hj that is, u, , ;—u as n—oo.

0

From (3.7), we have

||“’n+1“wn|| SM(V(“n+1)’v(un))§N||Un+1_un||a

from which it follows that {w,} is a Cauchy sequence in H; that is, w,, , ;—w as n—oo.

Using the continuity of the operators T',g, A,V, Py, and Algorithm 3.1, we have
z=g(u—p(Tu+ Aw),
that is,
z2=Pryz—p(Tg~ IPK(U)Z + Aw) € H.
Now we show that w € V(u). In fact,
d(w, V() < [|w—w, || +d(w,, V(u))
< Jw—wy || + M(V(uy),V(x))
S Nw—wp |l +pllu, —ull,

where d(w,V(u)) =inf{||y—v]|:v € V(u)}. Since the sequences {u,} and {w,} are the Cauchy
sequences, it follows from the above inequality that d(w,V(u)) = 0, which implies that w € V(u),

due to V(u) € C(H). Using Theorem 3.1, we see that 2 € H, u € H, w € V(u) are solutions of
(2.2) and consequently z,, +17% u—u, and w,, , ;—w strongly in H. This completes the proof. O
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4. Auxiliary Principle Technique

In this section, we use the auxiliary principle technique of Glowinski, Lions, and Tremolieres
[10] and Noor [18-23] to prove the existence of a unique solution of the strongly nonlinear mixed
variational-like inequality (2.3), which is the prime motivation of our main result.

Theorem 4.1: Let an operator T: H—H be strongly monotone with constant o > 0 and Lip-
schitz continuous with constant § > 0. Let an operator n: Hx H—H be strongly monotone with
constant o > 0 and Lipschitz continuous with constant 6 > 0. Let operator A: H—H be Lipschitz
continuous with constant v > 0 and Assumption 2.1 hold. If k < «, where « is the strongly mono-
tonicity constant of T, and k is a constant as defined by (4.5), then there exists a unique solution
u € H of variational-like inequality (2.3).

Proof: (a) Uniqueness: Let u;,u, € H, uy # u, be two solutions of problem (2.3); that is

(Tuq + A(uq),n(vyuy)) + 5(v) — j(uy) > 0 for all v e H (4.1)

and

(Tugy + A(uy),n(v,uy)) + 3(v) — j(uy) > 0 for all v € H. (4.2)

Taking v = u, (respectively u;) in (4.1) (respectively (4.2)), performing the summation of the
resultant inequalities and using the assumption that n(u,,u,) = — n(uy,u,), we have

(Tuy = Tugyn(uy, ug)) < — (Auy) — Alug),n(uy,uy)),
which can be written as
(Tuq — Tug,uy — ug) < (Tuy — Tug, uy — uy — Ny, uy)) — (A(uy) — A(uy), n(uy, uy)).
Now using the strong monotonicity and Lipschitz continuity of the operator T, we have
alluy —up || < | Tuy = Ty || || ug —up— N(uy,ug) || + || Auy) — Aug) || I n(ug, ug) |
<A{B N uy —ug = nlup, u) ||+ [0y ug) | Hlluy =yl (4.3)

where v > 0 is the Lipschitz continuity constant of A.

Since the operator 7 is strongly monotone and Lipschitz continuous, it follows that
[y =y =nugyup) (|2 = [l ug =g || * = 2(n(uys ug)yuy = up) + | n(uy, ) || 2
<(1-20+6) [[u, —uy || 2 (4.4)
From (4.3), (4.4), and the Lipschitz continuity of 7, we obtain
alluy =y 11 < {0 (VIm20 T 80) 96 11y =y 12 = kg =, |,

where

k= B(v/1-20+62)+ 6. (4.5)
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Thus,
(0= k) fluy —uy || <0,

which implies that u; = u,, the uniqueness of the solution, since k < «.

(b) Existence: We now use the auxiliary principle technique (see Noor [18-23]) to prove the
existence of a solution of the mixed variational-like inequality (2.3). For a given u € H, we con-
sider the problem of finding a unique w € H satisfying the auxiliary mixed variational-like
inequality

(w,v = w) + pi(v) - pi(w) > (4,0 —w) — p(Tu+ A(u), (v, w), (4.6)

for all v € H, where p > 0 is a constant.

Relation (4.6) defines a mapping u—w. In order to prove the existence of a solution of (2.3),
it is sufficient to show that the mapping u—w, defined by (4.6), has a fixed point belonging to H
which satisfies (2.3). In other words, it is sufficient to show that for a relevant choice of p > 0,
|| wy —wy || <O uy —uy|| with 0 <8 <1, where 6 is independent of u; and u,. Let w; and w,
be two solutions of (4.6) related to u; and wu,, respectively. Taking v = w, (respectively w,) in
(4.6) related to u; (respectively u,), we have that

(wy,wy —wy) + pj(wy) — pi(wy) > (uy,wy —wy) — p(Tuy + A(uy), n(wy, wy)) (4.7)
and

(g, wy —wy) + pj(wy) — pi(wy) > (ug, wy —wy) — p(Tuy + Auy), n(wy, wy)). (4.8)
Adding these inequalities and using the assumption n(wy,wy) = —n(wy, w;) for all wy,wy € H, we
have

(wy = wy, wy — wy) < (g — ug, wy — wy) — p(Tuy ~ Tug, N(wy, wy)) — p(A(uy) — A(uy), n(wy, w,))
= (uy — uy — p(Tuy — Tuy),w; — wy) + p(Tuy — Ty, wy — wy — n(wy,wy))
— p(A(uy) — Auy), n(wy, wy)),
from which it follows that
[l wy —wy |12 < Nluy = up = p(Tuy = Tup) || || wy —wy |
+p || Tuy — Tug || || wy — wy = n(wy, wy) ||

+p |l ACuy) = Aug) || |1 n(wy,wo) || - (4.9)

Combining (4.4), (4.9), (3.14), and using the Lipschitz continuity of T', A, and 7, we have
[|wy —wy || < {\/1 —2pa + p2p% + p(ﬂ\/ 1—20+ 6%+ 67)} || uy —ugy ||
={tp) +pk}[ug —u || =0luy —uyf,

where 0 = t(p) + pk, t(p) = /1 —2pa + B2p?% and k = V1 — 20 + 6% + 6.
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We need to show that 8 < 1. It is clear that t(p) reaches its minimum value at 5 = % with

2
(p)=4/1 —%. For p =7, pk+t(p) <1 implies that pk < 1. Thus, it follows that 6§ < 1 for all

p with 0<p<2ﬂ3‘—:2, pk <1 and k<a. Consequently, the mapping u—w defined by

(4.6) has a fixed point belonging to H, which is a solution of the mixed variational-like inequality
(2.3). This completes the proof. a

Remark 4.1: If n(v,u) = v — u, then problem (4.6) is equivalent to finding w € H for a given
u € H such that

(w,v—w) + pj(v) — pj(u) > (u,v — w) — p(Tu+ A(u),v — w), for all v € H. (4.10)

From the proof of Theorem 4.1, we see that k= and § =¢(p)+py <1 for 0 < p < 2;2{—72,
-

v < a, and py <1, so that the mapping u—w defined by (4.10) has a fixed point, which is the

solution of the variational inequality (2.4) studied by Noor [16] in elasticity and Bingham fluid
(in 1975).

Remark 4.2: We note that if w =u, then u is a solution of the mixed variational-like
inequality (2.3). This observation enables us to suggest the following novel iterative algorithm,
which is a useful way of computing a solution of (2.3) as long as (4.6) is easier to solve than (2.3).

General Algorithm 4.1:
(a) At n =0, start with the initial value w.
(b) At step n, solve the auxiliary problem (4.6) with u = w,,. Let w, ,  denote the solution
of the problem (4.6).
(¢)  Foragiven¢>0,if ||w,,,—w,| <estop. Otherwise go back to (b).

Remark 4.3: It is worth mentioning that many previously known methods, including
projection techniques and its variant forms, linear approximation, relaxation, descent, and
Newton’s algorithms, that have been proposed for solving various classes of variational
inequalities, and complementarity problems, can be derived as special cases of the auxiliary
principle technique; see Zhu and Marcotte [35] and Noor [24, 23]. It has been shown in Noor [23]
that the auxiliary principle technique can be used to formulate the equivalent differentiable
optimization problems for variational inequalities. We note that the auxiliary principle technique
is quite general, flexible, and provides us with a unified framework for computing an approximate
solution of variational inequalities. By a suitable choice of the auxiliary problem, one can suggest
a number of equivalent formulations for various types of the variational inequalities, and one can
also study the existence of the solution of the variational inequalities.

The auxiliary principle technique can be modified and extended for variational inequalities
problems involving the multivalued and fuzzy operators. We note that if the convex set involved
also implicitly or explicitly depends on the solution, then problem (2.3) is called the generalized
mized quasi-variational-like inequality problem. An extension of the auxiliary principle technique
is still an open problem and this constitutes an important and interesting area of future research.
Development of efficient and computable iterative algorithms for numerically solving the
variational-like inequalities needs further research efforts.
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